首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Since the eruption which affected Quito in AD 1660, Guagua Pichincha has been considered a hazardous volcano. Based on field studies and twenty 14C dates, this paper discusses the eruptive activity of this volcano, especially that of the last 2000 years. Three major Plinian eruptions with substantial pumice discharge occurred in the 1st century, the 10th century, and in AD 1660. The ages of organic paleosols and charcoal from block-and-ash flow and fallout deposits indicate that these eruptions occurred near the end of 100 to 200 year-long cycles of discontinuous activity which was comprised of dome growth episodes and minor pumice fallouts. The first cycle took place from ~ AD 1 to 140. The second one developed during the 9th and 10th centuries, lasted 150–180 yr, and included the largest Plinian event, with a VEI of 5. The third, historic cycle, about 200 yr in duration, includes pyroclastic episodes around AD 1450 and AD 1500, explosive activity between AD 1566 and AD 1582, possible precursors of the 1660 eruption in the early decades of the 17th century, and finally the 1660 eruption (VEI 4). A fourth event probably occurred around AD 500, but its authenticity requires confirmation. The Plinian events occurred at the end of these cycles which were separated by repose periods of at least 300 yr. Older volcanic activity of similar type occurred between ~ 4000 and ~ 3000 yr BP.  相似文献   

2.
The Kos Plateau Tuff (KPT) eruption of 161 ka was the largest explosive Quaternary eruption in the eastern Mediterranean. We have discovered an uplifted beach deposit of abraded pumice cobbles, directly overlain by the KPT. The pumice cobbles resemble pumice from the KPT in petrography and composition and differ from Plio-Pleistocene rhyolites on the nearby Kefalos Peninsula. The pumice contains enclaves of basaltic andesite showing chilled lobate margins, suggesting co-existence of two magmas. The deposit provides evidence that the precursory phase of the KPT eruption produced pumice rafts, and defines the paleoshoreline for the KPT, which elsewhere was deposited on land. The beach deposit has been uplifted about 120 m since the KPT eruption, whereas the present marine area south of Kos has subsided several hundred metres, as a result of regional neotectonics. The basaltic andesite is more primitive than other mafic rocks known from the Kos–Nisyros volcanic centre and contains phenocrysts of Fo89 olivine, bytownite, enstatite and diopside. Groundmass amphibole suggests availability of water in the final stages of magma evolution. Geochemical and mineralogical variation in the mafic products of the KPT eruption indicate that fractionation of basaltic magma in a base-of-crust magma chamber was followed by mixing with rhyolitic magma during eruption. Low eruption rates during the precursory activity may have minimised the extent of mixing and preserved the end-member magma types.  相似文献   

3.
Quilotoa volcano, an example of young dacitic volcanism in a lake-filled caldera, is found at the southwest end of the Ecuador's volcanic front. It has had a long series of powerful plinian eruptions of moderate to large size (VEI = 4–6), at repetitive intervals of roughly 10–15 thousand years. At least eight eruptive cycles (labeled Q-I to Q-VIII with increasing age) over the past 200 ka are recognized, often beginning with a phreatomagmatic onset and followed by a pumice-rich lapilli fall, and then a sequence of pumice, crystal, and lithic-rich deposits belonging to surges and ash flows. These unwelded pyroclastic flows left veneers on hillsides as well as very thick accumulations in the surrounding valleys, the farthest ash flow having traveled about 17 km down the Toachi valley. The bulk volumes of the youngest flow deposits are on the order of 5 km3, but that of Q-I's 800 yr BP ash-fall unit is about 18 km3. In the last two eruption cycles water has had a more important role.  相似文献   

