首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
Plinian plumes erupt with a bulk density greater than that of air, and depend upon air entrainment during their gas-thrust phase to become buoyant; if entrainment is insufficient, the column collapses into a potentially deadly pyroclastic flow. This study shows that strombolian ash plumes can be erupted in an initially buoyant state due to their extremely high initial gas content, and in such cases are thus impervious to column collapse. The high gas content is a consequence of decoupled gas rise in the conduit, in which particles are ultimately incidental. The relations between conduit gas flow, eruption style and plume density are explored here for strombolian scenarios and contrasted with conventional wisdom derived from plinian eruptions. Considering the inherent relation between gas content and initial plume density together with detailed measurements of plume velocities can help unravel ambiguities surrounding conduit processes, eruption styles and hazards at poorly understood volcanoes. Analysis of plume dynamics at Santiaguito volcano, Guatemala adds further support for a model involving decoupled gas rise in the conduit.  相似文献   

2.
Turbulent volcanic plumes disperse fine ash particles and toxic gases in the atmosphere and can lead to significant temperature drops in the atmosphere. In the geological past, the emplacement of large continental flood basalts (CFB) has been associated with large changes in the global environment and extinctions of biological species. The variable intensity of environmental changes induced by otherwise similar CFB events, however, begs for a reevaluation of physical controls on the environmental impact of volcanic eruptions. The climatic impact of an eruption depends on its ability to inject gases in the stratosphere and on the eruption rate. Using integral models of turbulent plumes above line and point sources, we find that mass rate estimates for CFBs are in general not large enough for volcanic plumes to reach the stratosphere on their own. Basaltic eruptions, however, are also associated with widespread lava flows which lose large amounts of heat and generate convection in the atmosphere. This form of convection, known as penetrative convection, acts to erode the stably stratified lower atmosphere and generates a thick well-mixed heated atmospheric layer in a few hours. The added buoyancy provided by such a layer almost always ensures that volcanic gases get transported to the stratosphere. The environmental consequences of CFBs are therefore controlled not by the inputs to the atmosphere from individual volcanic plumes, but by the dynamic response of the climate system to a succession of short eruptive pulses within a longer-lasting eruption sequence.  相似文献   

3.
This paper presents a one-dimensional steady-state model to investigate the sensitivity of the dynamics of sustained eruption columns to radius variations with height due to thermal expansion of the entrained air, and decreases in atmospheric pressure with height. In contrast to a number of previous models using an equation known as the entrainment assumption, the new model is based on similarity arguments to derive an equation set equivalent to the model proposed by Woods [Bull Volcanol 50:169–193, 1988]. This approach allows investigation of the effect of gas compressibility on the entrainment rate of ambient air, which has been little examined for a system in which a decrease in pressure significantly affects the density stratification of a compressible fluid. The new model provides results that include two end members: one in which the volume change within the eruption columns affects only the radial expansion without changing the vertical motion, and the other is the converse. The Woods [Bull Volcanol 50:169–193, 1988] model can be regarded as being between those two end members. The range of uncertainty arises because the extremely high temperature of discharged materials from a volcanic vent, and the exceptional terminal height of the eruption columns, allow significant expansion of the gas component in the eruption columns, making them behave differently from common turbulent plumes. This study indicates that the maximum height of the eruption columns is affected considerably by this uncertainty, particularly when the eruption columns extend above a height of 10 km, at which the pressure is about one-fourth the pressure at the ground surface. Column collapse may also be suppressed in wider parameter ranges than previously estimated. However, the uncertainty can be reduced by measuring column radii through a vertical profile during actual volcanic eruptions. Accordingly, this paper suggests that appropriate observation of eruption column shapes is essential for improving our understanding of the dynamics of eruption columns.  相似文献   

