首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
El Chichón volcano consists of a 2-km wide Somma crater compound cone 0.2 Ma old with peripheral domes with a central crater reactivated several times during the Holocene. The most recent eruption at El Chichón occurred from March 28 to April 4, 1982, resulting in the worst volcanic disaster during historical times in Mexico, killing more than 2000 people and destroying nine towns and small communities. The volcanic hazard map of El Chichón is based on detailed field work that documented twelve eruptions during the last 8000 years, and computer simulations. To validate the results, computer simulations were first performed over pre-1982 topography mimicking the extent of the actual deposits produced and afterwards run over post-1982 topography. These eruptions have produced pyroclastic fall, surge, flow and lahar deposits. Pyroclastic flows have different volumes and Heim coefficients varying from 0.2 (pumice flows), to 0.15 (block-and-ash flows) and 0.10 (ash flows). Simulations using FLOW3D and TITAN2D indicate that pumice flows and block-and-ash flows can fill the moat area and follow main ravines up to distances of ca. 3 km from the crater, with no effect on populations around the volcano. On the other hand, more mobile ash flows related to column-collapse events can reach up to 4 km from the vent, but will always follow the same paths and still not affect surrounding populations. The energy-cone model was used to simulate the outflow of pyroclastic surges based on the 1982 event (H/L = 0.1 and 0.2), and shows that surges may reach some towns around the volcano.  相似文献   

2.
Pargasite commonly occurs in the dacitic groundmass of the 1991–1995 eruption products of Unzen volcano. We described the occurrence and chemical compositions of amphibole in the dacite, and also carried out melting experiments to determine the low-pressure stability limit of amphibole in the dacite. The 1991–1995 ejecta of the Unzen volcano show petrographic evidence of magma mixing, such as reverse compositional zoning of plagioclase and amphibole phenocrysts, and we used a groundmass separate as a starting material for the experiments. Reversed experiments show that the maximum temperature for the crystallization of amphibole is 930°C at 196 MPa, 900°C at 98 MPa, and 820°C at 49 MPa. Compared with the experimental results on the Mount St. Helens dacite, present experiments on the Unzen dacitic groundmass show that amphibole is stable to pressures ca. 50 MPa lower at 850°C. Available Fe–Ti oxide thermometry indicates the crystallization temperature of the groundmass of the Unzen dacite to be 880±30°C, suggesting that the groundmass pargasite crystallized at >70 MPa, corresponding to a depth of more than 3 km in the conduit. The chlorine content of the groundmass pargasite is much lower than that of phenocrystic magnesiohornblende in the 1991–1995 dacite of Unzen volcano, indicating that vesiculation/degassing of magma took place before the crystallization of the groundmass pargasite. The present study shows that the magma was water oversaturated and that the degassing of magma along with magma mixing caused crystallization of the groundmass amphibole at depths of more than 3 km in the conduit.  相似文献   

3.
Primary igneous anhydrite was first identified in 1982 El Chichón pumices. Analysis of the sulfur budget for the eruption provided compelling evidence that the pre-eruptive magma contained a significant gas phase at ∼ 7 km depth in order to account for the “excess gas release” of ∼ 5–9 million tons of SO2 to the stratosphere by the eruption. Primary igneous anhydrite and a larger “excess gas release” of ∼ 20 million tons of SO2 were noted for the significantly larger eruption of Mount Pinatubo in 1991, for which a separate gas phase at ∼ 7–9 km depth was also required by the sulfur budget. Pumices from both eruptions have mineral assemblages dominated by plagioclase and hornblende, with minor biotite, and show evidence for co-nucleation and mutual inclusions of anhydrite and apatite. Both magmas were also very water-rich and highly oxidized, with oxygen fugacities $1 log unit above the synthetic Ni–NiO buffer. Furthering the similarities between these two eruptions, ion-microprobe analyses of sulfur isotopic compositions of anhydrites in pumices from El Chichón and Mount Pinatubo both showed that individual crystals are isotopically homogeneous, but inter-crystalline variations in δ34S are well beyond analytical error.  相似文献   