4.
Despite their significance for estimating hazards and forecasting future activity, dating young volcanic deposits and landforms (<50,000 yrs old) remains a challenge due to the limitations inherent to the different isotopic chronometers used. The Trans-Mexican Volcanic Belt is one of the most active and populated continental arcs worldwide, yet its temporal pattern of activity is poorly constrained. Such deficiency is particularly problematic for the Sierra Chichinautzin Volcanic Field (SCVF) that is located at the doorstep of Mexico City and Cuernavaca and is hence a major source of risk for these cities. Existing ages for this area derive mostly from either radiocarbon on charcoal, which is rare and may be contaminated, or 40Ar/39Ar on rock matrix, which is poorly precise for this time period and rock type. Here, we focus on the Pelado monogenetic volcano, which is located in the central part of the SCVF and erupted both explosively and effusively, producing a large lava shield and a widespread tephra blanket. This unique eruptive event was previously dated at ∼12 calibrated (cal) kyrs BP, using radiocarbon dating on charcoal from deposits related to the eruption. To test alternative dating approaches and confirm the age of this significant eruption, we applied two less conventional techniques, radiocarbon dating of bulk paleosol samples collected below the complete tephra sequence at nine sites around the shield, and in-situ 36Cl exposure dating of two samples of an aphyric lava from the base of the shield. Radiocarbon paleosol ages span a continuous time interval from 13.2 to 20.2 cal kyrs BP (2σ), except for one anomalously young sample. This wide age spread, along with the low organic contents of the paleosols, may be due to erosive conditions, related to the sloping topography of the sampling sites and the cool and relatively dry climate of the Younger Dryas (11.7–12.9 ka), during which the Pelado eruption probably occurred. The two 36Cl-dated lava samples have consistent ages at 1σ analytical errors of 15.5 ± 1.4 ka and 13.2 ± 1.2 ka, respectively, yielding an average age of 14.3 ± 1.6 ka for this lava flow. The high full uncertainty in 36Cl ages (24%) is due to high rock Cl content. We conclude that paleosol radiocarbon dating is useful if numerous samples are analyzed and climatic and relief conditions at the time of the eruption and at the sites of tephra deposition are considered. The 36Cl dating technique is an alternative method to date volcanic eruptions, as it gave consistent results, but in the specific case of Pelado volcano, the high Cl content in the analyzed rocks increases the age uncertainties.  相似文献   

5.
El Chichón volcano consists of a 2-km wide Somma crater compound cone 0.2 Ma old with peripheral domes with a central crater reactivated several times during the Holocene. The most recent eruption at El Chichón occurred from March 28 to April 4, 1982, resulting in the worst volcanic disaster during historical times in Mexico, killing more than 2000 people and destroying nine towns and small communities. The volcanic hazard map of El Chichón is based on detailed field work that documented twelve eruptions during the last 8000 years, and computer simulations. To validate the results, computer simulations were first performed over pre-1982 topography mimicking the extent of the actual deposits produced and afterwards run over post-1982 topography. These eruptions have produced pyroclastic fall, surge, flow and lahar deposits. Pyroclastic flows have different volumes and Heim coefficients varying from 0.2 (pumice flows), to 0.15 (block-and-ash flows) and 0.10 (ash flows). Simulations using FLOW3D and TITAN2D indicate that pumice flows and block-and-ash flows can fill the moat area and follow main ravines up to distances of ca. 3 km from the crater, with no effect on populations around the volcano. On the other hand, more mobile ash flows related to column-collapse events can reach up to 4 km from the vent, but will always follow the same paths and still not affect surrounding populations. The energy-cone model was used to simulate the outflow of pyroclastic surges based on the 1982 event (H/L = 0.1 and 0.2), and shows that surges may reach some towns around the volcano.  相似文献   

6.
Recognition and correlation of rock units within geothermal fields is often hampered by high degrees of alteration that obscure primary mineralogies and lithological boundaries, and preclude direct dating by radiometric techniques. Magmatic zircons are commonly present in silicic volcanic rocks, where zircon saturation was achieved and zircons crystallized up to the point of eruption. Young zircons are highly resistant to hydrothermal alteration and can yield a record of their crystallization ages in otherwise heavily altered rocks. Zircon crystallization-age spectra have been obtained by SIMS techniques (SHRIMP-RG) from three samples of cuttings and a core sample from ignimbrite penetrated in 3 drillholes up to ~ 3.2 km deep at the Mangakino geothermal field in New Zealand. The crystallization ages are similar between the drillcore and cutting samples, indicating that downhole mixing of cuttings has not been important, and showing collectively that volcanic units of closely similar ages are represented between ~ 1.4 and ~ 3.2 km depth. This is despite apparent changes in the inferred primary volcanic lithology that had led to earlier inferences that multiple ignimbrites of contrasting age were present in this depth interval. Comparisons of zircon crystallization-age spectra and inferred primary mineralogical characteristics from the drillhole samples with surficial ignimbrites that crop out west of Mangakino suggest that the boreholes have entered a > 1.8-km-thick intracaldera fill of ignimbrite generated in the closely-spaced Kidnappers and Rocky Hill eruptions at ~ 1 Ma.  相似文献   