4.
The AD 79 eruption of Vesuvius is certainly one of the most investigated explosive eruptions in the world. This makes it particularly suitable for the application of numerical models since we can be quite confident about input data, and the model predictions can be compared with field-based reconstruction of the eruption dynamics. Magma ascent along the volcanic conduit and the dispersal of pyroclasts in the atmosphere were simulated. The conduit and atmospheric domain were coupled through the flow conditions computed at the conduit exit. We simulated two different peak phases of the eruption which correspond to the emplacement of the white and gray magma types that produced Plinian fallout deposits with interlayered pyroclastic flow units during the gray phase. The input data, independently constrained and representative of each of the two eruptive phases, consist of liquid magma composition, crystal and water content, mass flow rate, and pressure–temperature–depth of the magma at the conduit entrance. A parametric study was performed on the less constrained variables such as microlite content of magma, pressure at the conduit entrance, and particle size representative of the eruptive mixture. Numerical results are substantially consistent with the reconstructed eruptive dynamics. In particular, the white eruption phase is found to lead to a fully buoyant eruption plume in all cases investigated, whereas the gray phase shows a more transitional character, i.e. the simultaneous production of a buoyant convective plume and pyroclastic surges, with a significant influence of the microlite content of magma in determining the partition of pyroclast mass between convective plumes and pyroclastic flows.  相似文献   

5.
Direct numerical simulation (DNS) is applied to investigate properties of katabatic and anabatic flows along thermally perturbed (in terms of surface buoyancy flux) sloping surfaces in the absence of rotation. Numerical experiments are conducted for homogeneous surface forcings over infinite planar slopes. The simulated flows are the turbulent analogs of the Prandtl (1942) one-dimensional laminar slope flow. The simulated flows achieve quasi-steady periodic regimes at large times, with turbulent fluctuations being modified by persistent low-frequency oscillatory motions with frequency equal to the product of the ambient buoyancy frequency and the sine of the slope angle. These oscillatory wave-type motions result from interactions between turbulence and ambient stable stratification despite the temporal constancy of the surface buoyant forcing. The structure of the mean-flow fields and turbulence statistics in simulated slope flows is analyzed. An integral dynamic similarity constraint for steady slope/wall flows forced by surface buoyancy flux is derived and quantitatively verified against the DNS data.  相似文献   

6.
Catastrophic sedimentary processes associated with explosive eruptions represent a significant geologic hazard in volcanic areas. Here we report a striking historic example of an intermediate-scale explosive event whose environmental effects were strongly amplified by secondary rapid mass flows and hydrogeologic disasters. The 472 AD Pollena eruption of Somma-Vesuvius (Campania, Italy) took place in the critical period of the fall of the Western Roman Empire. On the basis of an integrated geologic–archaeologic study we point out evidence of human habitation at the time of the eruption, effects induced and recovery time in a wide territory of Campania, and how the eruption significantly accelerated the deterioration of the local society during the Late Ancient age. The eruption began with a pulsating, sustained eruption column, followed by pyroclastic surges and scoria flows. Hydromagmatism acted early in the event, different from the typical Plinian eruptions of Somma-Vesuvius. Specific facies associations of primary and secondary volcaniclastic deposits characterize three depositional domains, including the volcano slopes, the surrounding alluvial plains and the distal mountains of the Apennine Range. Both volcano slopes and distal mountain slopes supplied loose pyroclastic material to the hyperconcentrated floods and debris flows that spread across the alluvial plains. The great impact of secondary volcaniclastic processes arose from: (1) the high vulnerability of the territory due to its geomorphic context; (2) the humid climatic conditions; (3) the hydromagmatic character of the eruption; (4) the decline of land management at the end of the Roman Empire.  相似文献   

7.
I. INTRODUCTIONPrediction of mud bed erosion by forcing due to tidal currents usually requires a numerical solution of the advection--dispersion equation for sediment mass transport. Key role is of course played inthis by the bottom boundary conditions defining erosion and deposition fluxes. The issue of erosion isbriefly considered here. noting that it is customary to calculate the rate of erosion as a function of thebed shear stress in excess of the erosion shear strength of the bed (Me…  相似文献   

