首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
东北印度洋赤道90°E海岭和孟加拉扇MD81349,MD77181岩心记录了30万a来气候变化的历史.分析发现浮游有孔虫壳体(方解石晶体)的天然热释光变化与δ18O反映的冰川旋回存在着良好的一致性:天然热释光强度的增大与间冰期对应,降低与冰期对应.对MD81349岩心天然热释光时间序列的频谱分析结果显示热释光的显著周期为99,46,23,20和11ka,其中99,46,23,20ka分别与天文学周期中的地球轨道偏心率周期100ka,地轴倾斜度(黄赤交角)周期54,41ka,太阳辐射年度差异的岁差周期23,19ka接近,这表明地球冷暖交替与太阳辐射强度周期性变化密切相关,在不同海水温度条件下结晶形成的方解石晶体的热释光强度差异显著,因而有孔虫壳体积存的热释光能够反映地球气候的变化.  相似文献   

2.
Along a north-south transect (9.69°N to 55.01°S) in the southwestern Indian Ocean during the Indian Pilot Expedition to Southern Ocean (PESO), the oxygen isotopic analysis of planktic foraminifera (Globigerina bulloides) from 23 surface sediment samples was carried out to assess the relationship between isotopic composition of G. bulloides and the prevailing physical (seawater temperature and salinity) conditions of the ambient seawater. An increasing trend in the δ18O value is noticed towards higher latitude. Apparently such an increase in δ18O values is inversely related to the temperature changes along the transect. However, slight mismatch is observed at a few stations due to calcification out of optimum conditions or due to the salinity changes. The preliminary results of the present study, if extended to the subsurface sediments coupled with other parameters, may contribute to the reconstruction of the paleohydrography of the region, especially the position of various seawater fronts during the geologic past albeit with areal limitation.  相似文献   

3.
The thermocline-sea surface temperature (SST) feedback is the most important component of the Bjerknes feedback, which plays an important role in the development of the air-sea coupling modes of the Indian Ocean. The thermocline-SST feedback in the Indian Ocean has experienced significant decadal variations over the last 40 a. The feedback intensified in the late twentieth century and then weakened during the hiatus in global warming at the early twenty-first century. The thermocline-SST feedback is most prominent in the southeastern and southwestern Indian Ocean. Although the decadal variations of feedback are similar in these two regions, there are still differences in the underlying mechanisms. The decadal variations of feedback in the southeastern Indian Ocean are dominated by variations in the depth of the thermocline, which are modulated by equatorial zonal wind anomalies. Whereas the decadal variation of feedback in the southwestern Indian Ocean is mainly controlled by the intensity of upwelling and thermocline depth in winter and spring, respectively. The upwelling and thermocline depth are both affected by wind stress curl anomalies over the southeastern Indian Ocean, which excite anomalous Ekman pumping and influence the southwestern Indian Ocean through westward propagating Rossby waves.  相似文献   

4.
蔡怡  凌铁军 《海洋学报》2013,35(4):47-51
用SODA资料分析了热带西南印度洋上升区温度距平与整个南印度洋温度距平的时滞相关, 发现热带西南印度洋上升区温度距平与65°S, 105°E附近200 m深度的温度距平存在滞后10 a的相关振荡, 同时探讨了其可能的机制为温跃层内的斜压内波驱动, 即65°S, 105°E附近200 m深度的温度距平沿着温跃层上层在东南印度洋沿岸从高纬度向低纬的传播, 传播时间大约为10 a左右, 这种信号在传播过程中表现得较弱, 而在起点和终点的两端振荡比较强。波动的传播相比振荡本身要显得弱。  相似文献   

5.
利用小波分析方法,对2003-2008年周平均的Argo(地转海洋学实时观测阵)海温资料进行了分析,给出了全球上层海温年周期和半年周期振荡的空间分布特征.结果表明,南北半球中高纬地区以表层海温的年周期变化为主,在低纬度地区,表层海温以半年周期为主,而温跃层附近海温既有年周期也有半年周期(赤道太平洋、东南印度洋和赤道西大西洋以年周期为主;赤道东、西印度洋以半年周期为主).南北半球中高纬的年周期海温和北半球中纬度的半年周期海温在表层范围最大,显著性最高,强度最强,位相最前.随深度的增加,范围减小,显著性降低,强度减弱,位相滞后.信号主要集中在水深50 m以上,影响深度在150m以浅;赤道附近的太平洋和热带东南印度洋的年周期海温以及赤道东、西印度洋的半年周期海温在水深100m范围最大,显著性最高,强度最强,位相最前,信号主要集中在温跃层附近,影响深度均可达500m.  相似文献   