4.
 On 30 March 1956 a catastrophic directed blast took place at Bezymianny volcano. It was caused by the failure of 0.5 km3 portion of the volcanic edifice. The blast was generated by decompression of intra-crater dome and cryptodome that had formed during the preclimactic stage of the eruption. A violent pyroclastic surge formed as a result of the blast and spread in an easterly direction effecting an area of 500 km2 on the lower flank of the volcano. The thickness of the deposits, although variable, decreases with distance from the volcano from 2.5 m to 4 cm. The volume of the deposit is calculated to be 0.2–0.4 km3. On average, the deposits are 84% juvenile material (andesite), of which 55% is dense andesite and 29% vesicular andesite. On a plot of sorting vs median diameter (Inman coefficients) the deposits occupy the area between the fall and flow fields. In the proximal zone (less than 19 km from the volcano) three layers can be distinguished in the deposits. The lower one (layer A) is distributed all over the proximal area, is very poorly sorted, enriched in fragments of dense juvenile andesite and contains an admixture of soil and uncharred plant remains. The middle layer (layer B) is distributed in patches tens to hundreds of metres across on the surface of layer A. Layer B is relatively well sorted as a result of a very low content of fine fractions, and it contains rare charred plant remains. The uppermost layer (layer C) forms still smaller patches on the surface of layer B. Layer C is characterized by intermediate sorting, is enriched in vesicular juvenile andesitic fragments, and contains a high percentage of the fine fraction and very rare plant remains which are thoroughly charred. Maximum clast size decreases from layer A to layer C. The absence of internal cross bedding is a characteristic of all three layers. In the distal zone (more than 19 km from the volcano) stratigraphy changes abruptly. Deposit here consists of one layer 26 to 4 cm in thickness, is composed of wavy laminated sand with a touch of gravel, is well sorted and contains uncharred plant remains. The Bezymianny blast deposits are not analogous with known types of pyroclastic surges, with the exception of the directed blast deposits of the Mount St.Helens eruption of 18 May 1980. The peculiarities of deposits from these two eruptions allow them to be separated into a special type: blast surge. This type of surge is formed when failure of volcanic edifice relieves the pressure from an inter-crater dome and/or cryptodome. A model is proposed to explain the peculiarities of the formation, transportation and emplacement of the Bezymianny blast surge deposits. Received: 19 December 1994 / Accepted: 12 December 1995  相似文献   

5.
The eruptive history of Kuju volcano on Kyushu, Japan, during the past 15,000 years has been determined by tephrochronology and 14C dating. Kuju volcano comprises isolated lava domes and cones of hornblende andesite together with aprons of pyroclastic-flow deposits on its flanks. Kuju volcano produced tephras at roughly 1000-yr intervals during the past 5000 years and 70% of the domes and cones have formed during the past 15,000 years. The youngest magmatic activity of Kuju volcano was the 1.6 km3 andesite eruption about 1600 years ago which emplaced a lava dome and block-and-ash flow. Kuju volcano shows a nearly constant long-term eruption rate (0.7–0.4 km3 for 1000 years) during the past 15,000 years. This rate is within the range of estimated average eruption rates of late Quaternary volcanoes in the Japanese Arc, but is about one order of magnitude higher than the eruption rate of Unzen volcano. Kuju volcano has been in phreatic eruption since October 1995. The late Quaternary history of Kuju indicates that it poses a significant volcanic hazard, primarily due to block-and-ash flows from collapsing lava domes.  相似文献   

6.
Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50–100 km from the source volcano and affected areas of 500–1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792.The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s–1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny.Debris avalanches can move faster than 100 ms–1 and travel tens of kilometers. When not confined by valley walls, avalanches can affect wide areas beyond the volcano's flanks. Tsunamis from debris avalanches at coastal volcanoes have caused more fatalities than have the landslides themselves or associated eruptions. The probable travel distance (L) of avalanches can be estimated by considering the potential vertical drop (H). Data from a catalog of around 200 debris avalanches indicates that the H/L rations for avalanches with volumes of 0.1–1 km3 average 0.13 and range 0.09–0.18; for avalanches exceeding 1 km3, H/L ratios average 0.09 and range 0.5–0.13.Large-scale deformation of the volcanic edefice and intense local seismicity precede many slope failures and can indicate the likely failure direction and orientation of potential lateral blasts. The nature and duration of precursory activity vary widely, and the timing of slope faliure greatly affects the type of associated eruption. Bandai-type eruptions are particularly difficult to anticipate because they typically climax suddenly without precursory eruptions and may be preceded by only short periods of seismicity.  相似文献   