8.
The dynamics and thermodynamics of large ash flows   总被引:6,自引:6,他引:0  
 Ash flow deposits, containing up to 1000 km3 of material, have been produced by some of the largest volcanic eruptions known. Ash flows propagate several tens of kilometres from their source vents, produce extensive blankets of ash and are able to surmount topographic barriers hundreds of metres high. We present and test a new model of the motion of such flows as they propagate over a near horizontal surface from a collapsing fountain above a volcanic vent. The model predicts that for a given eruption rate, either a slow (10–100 m/s) and deep (1000–3000 m) subcritical flow or a fast (100–200 m/s) and shallow (500–1000 m) supercritical flow may develop. Subcritical ash flows propagate with a nearly constant volume flux, whereas supercritical flows entrain air and become progressively more voluminous. The run-out distance of such ash flows is controlled largely by the mass of air mixed into the collapsing fountain, the degree of fragmentation and the associated rate of loss of material into an underlying concentrated depositional system, and the mass eruption rate. However, in supercritical flows, the continued entrainment of air exerts a further important control on the flow evolution. Model predictions show that the run-out distance decreases with the mass of air entrained into the flow. Also, the mass of ash which may ascend from the flow into a buoyant coignimbrite cloud increases as more air is entrained into the flow. As a result, supercritical ash flows typically have shorter runout distances and more ash is elutriated into the associated coignimbrite eruption columns. We also show that one-dimensional, channellized ash flows typically propagate further than their radially spreading counterparts. As a Plinian eruption proceeds, the erupted mass flux often increases, leading to column collapse and the formation of pumiceous ash flows. Near the critical conditions for eruption column collapse, the flows are shed from high fountains which entrain large quantities of air per unit mass. Our model suggests that this will lead to relatively short ash flows with much of the erupted material being elutriated into the coignimbrite column. However, if the mass flux subseqently increases, then less air per unit mass is entrained into the collapsing fountain, and progressively larger flows, which propagate further from the vent, will develop. Our model is consistent with observations of a number of pyroclastic flow deposits, including the 1912 eruption of Katmai and the 1991 eruption of Pinatubo. The model suggests that many extensive flow sheets were emplaced from eruptions with mass fluxes of 109–1010 kg/s over periods of 103–105 s, and that some indicators of flow "mobility" may need to be reinterpreted. Furthermore, in accordance with observations, the model predicts that the coignimbrite eruption columns produced from such ash flows rose between 20 and 40 km. Received: 25 August 1995 / Accepted: 3 April 1996  相似文献   

9.
Rifting dynamics at spreading axes is governed by two processes: the large-scale plate divergence and the local magma accumulation in the crust-mantle transition layer. Both evolve simultaneously. A model is developed particularly for the situation in Iceland where a well studied rifting episode occurred in the Krafla volcanic system 1975–1984. Both the divergence and the buoyant rise of magma create tensile deviatoric stress in the axial region, but while divergence generates an altogether extensional stress field, uprising of buoyant melt produces tension only near the axis but compression of the sides. The buoyant rise is driven by the differential pressure gradient in rock and melt. The processes are studied with a two-dimensional finite-element routine. Presently thermal effects are neglected. The model parameters are density difference, size of the buoyant body, externally applied stress field, mechanical properties of rock and melt. Relatively small amounts of divergence and small increases of buoyancy are shown to generate axial tension which can overcome the tensile strength. Axial tension produced by buoyant bodies can even overcome lateral compression. Observed long intervals of quiescence require either large rock strength, quasi-continuous stress relaxation, small buoyant bodies, and/or a compressive deviatoric stress normal to the axis during much of the time between rifting episodes. Buoyant rise and injection of melt must be important in generating compression.  相似文献   