6.
刘雨  徐康  王卫强  谢强  王玉国 《海洋与湖沼》2021,52(5):1104-1114
上层经向翻转环流(shallow meridional overturning circulation, SMOC)主导热带-副热带上层海洋水体交换,对海洋物质输运和热量交换具有重要意义。基于7套海洋再分析数据产品,本文主要探讨了印度洋SMOC的冬夏季节变化及其差异的原因。结果显示,印度洋SMOC主要由南半球副热带环流圈(southern subtropical cell, SSTC)和跨赤道环流(cross-equatorial cell, CEC)组成,并且具有显著的季节差异。夏季风期间, SSTC和CEC均为表层南向输运,表层以下北向输运的逆时针环流结构。冬季风盛行时, SSTC仍维持逆时针结构,但环流中心南移且深度加深,强度弱于夏季;然而, CEC却转向为表层北向输运,表层以下向南输运的顺时针环流结构,其环流中心位置与夏季接近,环流强度与夏季相当。这种印度洋SMOC冬夏结构差异究其原因主要由风生环流主导, CEC冬夏季节环流方向反转是北印度洋冬夏季风转向的结果,而南印度洋信风的季节性位移和强度变化是SSTC强度和位置季节差异的主要原因。  相似文献   

7.
基于近40 a NCEP/NCAR再分析月平均高度场、风场、涡度场、垂直速度场以及NOAA重构的海面温度(sea surface temperature,SST)资料和美国联合台风预警中心(Joint Typhoon Warning Center,JTWC)热带气旋最佳路径资料,利用合成分析方法,研究了前期春季及同期夏季印度洋海面温度同夏季西北太平洋台风活动的关系。结果表明:1)前期春季印度洋海温异常(sea surface temperature anomaly,SSTA)尤其是关键区位于赤道偏北印度洋和西南印度洋地区对西北太平洋台风活动具有显著的影响,春季印度洋海温异常偏暖年,后期夏季,110°~180°E的经向垂直环流表现为异常下沉气流,对应风场的低层低频风辐散、高层辐合的形势,这种环流形势使得低层水汽无法向上输送,对流层中层水汽异常偏少,纬向风垂直切变偏大,从而夏季西北太平洋台风频数偏少、强度偏弱,而异常偏冷年份则正好相反。2)春季印度洋异常暖年,西北太平洋副热带高压加强、西伸;而春季印度洋异常冷年,后期夏季西北太平洋副热带高压减弱、东退,这可能是引起夏季西北太平洋台风变化的另一原因。  相似文献   

8.
本文分析了采集自太平洋、印度洋和大西洋的表层海水溶解硅酸盐的δ30Si值,结果表明,太平洋表层海水的δ30Si值为0.45‰~2.91‰,平均值为(1.52±0.59)‰;印度洋表层海水的δ30Si值为0.98‰~2.30‰,平均值为(1.52±0.36)‰;大西洋表层海水的δ30Si值为0.90‰~2.23‰,其平均...  相似文献   

9.
耦合模式对印度洋偶极子的模拟研究   总被引:1,自引:0,他引:1  
闫晓勇  陶勇  张铭 《海洋预报》2005,22(1):50-57
利用一个海洋-大气-陆面系统耦合模式,模拟分析了热带印度洋的季节和年际气候变化特征。该模式很好地模拟出热带印度洋区域的季节变化特征,对热带印度洋强的局地年际耦合信号-偶极子模拟也比较成功,模拟结果与已有的观测分析以及高分辨率耦合模式模拟结果接近。  相似文献   

10.
印度洋赤道潜流(equatorial undercurrent,EUC)是赤道流系的重要组成部分,对印度洋物质输运和能量交换有着重要意义.基于SODA 3.4.2海洋再分析数据,对印度洋EUC的三维空间结构和年际变化特征进行分析,并揭示其年际变率与印度洋偶极子(Indian Ocean dipole,IOD)的联系.结...  相似文献   