7.
Stratospheric aerosol loading from early 1981 to late 1985 was investigated by remote optical measurements using the twilight sounding method and by in situ mineral dust collections. Both experiments tracked the decay of aerosol abundances after the El Chichón eruption. A comparison between the remote optical observations and dust samplings suggests that aerosol maxima in 1985 were probably associated with a minor eruption of the Bezymianny volcano. Considering the different dynamical behavior of volcanic ash and condensed sulfuric acid aerosol, we traced the origin of collected dust to a minor eruption of Una Una volcano. This collected dust that could not be detected by remote sensing techniques against the high background level due to condensed aerosol from El Chichón highlights the complimentary nature of stratospheric dust collections and the twilight sounding method.  相似文献   

8.
El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4 = 0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake, meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009 ± 1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.  相似文献   

9.
Thermal remanent magnetization (TRM) analyses were carried out on lithic fragments from two different typologies of pyroclastic density current (PDC) deposits of the 1982 eruption of El Chichón volcano, in order to estimate their equilibrium temperature (Tdep) after deposition. The estimated Tdep range is 360–400 °C, which overlaps the direct measurements of temperature carried out four days after the eruption on the PDC deposits. This overlap demonstrates the reliability of the TRM method to estimate the Tdep of pyroclastic deposits and to approximate their depositional temperature. These results also constraint the time needed for reaching thermal equilibrium within four days for the studied PDC deposits, in agreement with predictions of theoretical models.  相似文献   

10.
The prehistoric eruptions of Mount Pinatubo have followed a cycle: centuries of repose terminated by a caldera-forming eruption with large pyroclastic flows; a post-eruption aftermath of rain-triggered lahars in surrounding drainages and dome-building that fills the caldera; and then another long quiescent period. During and after the eruptions lahars descending along volcano channels may block tributaries from watersheds beyond Pinatubo, generating natural lakes. Since the 1991 eruption, the Mapanuepe River valley in the southwestern sector of the volcano has been the site of a large lahar-dammed lake. Geologic evidence indicates that similar lakes have occupied this site at least twice before. An Ayta legend collected decades before Mount Pinatubo was recognized as a volcano describes what is probably the younger of these lakes, and the caldera-forming eruption that destroyed it.  相似文献   

11.
During the past 500 thousand years, Unzen volcano, an active composite volcano in the Southwest Japan Arc, has erupted lavas and pyroclastic materials of andesite to dacite composition and has developed a volcanotectonic graben. The volcano can be divided into the Older and the Younger Unzen volcanoes. The exposed rocks of the Older Unzen volcano are composed of thick lava flows and pyroclastic deposits dated around 200–300 ka. Drill cores recovered from the basal part of the Older Unzen volcano are dated at 400–500 ka. The volcanic rocks of the Older Unzen exceed 120 km3 in volume. The Younger Unzen volcano is composed of lava domes and pyroclastic deposits, mostly younger than 100 ka. This younger volcanic edifice comprises Nodake, Myokendake, Fugendake, and Mayuyama volcanoes. Nodake, Myokendake and Fugendake volcanoes are 100–70 ka, 30–20 ka, and <20 ka, respectively. Mayuyama volcano formed huge lava domes on the eastern flank of the Unzen composite volcano about 4000 years ago. Total eruptive volume of the Younger Unzen volcano is about 8 km3, and the eruptive production rate is one order of magnitude smaller than that of the Older Unzen volcano.  相似文献   