7.
The last magmatic eruption of Soufrière of Guadeloupe dated at 1530 A.D. (Soufrière eruption) is characterized by an onset with a partial flank-collapse and emplacement of a debris-avalanche that was followed by a sub-plinian VEI 2–3 explosive short-lived eruption (Phase-1) with a column that reached a height between 9 and 12 km producing about 3.9 × 106 m3 DRE (16.3 × 106 m3 bulk) of juvenile products. The column recurrently collapsed generating scoriaceous pyroclastic flows in radiating valleys up to a distance of 5–6 km with a maximum interpolated bulk deposit volume of 11.7 × 106 m3 (5 × 106 m3 DRE). We have used HAZMAP, a numerical simple first-order model of tephra dispersal [Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31, 837–845] to reconstruct to a first approximation the potential dispersal of tephra and associated tephra mass loadings generated by the sub-plinian Phase 1 of the 1530 A.D. eruption. We have tested our model on a deterministic average dry season wind profile that best-fits the available data as well as on a set of randomly selected wind profiles over a 5 year interval that allows the elaboration of probabilistic maps for the exceedance of specific tephra mass load thresholds. Results show that in the hypothesis of a future 1530 A.D. scenario, populated areas to a distance of 3–4 km west–southwest of the vent could be subjected to a static load pressure between 2 and 10 kPa in case of wet tephra, susceptible to cause variable degrees of roof damage. Our results provide volcanological input parameters for scenario and event-tree definition, for assessing volcanic risks and evaluating their impact in case of a future sub-plinian eruption which could affect up to 70 000 people in southern Basse-Terre island and the region. They also provide a framework to aid decision-making concerning land management and development. A sub-plinian eruption is the most likely magmatic scenario in case of a future eruption of this volcano which has shown, since 1992, increasing signs of low-energy seismic, thermal, and acid degassing unrest without significant deformation.  相似文献   

8.
The Volcanic Sedimentary Complex (VSC) of the Iberian Pyrite Belt (IPB) in southern Portugal and Spain, comprises an Upper Devonian to Lower Carboniferous submarine succession with a variety of felsic volcanic lithofacies. The architecture of the felsic volcanic centres includes felsic lavas/domes, pyroclastic units, intrusions and minor mafic units that define lava–cryptodome–pumice cone volcanoes. The diversity of volcanic lithofacies recognized in different areas of the IPB mainly reflects variations in proximity to source, but also differences in the eruption style. The IPB volcanoes are intrabasinal, range in length from 2 km to > 8 km and their thickest sections vary from ∼ 400 m to > 800 m. These volcanoes are dominated by felsic lavas/domes that occur at several stratigraphic positions within the volcanic centre, however the pyroclastic units are also abundant and are spatially related to the lavas/domes. The intrusions are minor, and define cryptodomes and partly-extrusive cryptodomes. The hydrothermal systems that formed the Neves Corvo and Lousal massive sulfide ore deposits are associated with effusive units of felsic volcanic centres. At Neves Corvo, the massive sulfide orebodies are associated to rhyolitic lavas that overlie relatively thick fiamme-rich pyroclastic unit. In several other locations within the belt, pyroclastic units contain sulfide clasts that may have been derived from yet to be discovered coeval massive sulfide deposits at or below the sea floor, which enhances the exploration potential of these pyroclastic units and demonstrates the need for volcanic facies analysis in exploration.  相似文献   