10.
On September 4, 2007, after 25 years of effusive natrocarbonatite eruptions, the eruptive activity of Oldoinyo Lengai (OL), N Tanzania, changed abruptly to episodic explosive eruptions. This transition was preceded by a voluminous lava eruption in March 2006, a year of quiescence, resumption of natrocarbonatite eruptions in June 2007, and a volcano-tectonic earthquake swarm in July 2007. Despite the lack of ground-based monitoring, the evolution in OL eruption dynamics is documented based on the available field observations, ASTER and MODIS satellite images, and almost-daily photos provided by local pilots. Satellite data enabled identification of a phase of voluminous lava effusion in the 2 weeks prior to the onset of explosive eruptions. After the onset, the activity varied from 100 m high ash jets to 2–15 km high violent, steady or unsteady, eruption columns dispersing ash to 100 km distance. The explosive eruptions built up a ∼400 m wide, ∼75 m high intra-crater pyroclastic cone. Time series data for eruption column height show distinct peaks at the end of September 2007 and February 2008, the latter being associated with the first pyroclastic flows to be documented at OL. Chemical analyses of the erupted products, presented in a companion paper (Keller et al. 2010), show that the 2007–2008 explosive eruptions are associated with an undersaturated carbonated silicate melt. This new phase of explosive eruptions provides constraints on the factors causing the transition from natrocarbonatite effusive eruptions to explosive eruptions of carbonated nephelinite magma, observed repetitively in the last 100 years at OL.  相似文献   

11.
Nocturnal basin low-level jets: an integrated study   总被引:1,自引:0,他引:1  
Low-level jets (LLJs) are a very common feature in the nocturnal stably stratified boundary layer. Many factors can intervene in their generation, linked basically to effects of baroclinity. A special kind of low-level jets is composed by the nocturnal katabatic and basin flows, generated over terrain slopes. A study of observed LLJs in the Duero Basin is shown here, combining observational data and modelling experiments. Normalized in respect to the maximum wind height, the dynamic characteristics of the jets are similar: a two-layer system, with a stably stratified layer below the jet maximum and a near neutral layer above, with a very stable layer separating them at the level of the wind maximum. There is vertical mixing above and below the jet, and the connection between these layers takes place occasionally in a very turbulent manner.  相似文献   

12.
 The Woods Mountain volcanic center is a well-exposed, mildly alkaline volcanic center that formed during the Miocene in southeastern California. Detailed geologic mapping and geochemical studies have distinguished three major volcanic phases: precaldera, caldera forming, and postcaldera. Geologic mapping indicates that caldera formation occurred incrementally during eruptions of three large ignimbrites and continued into a period of voluminous intracaldera lava-flow eruptions. Rhyolitic ignimbrites and lava flows within the caldera are associated with large amplitude, circular gravity, and magnetic minima that are among the most prominent gravity and magnetic anomalies in southeastern California. Analysis of a Bouguer gravity anomaly map, reduced-to-the-pole magnetic intensity map, and three-dimensional gravity and magnetic models indicates that there is a single, funnel- to bowl-shaped caldera approximately 4 km thick and approximately 10 km wide at the surface. This model is consistent with other siliceous, pyroclastic-filled calderas on continental crust, except that most siliceous volcanic centers associated with more than one eruption are characterized by more than one caldera. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

13.
Fluid motions are important in virtually all volcanic processes. Attempts to understand the mechanism of volcanic activity or the origin of magmas generally require knowledge of fluid dynamics. The use of fluid dynamics is illustrated by considering the Reynolds numbers of some volcanic fluid flow systems. The physics of high Reynolds number buoyant plumes is found to be important in situations ranging from the rise of eruption columns in the atmosphere to the replenishment of basaltic magma chambers. Application of theoretical and experimental work on plumes enables eruption rates to be deduced from eruption column heights and new hypotheses on the origin of some magmatic ores to be put forward. The influence of Reynolds number on the behaviour of lava is also discussed with application to the origin of Archaean komatiite lavas. Komatiite lavas are argued to have flowed in a turbulent manner whereas modern basalt lavas nearly always flow by laminar shear. The turbulent character of komatiites seems to provide an explanation for the origin of associated nickel-sulfide mineralization in komaiites by melting and assimilation of sulfide-rich sediment. This hypothesis depends on komatiite flow having had a high Reynolds number.  相似文献   