12.
La Soufrière (1467 m) is the active island arc volcano of Guadeloupe Island in the Lesser Antilles arc. Its historical eruptions are more or less violent phreatic outbursts the last of which, in 1976–1977, led to the evacuation of nearly 70 000 persons. The subsurface structure of the volcano consists of calderas, craters, and avalanche amphitheatres nested within the composite pile of eruptive products. Since the last magmatic eruption, dated ca. 1440 AD, the four phreatic eruptions have developed radial fractures on Soufrière dome favouring the development of a huge active hydrothermal system emphasized by a tropical environment. After the eruptions, the thermal state and the stable ground water flow are completely disorganised during several years during which the slow mineralization of rocks is becoming again preponderant. Sealing of fractures and decay of rocks permeability act as a cap for upward thermal transfers. Therefore Soufrière dome operates as a valve, resealing the hydrothermal system underlying the volcano thus providing over pressurization that could lead to the next phreatic eruption. In 1992 new small seismic swarms have appeared. Several of them are recorded every year while the emission of acid gas slowly increases.In order to recognise the superficial electrical resistive and conductive zones (less than 100 m depth) as well as the cavities on Soufrière volcano, we have made Very Low Frequency (VLF) surveys in 2000. Electrical conductive zones are clearly associated with major radial faults starting from the summit in which the hydrothermal activity takes place. In the continuation of these active hydrothermal fractures hot springs are located down slope. Conversely some of the resistive zones are associated with inactive clayed and sealed or opened faults. The distribution of the conductive zones allows detailing the state of the superficial part of the hydrothermal system of La Soufrière. The distribution of vertical clayed zones associated with major faults supposes Soufrière dome constituted of more or less consolidated blocks joined side by side and lying on the hydrothermally floor of crater Amic.  相似文献   

13.
Mount St. Helens has been a prolific source of tephra-fall deposits for about 40 000 years. These tephra deposits (1) record numerous explosive eruptions, (2) form important regional time-stratigraphic marker beds, and (3) record repeated changes in composition within and between eruptive periods.Recognized tephra strata record more than 100 explosive eruptive events at Mount St. Helens; those tephra strata are classified as beds, layers, and sets. Tephra sets, each of which consists of a group of beds and layers, define in part the nine eruptive periods recognized at the volcano. Individual tephra sets are distinguished from stratigraphically adjacent sets by differences in composition or by evidence of clapsed time.Several tephra units from Mount St. Helens form important marker beds at distances of hundreds of kilometers downwind from the volcano. Cummingtonite phenocrysts, which are known in ejecta from only Mount St. Helens in the Pacific Northwest, characterize some marker beds and readily identify their source.The tephra sequence also records eruption of the mafic andesites that mark the appearance of the modern Mount St. Helens and numerous changes in composition among dacite, basalt, and andesite since that time.  相似文献   

14.
Since the March–April 1982 eruption of El Chichòn volcano, intense hydrothermal activity has characterised the 1-km-wide summit crater. This mainly consists of mud and boiling pools, fumaroles, which are mainly located in the northwestern bank of the crater lake. During the period 1998–2000, hot springs and fumaroles discharging inside the crater and from the southeastern outer flank (Agua Caliente) were collected for chemical analyses. The observed chemical fluctuations suggest that the physico-chemical boundary conditions regulating the thermodynamic equilibria of the deep rock/fluid interactions have changed with time. The chemical composition of the lake water, characterised in the period 1983–1997 by high Na+, Cl, Ca2+ and SO42− contents, experienced a dramatic change in 1998–1999, turning from a Na+–Cl- to a Ca2+–SO42−-rich composition. In June 2000, a relatively sharp increase in Na+ and Cl contents was observed. At the same time, SO2/H2S ratios and H2 and CO contents in most gas discharges increased with respect to the previous two years of observations, suggesting either a new input of deep-seated fluids or local variations of the more surficial hydrothermal system. Migration of gas manifestations, enhanced number of emission spots and variations in both gas discharge flux and outlet temperatures of the main fluid manifestations were also recorded. The magmatic-hydrothermal system of El Chichòn is probably related to interaction processes between a deep magmatic source and a surficial cold aquifer; an important role may also be played by the interaction of the deep fluids with the volcanic rocks and the sedimentary (limestone and evaporites) basement. The chemical and physical changes recorded in 1998–2000 were possibly due to variations in the permeability of the conduit system feeding the fluid discharges at surface, as testified by the migration of gas and water emanations. Two different scenarios can be put forward for the volcanic evolution of El Chichòn: (1) build-up of an infra-crater dome that may imply a future eruption in terms of tens to hundreds of years; (2) minor phreatic–phreatomagmatic events whose prediction and timing is more difficult to constrain. This suggests that, unlike the diminished volcanic activity at El Chichòn after the 1982 paroxistic event, the volcano-hydrothermal fluid discharges need to be more constantly monitored with regular and more frequent geochemical sampling and, at the same time, a permanent network of seismic stations should be installed.  相似文献   