9.
Large silicic explosive eruptions are the most catastrophic volcanic events. Yet, the intratelluric mechanisms underlying are not fully understood. Here we report a field and laboratory study of the Kos Plateau Tuff (KPT, 161 ka, Aegean Volcanic Arc), which provides an excellent geological example of conduit processes that control magma vesiculation and fragmentation during intermediate- to large-scale caldera-forming eruptions. A prominent feature of the KPT is the occurrence of quite unusual platy-shaped tube pumice clasts in pyroclastic fall and current deposits from the early eruption phases preceding caldera collapse. On macroscopic and SEM observations, flat clast faces are elongated parallel to tube vesicles, while transverse surfaces often occur at ~ 45° to vesicle elongation. This peculiar pumice texture provides evidence of high shear stresses related to strong velocity gradients normal to conduit walls, which induced vesiculation and fragmentation of the ascending magma. Either an increasing mass discharge rate without adequate enlargement of a narrow central feeder conduit or a developing fissure-like feeder system related to incipient caldera collapse provided suitable conditions for the generation of plate tube pumice within magma volumes under high shear during the pre-climactic KPT eruption phases. This mechanism implies that the closer to the conduit walls (where the stronger are the velocity gradients) the larger was the proportion of plate vs. conventional (lensoid) juvenile fragments in the ascending gas–pyroclast mixture. Consequently, plate pumice clasts were mainly entrained in the outer portions of the jet and convecting regions of a sustained, Plinian-type, eruption column, as well as in occasional lateral blast currents generated at the vent. As a whole, plate pumice clasts in the peripheral portions of the column were transported at lower altitudes and deposited by fallout or partial collapse closer to the vent relative to lensoid ones that dominated in the inner column portions. The plate tube pumice proportion decreased abruptly up to disappearance during the emplacement of the main pyroclastic currents and lithic-rich breccias related to extensive caldera collapse at the eruption climax, as a consequence of an overall widening of the magma feeder system through the opening of multiple conduits and eruptive vents, along with fissure erosion, concomitant to the disruption of the collapsing block.  相似文献   

10.
The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ∼ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.  相似文献   

11.
La Soufrière of Guadeloupe is a dangerous volcano characterized over the last decade by moderate seismic and fumarolic unrest. In the last 15,000 years it has experienced phreatic and magmatic eruptions and unusually numerous flank collapse events sometimes associated with a magmatic eruption. We propose a new age of 1530 A.D. and a new eruptive scenario for the last magmatic eruption on the basis of a novel statistical analysis of radiocarbon age dates, and new field and geochemical data. This eruption is the only magmatic eruption likely to have occurred in Guadeloupe during the last 1400 years. The eruption mainly involved an andesitic magma which, in the first phase of the eruption, partially mixed with a slightly more differentiated magma stored in a small and shallow magma chamber. Ascent of magma to the surface generated a partial collapse of the hydrothermally altered edifice that increased the magma discharge and led to a sub-plinian phase with scoria fallout and column-collapse pyroclastic flows followed by near-vent pyroclastic scoria fountains. The eruption ended with growth of a lava dome. Our revised interpretation of the last magmatic eruption of La Soufrière constitutes the most likely key to a future magmatic eruption scenario for this volcano which displays strong evidence of unrest since 1992.  相似文献   

12.
Large volcanic eruptions at dacitic or rhyolitic volcanoes often generate exceptional volumes of fine ash that mantles an area up to a million km2. These eruptions are characterized by extreme fragmentation of the magma and hence extraordinary dispersal of ash and are categorized as plinian, ultraplinian, or phreatoplinian events. Large-volume co-ignimbrites or co-plinian ashes are often produced by such eruptions. High fragmentation indices of > 90% are attributed to the violent eruption of silicic magma, especially if augmented by fuel-coolant reactions produced when abundant external water interacts with the magma. The present study documents a case where the fine ash (≤ 1 mm diameter) fall deposit related to the plinian phase of the eruption comprises the overwhelming bulk – about 87 wt.% of the eruptive products. This is another example demonstrating the predominance of a widespread, fine-grained, co-plinian ash which follows the initial coarser lapilli fall. Historical eruptions at two other Andean volcanoes Quizapu, (Chile) and Huaynaputina, (Peru), and at Santa Maria, (Guatemala) and Novarupta, (Alaska) produced similar ash fall sequences.  相似文献   