11.
12.
利用1870~2004年的HadiSST的月平均海表面温度(SST)资料,对去除了全球增暖趋势的印度洋-太平洋海表温度异常(SSTA)作季节经验正交函数(Season-reliant Empirical Orthogonal Function, S-EOF)分解,得到了印度洋-太平洋海表温度年际变化的2个联合模态,并且分析了与之相对应的大气环流特征.结果表明:低频的厄尔尼诺/南方涛动(ENSO)是控制印度洋-太平洋的主导模态,能使赤道印度洋维持一异常反气旋性环流,削弱印度洋夏季风的作用并且将东印度洋暖池的暖水输送到西印度洋,印度洋SSTA在一年四季中都出现全海盆同号变化,因此,第一主模态是ENSO的低频模与印度洋海盆一致模的联合模态;第二模态表现为太平洋上准2 a的ENSO位相转换模与印度洋偶极子模的联合模态,ENSO的位相转换发生于春季,与季风的异常转换有关,印度洋上出现异常的气旋性环流,叠加在印度洋夏季风上,增大东西印度洋的温差,在秋季出现西低东高的偶极子型海温分布,印度洋夏季风和这个模态的产生发展有很大的联系.  相似文献   

13.
热带印度洋偶极子事件和副热带印度洋偶极子事件的联系   总被引:6,自引:0,他引:6  
分别对热带印度洋偶极子事件和副热带印度洋偶极子事件的时间序列进行了周期分析。结果表明,热带印度洋偶极子事件的主要振荡周期为2 a和4 a,而副热带偶极子事件的主要振荡周期为8 a;对整个印度洋海区的海表温度距平进行2~8 a的带通滤波,发现未滤波之前,2个事件的相关性很低,而在进行了滤波之后,2个事件的相关性有很大的提高,并且当副热带印度洋偶极子事件超前热带印度洋偶极子事件9个月时,二者具有很强的相关性。通过对温度场和风场的分析,从物理上解释了2个事件之间的相互联系。  相似文献   

14.
本文利用多年月平均印度洋海表温度资料和我国160站点降水资料,通过奇异值分解(SVD)方法,分析了印度洋东西海温信息区温度差值与我国同期降水场之间的耦合关系,得到奇异向量分布型及相互作用的耦合周期信号。在对第一主模态的分析中发现印度洋海温分布对我国降水分布和降水强度有很大影响,且对各季影响存在一定差异。  相似文献   

15.
基于2000-2017年的MODIS-Terra气候态月平均海表温度数据检测了东印度洋季风带海域的温度锋,统计了各锋面每月发生的锋点数量、锋面平均强度及中心线长度,并基于2000—2017年逐年海表温度数据,研究了以恒河-雅鲁藏布江河口锋和爪哇岛锋为代表的典型温度锋面的年际变化。结果发现:在3、4月,东印度洋季风带海域的锋面最弱、数量最少;5-10月期间,5°~15°N及5°~15°S一带的温度锋出现并发展;12、1、2月最北部锋面发展并趋向成熟。研究区存在恒河-雅鲁藏布江河口锋、爪哇岛锋、Palk海峡锋、东锡兰锋及伊洛瓦底江河口锋5个温度锋,其中最北部的恒河-雅鲁藏布江河口锋全年存在,东北季风时期长度较长,强度较大,最南部的爪哇岛锋存在于4—11月,西南季风时期较强,长度和数量也处于较高水平,其余锋面主要发生于西南季风盛行时期,且强度、长度等变化相对较小。两个典型温度锋空间位置的年际变化均不大,恒河-雅鲁藏布江河口锋平均强度的年际变化较大,最大超过0.03℃/km,长度变化相对较小;爪哇岛锋平均强度的变化相对平稳,但锋点数量和中心线长度存在较大的年际变化。  相似文献   

16.
基于2004—2018年Argo (Array for Real-Time Geostrophic Oceanography)浮标观测的温度、盐度数据, 利用经验正交函数(EOF)分析和小波分析等方法对北印度洋(40°—105°E, 5°S—25°N)障碍层时空分布特征进行分析。结果显示: 北印度洋的东部常年存在障碍层, 而西部障碍层出现的概率相对较低; 较厚的障碍层出现在阿拉伯海东南部(67°—75°E, 3°—12°N)、孟加拉湾(82°—93°E, 11°—20°N)和赤道东印度洋(81°—102°E, 4°S—3°N)。阿拉伯海东南部和孟加拉湾障碍层厚度以年变化为主, 且呈同位相变化, 均为冬季最大, 夏季最小。赤道东印度洋区域则主要呈现半年周期变化, 在夏季和冬季各出现一次峰值。进一步分析表明, 孟加拉湾和赤道东印度洋障碍层厚度主要受等温层深度变化影响, 混合层深度变化对障碍层厚度变化的影响相对较小; 阿拉伯海障碍层厚度同时受等温层深度变化和混合层深度变化影响, 其中等温层深度变化对其影响更大。  相似文献   