15.
The origin of El Chichón volcano is poorly understood, and we attempt in this study to demonstrate that the Tehuantepec Ridge (TR), a major tectonic discontinuity on the Cocos plate, plays a key role in determining the location of the volcano by enhancing the slab dehydration budget beneath it. Using marine magnetic anomalies we show that the upper mantle beneath TR undergoes strong serpentinization, carrying significant amounts of water into subduction. Another key aspect of the magnetic anomaly over southern Mexico is a long-wavelength (∼ 150 km) high amplitude (∼ 500 nT) magnetic anomaly located between the trench and the coast. Using a 2D joint magnetic-gravity forward model, constrained by the subduction PT structure, slab geometry and seismicity, we find a highly magnetic and low-density source located at 40–80 km depth that we interpret as a partially serpentinized mantle wedge formed by fluids expelled from the subducting Cocos plate. Using phase diagrams for sediments, basalt and peridotite, and the thermal structure of the subduction zone beneath El Chichón we find that ∼ 40% of sediments and basalt dehydrate at depths corresponding with the location of the serpentinized mantle wedge, whereas the serpentinized root beneath TR strongly dehydrates (∼90%) at depths of 180-200 km comparable with the slab depths beneath El Chichón (200-220 km). We conclude that this strong deserpentinization pulse of mantle lithosphere beneath TR at great depths is responsible for the unusual location, singularity and, probably, the geochemically distinct signature (adakitic-like) of El Chichón volcano.  相似文献   

16.
归纳总结2017年度全球81座活火山的活动情况,共计活动1058座次,平均每周记录20座活火山的活动信息。根据火山潜在喷发的危险性和火山活动的强弱程度对上述火山进行分级描述,火山活动主要反映了地球表层的构造活动,其中大角度俯冲带的弧后火山最为强烈,小角度的俯冲带、拉张裂谷和走滑为主的板块边界火山活动较为平静,火山活动频繁的印度尼西亚岛链是受灾最为严重的区域。预计全球火山活动将进一步加剧,印尼岛链受火山灾害威胁的程度依然较大。位于印尼岛链巴厘岛上的阿贡火山自2017年9月开始活动以来,整个喷发过程极具代表性,监测阿贡火山喷发过程可为全球典型火山喷发事件研究提供参考。  相似文献   

17.
The magma generation at Unzen volcano may be considered as the product of crustal material mixed with mantle magma accompanied by fractional crystallization (AFC). The magma in the Unzen volcano is estimated to consist of about 50–80% of residual magma (F) and about 30–70% assimilated crustal material (A) relative to the original magma. Concerning the 1991–1995 eruption, it is estimated that the magma formed as the result of mixing of about 50–60% crustal material and about 55–65% of residual magma. An alternative magma eruption model for the 1991–1995 eruption is proposed here. In the early stage, the isotopic characteristics of 1991 eruption are defined by AFC process in the deeper magma chamber. Later, the magma ascended through the conduit and quiescently stayed for a long time in a shallow reservoir before eruption. The minerals continuously crystallized as phenocrysts especially at the chilled top and outer margin in the shallow chamber. The crystallized phenocryst mush was reworked into the central part of the magma chamber by means of magma convection and rapid magma ascent. Therefore, the reaction between phenocrysts and melt occurs only in internal chemical disequilibrium in the magma chamber. In contrast, the isotopic compositions of the original magma shall be little influenced by the above processes throughout its eruptive history. The 1991–1995 eruptive rocks of the Unzen volcano show their characteristics in Sr and Nd isotopic values independent of their two previous eruptions. However, the isotopic values of early eruptive product could represent the original magma value. This result also supports the previous work of Chen et al. (1993) [Chen, C.H., DePaolo, D.J., Nakada, S., Shieh, Y.N., 1993. Relationship between eruption volume and neodymium isotopic composition at Unzen volcano. Nature 362, 831–834], that suggested the Nd of early or precursory eruptive products could be a qualitative indicator of the maximum size of a continuing or impending eruption.  相似文献   