13.
This study focuses on constraining bubble nucleation and H2O exsolution processes in alkalic K-phonolite melts, using “white pumice” of the 79 AD eruption of Vesuvius as starting material. The first set of experiments consisted of H2O solubility runs at 1153 to 1250 K and pressures between 50 and 200 MPa, to constrain equilibrium water concentrations along the decompression pathways. The decompression experiments were equilibrated with H2O at 150 MPa and 1173 and 1223 K, and then decompressed at 3 to 17 MPa/s before rapid quenching. Experiments nucleated bubbles within the first 50 MPa pressure drop, producing maximum bubble number densities (NV), corrected to melt volume, of 3.8 × 1014 m− 3 at 1173 K and 4.3 × 1013 m− 3 at 1223 K. Most bubbles were not visibly attached to crystals, except for a subset attached to pyroxenes primarily in the 1173 K experiments. When compared with prior bubble nucleation studies, the reduced nucleation ΔP and relatively low NV observed indicate predominantly a heterogeneous nucleation mechanism. Melt–vapor–crystal wetting angles measured in 1173 K experiments from bubbles attached to pyroxene crystals are 36 to 69°, which are similar to those measured on titanomagnetite crystals in calc-alkaline dacite melts. The 1223 K experiments have porosities and water concentrations that largely track equilibrium, despite the rapid decompression rate. The 1173 K experiments deviate strongly from equilibrium trends in both porosity and water concentration, and slower H2O diffusion rates are likely the cause of the inhibited bubble growth. Bubble number densities from 79 AD Vesuvius natural EU2 pumice are relatively high (2 to 4 × 1015 m− 3; [Gurioli, L., Houghton, B.F., Cashman, K.V., Cioni, R., 2005. Complex changes in eruption dynamics during the 79 AD eruption of Vesuvius. Bull. Volcanol. 67: 144–159.]) when corrected to vesicularity. In comparison, corrected NV's from homogeneous and heterogeneous bubble nucleation experiments from this study and prior work are at least factor of 5 lower, indicating perhaps that the natural magmas initially nucleated bubbles in the presence of CO2. The disequilibrium H2O exsolution seen in the 1173 K experiments indicates that inhibited bubble growth could lead to delayed exsolution in the conduit in cooler K-phonolite magmas.  相似文献   

14.
After a 26 years long quiescence El Reventador, an active volcano of the rear-arc zone of Ecuador, entered a new eruptive cycle which lasted from 3 November to mid December 2002. The initial sub-Plinian activity (VEI 4 with andesite pyroclastic falls and flows) shifted on 6 and 21 November to an effusive stage characterized by the emission of two lava flows (andesite to low-silica andesite Lava-1 and basaltic andesite Lava-2) containing abundant gabbro cumulates. The erupted products are medium to high-K calc-alkaline and were investigated with respect to major element oxides, mineral chemistry, texture and thermobarometry. Inferred pre-eruptive magmatic processes are dominated by the intrusion of a high-T mafic magma (possibly up to 1165 ± 15 °C) into an andesite reservoir, acting as magma mixing and trigger for the eruption. Before this refilling, the andesite magma chamber was characterized by water content of 5.3 ± 1.0%, high oxygen fugacity (> NNO + 2) and temperatures, in the upper and lower part of the reservoir, of 850 and 952 ± 65 °C respectively. Accurate amphibole-based barometry constrains the magma chamber depth between 8.2 and 11.3 km (± 2.2 km). The 6 October 2002 seismic swarm (hypocenters from 10 to 11 km) preceding El Reventador eruption, supports the intrusion of magmas at these depths. The widespread occurrence of disequilibrium features in most of the andesites (e.g. complex mineral zoning and phase overgrowths) indicates that convective self-mixing have been operating together with fractional crystallization (inferred from the cognate gabbro cumulates) before the injection of the basic magma which then gave rise to basaltic andesite and low-silica andesite hybrid layers. Magma mixing in the shallow chamber is inferred from the anomalous SiO2–Al2O3 whole-rock pattern and strong olivine disequilibria. Both lavas show three types of amphibole breakdown rims mainly due to heating (mixing processes) and/or relatively slow syn-eruptive ascent rate (decompression) of the magmas. The lack of any disequilibrium textures in the pumices of the 3 November fall deposit suggest that pre-eruptive mixing did not occur in the roof zone of the chamber. A model of the subvolcanic feeding system of El Reventador, consistent with the intrusion of a low-Al2O3 crystal-rich basic magma into an already self-mixed andesite shallow reservoir, is here proposed. It is also inferred that before entering the shallow chamber the “basaltic” magma underwent a polybaric crystallization at deeper crustal levels.  相似文献   