14.
This paper emphasizes the fact that tsunamis can occur in continental lakes and focuses on tsunami triggering by processes related to volcanic eruptions and instability of volcanic edifices. The two large lakes of Nicaragua, Lake Managua and Lake Nicaragua, host a section of the Central American Volcanic Arc including several active volcanoes. One case of a tsunami in Lake Managua triggered by an explosive volcanic eruption is documented in the geologic record. However, a number of events occurred in the past at both lakes which were probably tsunamigenic. These include massive intrusion of pyroclastic flows from Apoyo volcano as well as of flank-collapse avalanches from Mombacho volcano into Lake Nicaragua. Maar-forming phreatomagmatic eruptions, which repeatedly occurred in Lake Managua, are highly explosive phenomena able to create hugh water waves as was observed elsewhere. The shallow water depth of the Nicaraguan lakes is discussed as the major limiting factor of tsunami amplitude and propagation speed. The very low-profile shores facilitate substantial in-land flooding even of relatively small waves. Implications for conceiving a possible warning system are also discussed.  相似文献   

15.
A two-dimensional (2D) unsteady simulation model is applied to the problem of a submerged warm water discharge into a stratified lake or reservoir with an ice cover. Numerical simulations and analyses are conducted to gain insight into large-scale convective recirculation and flow processes in a cold waterbody induced by a buoyant jet. Jet behaviors under various discharge temperatures are captured by directly modeling flow and thermal fields. Flow structures and processes are described by the simulated spatial and temporal distributions of velocity and temperature in various regions: deflection, recirculation, attachment, and impingement. Some peculiar hydrothermal and dynamic features, e.g. reversal of buoyancy due to the dilution of a warm jet by entraining cold ambient water, are identified and examined. Simulation results show that buoyancy is the most important factor controlling jet behavior and mixing processes. The inflow boundary is treated as a liquid wall from which the jet is offset. Similarity and difference in effects of boundaries perpendicular and parallel to flow, and of buoyancy on jet attachment and impingement, are discussed. Symmetric flow configuration is used to de-emphasize the Coanda effect caused by offset.  相似文献   

16.
Mount Vesuvius had eruptions ranging between VEI 5+ to 0–1 during the last 2000 years. Infrequent explosive eruptions are recorded during the period 79 AD to 1631. Since the violent explosive eruption of 1631, the volcano has been in persistent activity, rebuilding the morphology that it had before that eruption. A succession of explosive and effusive eruptions occurred until 1944, with a predominance of short and violent episodes until 1872 and longer effusive eruptions since that date. Two factors mainly controlled the character of volcanic activity during this period: (1) the strength of the cone, which allowed, in the earlier period, an easy fracturing, rapid drainage, and pressure release of the magma column; (2) the interaction between magma and water, which enhanced the explosivity of several eruptions.The volcano appears to have reached a stage of quiescence because it finally attained a shape of equilibrium in which the height of the mountain is sufficient to counterbalance the buoyancy of the magma.  相似文献   

17.
Vul'fson  A. N.  Borodin  O. O. 《Water Resources》2000,27(6):625-632
An intergral model of a transient vertical impulse–buoyant jet is suggested. The model contains a universal equation describing the propagation of the upper boundary of the convection front depending on the strength of the point source of buoyancy and momentum. The convective regime of jet propagation is considered, which includes a class of self-similar solutions corresponding to the buoyancy sources, whose strength varies with time following power and exponential laws. The obtained numerical solutions are compared with available experimental data on the profiles of vertical velocity and buoyancy on the jet axis.  相似文献   

18.
Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943–1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10?1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K–Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4?±?0.05 Ma.  相似文献   

19.
白天混合层顶部夹卷层厚度的特征研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文首先对Deardorff的一阶模型给予解释,在此基础上分析对流边界层湍流动能方程,分析机械湍流和对流湍流对边界层发展的贡献,提出一个新的速度尺度,混合层顶速度尺度,定义了全理查森数,给出夹卷层厚度的参数化方案,并用Boers和Elotanta的雷达观测数据进行验证。参数化方案与实验数据符合得很好。当夹卷层厚度表示为夹卷速度或夹卷理查森数的函数时,该函数曲线随边界层发展通常表现为磁滞回线形状现象,利用本文的理论进行了解释。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号