18.
Volcán Ollagüe is a high-K, calc-alkaline composite volcano constructed upon extremely thick crust in the Andean Central Volcanic Zone. Volcanic activity commenced with the construction of an andesitic to dacitic composite cone composed of numerous lava flows and pyroclastic deposits of the Vinta Loma series and an overlying coalescing dome and coulée sequence of the Chasca Orkho series. Following cone construction, the upper western flank of Ollagüe collapsed toward the west leaving a collapse-amphitheater about 3.5 km in diameter and a debris avalanche deposit on the lower western flank of the volcano. The deposit is similar to the debris avalanche deposit produced during the May 18, 1980 eruption of Mount St. Helens, U.S.A., and was probably formed in a similar manner. It presently covers an area of 100 km2 and extends 16 km from the summit. Subsequent to the collapse event, the upper western flank was reformed via eruption of several small andesitic lava flows from vents located near the western summit and growth of an andesitic dome within the collapse-amphitheater. Additional post-collapse activity included construction of a dacitic dome and coulée of the La Celosa series on the northwest flank. Field relations indicate that vents for the Vinta Loma and post-collapse series were located at or near the summit of the cone. The Vinta Loma series is characterized by an anhydrous, two-pyroxene assemblage. Vents for the La Celosa and Chasca Orkho series are located on the flanks and strike N55 W, radial to the volcano. The pattern of flank eruptions coincides with the distribution in the abundance of amphibole and biotite as the main mafic phenocryst phases in the rocks. A possible explanation for this coincidence is that an unexposed fracture or fault beneath the volcano served as a conduit for both magma ascent and groundwater circulation. In addition to the lava flows at Ollagüe, magmas are also present as blobs of vesiculated basaltic andesite and mafic andesite that occur as inclusions in nearly all of the lavas. All eruptive activity at Ollagüe predates the last glacial episode ( 11.000 a B.P.), because post-collapse lava flows are overlain by moraine and are incised by glacial valleys. Present activity is restricted to emission of a persistent, 100-m-high fumarolic steam plume from a vent located within the summit andesite dome.Sr and Nd isotope ratios for the basaltic andesite and mafic andesite inclusions and lavas suggest that they have assimilated large amounts of crust during crystal fractionation. In contrast, narrow ranges in 143Nd/144Nd and 87Sr/86Sr in the andesitic and dacitic lavas are enigmatic with respect to crustal contamination.  相似文献   

19.
During the large explosions of the Bezymianny (1956), Shiveluch (1964) and Mount St. Helens (1980) volcanoes, 4.8·1012, 3.0·1012 and 8.2·1012 kg of resurgent and magmatic material were ejected respectively. The eruptions were preceded and accompanied by significant crustal deformations and by a great number of volcanic earthquakes. In all three cases, earthquakes with an energy of E = 109 J occurred 8–11 days before the eruption; their foci were at a distance of less than 5 km from the floor of the active crater and the power of earthquake swarms increased continuously and monotonously until the beginning of the eruption. The data obtained on deformations, earthquakes and volcanic activity may be used for the prediction of the place, time, energy and hazards of large explosions of andesitic volcanoes.  相似文献   

20.
Three crater lakes from Mexican volcanoes were sampled and analyzed at various dates to determine their chemical characteristics. Strong differences were observed in the chemistry among the three lakes: Nevado de Toluca, considered as dormant, El Chichón at a post-eruptive stage, and Popocatépetl at a pre-eruptive stage. Not surprisingly, no influence of volcanic activity was found at the Nevado de Toluca volcano, while the other volcanoes showed a correlation between the changing level of activity and the evolution of chemical trends. Low pHs (<3.0) were measured in the water from the active volcanoes, while a pH of 5.6 was measured at the Nevado de Toluca Sun lake. Changes with time were observed at Popocatépetl and El Chichón. Concentrations of volcanic-gas derived species like Cl, SO42− and F decreased irregularly at El Chichón from 1983 until 1997. Major cations concentrations also diminished at El Chichón. A 100% increase in the SO42− content was measured at Popocatépetl between 1985 and 1994. An increase in the Mg/Cl ratio between 1992 (Mg/Cl=0.085) and 1994 (Mg/Cl=0.177) was observed at Popocatépetl, before the disappearance of the crater lake in 1994. It is concluded that chemical analysis of crater lakes may provide a useful additional tool for active-volcano monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号