15.
Geology of a submarine volcanic caldera in the Tonga Arc: Dive results   总被引:2,自引:0,他引:2  
A submersible dive conducted on Volcano #1 located near 21° 09′S–175° 45′W on the Tonga Arc showed that the volcanic edifice with a caldera floor area of 30 km2 located at and 450 m deep (b.s.l.=below sea level) was constructed recently during episodic volcanism. The sequential volcanic events are recorded along a faulted terrain formed in response to the collapse of the caldera wall. The post-caldera events are marked by occasional eruptions that have built scoriaceous cones associated with low-temperature hydrothermal venting and localized small-scale collapse features. The stratigraphy of the caldera wall indicates that the volcano was built by explosive volcanism alternating with quieter eruptive events. The repeated, violent explosive events formed ≤ 20 m thick sequences composed of alternating fine-grained ash beds and sand- to boulder-sized pyroclastic layers. During quieter volcanic events, dykes and massive flows intruded and/or accompanied the eruption of the volcaniclastic deposits throughout the sections of the wall explored. Massive columnar-jointed flows consist of viscous, silica-rich lavas forming tabular and giant radial-jointed (GRJ) flows formed in large (> 8 m in diameter) conduits and extruded onto the sea floor. In addition, massive lava flows forming sill-like complexes were observed underneath and near the giant radial-jointed columnar flows. Also, an intermittent quiet type of eruption produced vesicular lava flows, which are interbedded within the pyroclastic layered deposits. The massive and vesicular lavas consist of andesites and dacites with Ca-depleted (pigeonite) and Ca-enriched (salite) pyroxene, and intermediate (andesine-labradorite) to calcic (bytownite) plagioclase. They are depleted in total alkalis (Na2O + K2O < 3%), K2O (< 1%), Zr/Y (< 1.8), Nb/Zr (< 0.01) and light Rare Earth Elements. We interpret that these andesite–dacite series were erupted after undergoing crystal-liquid fractionation in a magma chamber located underneath the caldera floor.  相似文献   

16.
The Filakopi Pumice Breccia (FPB) is a very well exposed, Pliocene volcaniclastic unit on Milos, Greece, and has a minimum bulk volume of 1 km3. It consists of three main units: (A) basal lithic breccia (4–8 m) mainly composed of angular to subangular, andesitic and dacitic clasts up to 2.6 m in diameter; (B) very thickly bedded, poorly sorted pumice breccia (16–17 m); and (C) very thick, reversely graded, grain-supported, coarse pumice breccia (6.5–20 m), at the top. The depositional setting is well constrained as shallow marine (up to a few hundred metres) by overlying fossiliferous and bioturbated mudstone. This large volume of fine pumice clasts is interpreted to be the product of an explosive eruption from a submarine vent because: (1) pumice clasts are the dominant component; (2) the coarse pumice clasts (>64 mm) have complete quenched margins; (3) very large (>1 m) pumice clasts are common; (4) overall, the formation shows good hydraulic sorting; and (5) a significant volume of ash was deposited together with the coarsest pyroclasts.The bed forms in units A and B suggest deposition from lithic-rich and pumiceous, respectively, submarine gravity currents. In unit C, the coarse (up to 6.5 m) pumice clasts are set in matrix that grades upwards from diffusely stratified, fine (1–2 cm) pumice clasts at the base to laminated shard rich mud at the top. The coarse pumice clasts in unit C were settled from suspension and the framework was progressively infilled by fine pumice clasts from waning traction currents and then by water-settled ash. The FPB displays important features of the products of submarine explosive eruptions that result from the ambient fluid being seawater, rather than volcanic gas or air. In particular, submarine pyroclastic deposits are characterised by the presence of very coarse juvenile pumice clasts, pumice clasts with complete quenched rims, and good hydraulic sorting.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: J. Donelly-Nolan  相似文献   