17.
热带印度洋上层水温的年循环特征   总被引:1,自引:0,他引:1  
通过分析多年气候月平均的Levitus水温资料,结合多年气候月平均海表面风场资料以及观测的热带印度洋上层海流的分布状况,探讨热带印度洋上层水温的时空分布特征,剖析了热带印度洋混合层深度及印度洋暖水的季节变化规律。分析表明:热带印度洋的海表面温度低值区始终位于大洋的南部,而高值区呈现明显的季节变化,冬季位于赤道附近,在夏季则处于大洋的东北部;在热带印度洋的中西部、赤道偏南海域的次表层终年存在一冷心结构;热带印度洋表面风场的季节变化是影响该海域混合层深度季节性变化的主要因素;印度洋暖水在冬、春季范围较大,与西太平洋暖池相连,而在夏、秋季范围较小,并与西太平洋暖池分开。  相似文献   

18.
Teleconnection between El Nino/La Nina-Southern Oscillation (ENSO) phenomenon and anomalous Antarctic sea-ice variation has been studied extensively.In this study,impacts of sea surface temperature in the Indian Ocean on Antarctic sea-ice change were investigated during Janaury 1979 and October 2009.Based on previous research results,sea areas in the western Indian Ocean (WIO;50°–70°E,10 °–20 °S) are selected for the resreach.All variables showed 1-10 year interannual timescales by Fast Founer Tranaform (FFT) transformation.Results show that i) strong WIO signals emerged in the anomalous changes of Antarctic sea-ice concentration;ii) significant positive correlations occurred around the Antarctic Peninsula,Ross Sea and its northwest peripheral sea region iii) negative correlation occurred in the Indian Ocean section of the Southern Ocean,Amundsen Seas,and the sea area over northern Ross Sea;and iv) the atmospheric anomalies associated with the WIO including wind,meridional heat flux,and surface air temperature over southern high latitudes were the possible factors for the teleconnection.  相似文献   

19.
Analysis of sea-level data obtained from the Atlantic Global Sea Level Observing System (GLOSS) sea-level station at Takoradi, Ghana, West Africa, clearly reveals a tsunami signal associated with the Mw = 9.3 Sumatra earthquake of 26 December 2004 in the Indian Ocean. The tsunami arrived at this location on 27 December 2004 at approximately 01:38 UTC (which is close to the expected tsunami arrival time at that site), after travelling for more than 24 hours. The first wave was negative (trough), in contrast with the South African stations where the first wave was mainly positive (crest). The dominant observed period at Takoradi was about 42 minutes. The maximum trough-to-crest wave height (41cm) was observed on 28 December at 00:15 UTC. There were two distinct tsunami 'bursts', separated in time by about 14 hours, the larger being the second burst. A small residual lowering of the sea level (~15cm) during the tsunami and for several days afterwards, and a delayed (~4.5 days) lowering of seawater temperature (up to ~4.5°C), was observed, possibly indicating the presence of internal waves through the Gulf of Guinea associated with propagating tsunami waves. The prominent tsunami signal found in the Takoradi record suggests that tsunami waves could also be found at other sites off the West African coast.  相似文献   

20.
一个简单的印-太海气耦合模式   总被引:1,自引:0,他引:1  
刘岩松  王法明 《海洋与湖沼》2013,44(6):1462-1468
本文基于一层半海洋模式和SVD(Singular Value Decomposition)大气模式构建了一个简单的海气耦合模式, 引入热通量的作用, 分析ENSO影响热带印度洋地区的动力学和热力学耦合过程。其中, 使用统计大气模式, 由给定的SST(Sea Surface Temperature)异常得到风应力异常, 进而驱动海洋环流反馈给SST, 完成海气的动力耦合; 使用块体经验公式由SST异常和风场异常计算热通量异常, 直接作用于SST, 实现海气的热力学耦合。动力耦合实验揭示, 太平洋第一EOF(Empirical Orthogonal Functions) 模态与观测基本吻合。并且模拟Ni?o 3指数存在两年左右的谱峰周期。这说明, 海气动力学耦合是ENSO生成的主要因素。热力耦合的加入是为了考察ENSO影响热带印度洋的热力学效应。同时考虑动力和热力耦合的实验结果表明, 热带太平洋暖异常中心更加接近观测值, 热带印度洋出现海盆尺度海温正异常。这意味着热带太平洋的ENSO信号通过海气界面的热量交换实现对热带印度洋地区的遥强迫, 导致印度洋海盆尺度增暖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号