17.
The deposits of three eruptions in the last 5000 years are described in detail in order to constrain eruptive parameters and allow a quantitative assessment of the hazard from a range of explosive eruption types at Sete Cidades volcano, São Miguel, Azores. These deposits include: the Caldeira Seca eruption (P17) which occurred around 600 yr BP, which was the last explosive event from inside the Sete Cidades caldera, the P11 eruption, dated at 2220 ± 70 yr BP, and the undated P8 eruption (< 3000 yr BP). These deposits were chosen to represent the range of likely explosive activity from the caldera.  相似文献   

18.
The explosive rhyolitic eruption of Öræfajökull volcano, Iceland, in AD 1362 is described and interpreted based on the sequence of pyroclastic fall and flow deposits at 10 proximal locations around the south side of the volcano. Öræfajökull is an ice-clad stratovolcano in south central Iceland which has an ice-filled caldera (4–5 km diameter) of uncertain origin. The main phase of the eruption took place over a few days in June and proceeded in three main phases that produced widely dispersed fallout deposits and a pyroclastic flow deposit. An initial phase of phreatomagmatic eruptive activity produced a volumetrically minor, coarse ash fall deposit (unit A) with a bi-lobate dispersal. This was followed by a second phreatomagmatic, possibly phreatoplinian, phase that deposited more fine ash beds (unit B), dispersed to the SSE. Phases A and B were followed by an intense, climactic Plinian phase that lasted ∼ 8–12 h and produced unit C, a coarse-lapilli, pumice-clast-dominated fall deposit in the proximal region. At the end of Plinian activity, pyroclastic flows formed a poorly-sorted deposit, unit D, presently of very limited thickness and exposed distribution. Much of Eastern Iceland is covered with a very fine distal ash layer, dispersed to the NE. This was probably deposited from an umbrella cloud and is the distal representation of the Plinian fallout. A total bulk fall deposit volume of ∼ 2.3 km3 is calculated (∼ 1.2 km3 DRE). Pyroclastic flow deposit volumes have been crudely estimated to be < 0.1 km3. Maximum clast size data interpreted by 1-D models suggests an eruption column ∼ 30 km high and mass discharge rates of ∼ 108 kg s− 1. Ash fall may have taken place from heights around 15 km, above the local tropopause (∼ 10 km), with coarser clasts dispersed below that under a different wind regime. Analyses of glass inclusions and matrix glasses suggest that the syn-eruptive SO2 release was only ∼ 1 Mt. This result is supported by published Greenland ice-core acidity peak data that also suggest very minor sulphate deposition and thus SO2 release. The small sulphur release reflects the low sulphur solubility in the 1362 rhyolitic melt. The low tropopause over Iceland and the 30-km-high eruption column certainly led to stratospheric injection of gas and ash but little sulphate aerosol was generated. Moreover, pre-eruptive and degassed halogen concentrations (Cl, F) indicate that these volatiles were not efficiently released during the eruption. Besides the local pyroclastic flow (and related lahar) hazard, the impact of the Öræfajökull 1362 eruption was perhaps restricted to widespread ash fall across Eastern Iceland and parts of northern Europe.  相似文献   

19.
20.
We present results from a numerical investigation of subaqueous eruptions involving superheated steam released through a lake mimicking the volcanic setting at Mt. Ruapehu. The simulations were conducted using an adaptive mesh, multi-material, hydrodynamics code with thermal conduction SAGE, (Simple Adaptive Grid Eulerian). Parameters investigated include eruption pressure, lake level and mass of superheated vapor. The simulations produced a spectrum of eruption styles from vapor cavities to radial jets that resulted in hazards that ranged from small-scale waves to high amplitude surges that reached and cascaded over the edge of the crater rim. There was an overall tendency for lake surface activity to increase (including wave amplitude) with increasing mass of superheated vapor and eruption pressure. Surface waves were induced by the formation and collapse of a gas cavity. The collapse of the cavity is considered to play a major role in the characteristic features observed during a subaqueous eruption. The additional mass of superheated vapor produced a larger cavity that displaced a larger area of the lake surface resulting in fast moving surges upon the collapse of the cavity. High lake levels (>90 m) appear to suppress the development of explosive jetting activity when eruption pressures are <10 MPa. At very large eruption pressures (>10 MPa), vertical jets and radial ejections of steam and water can occur in water depths >90 m. Less explosive eruption styles can produce hazardous events such as lahars by the outward movement of surface waves over the crater rim.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号