首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Due to their potential retention capacity, clay minerals have been proposed for use in the engineered barriers for the storage of high-level radioactive actinides in deep geological waste repositories. However, there is still a lack of data on the sorption of actinides in clays in conditions simulating those of the repositories. The present article examines the sorption of two lanthanides (actinide analogues) in a set of smectitic clays (FEBEX bentonite, MX80 bentonite, hectorite, saponite, Otay montmorillonite, and Texas montmorillonite). Distribution coefficients (Kd) were determined in two media: water and 0.02 mol L−1 Ca, the latter representing the cement leachates that may modify the chemical composition of the water in contact with the clay. The Kd values of the lanthanides used in the experiments (La and Lu) varied greatly (25-50 000 L kg−1) depending on the ionic medium (higher values in water than in the Ca medium), the initial lanthanide concentration (up to three orders of magnitude decrease inversely with lanthanide concentration), and the examined clay (up to one order of magnitude for the same lanthanide and sorption medium). Freundlich and Langmuir isotherms were used to fit sorption data to allow comparison of the sorption parameters among smectites. The model based on the two-site Langmuir isotherms provided the best fit of the sorption data, confirming the existence of sorption sites with different binding energies. The sites with higher sorption affinity were about 6% of the total sorption capacity in the water medium, and up to 17% in the Ca medium, although in this latter site sorption selectivity was lower. The wide range of Kd values obtained regarding the factors examined indicated that the retention properties of the clays should also be considered when selecting a suitable clay for engineered barriers.  相似文献   

2.
《Applied Geochemistry》1999,14(5):569-579
Potential human intrusion into the Waste Isolation Pilot Plant (WIPP) might release actinides into the Culebra Dolomite where sorption reactions will affect of radiotoxicity from the repository. Using a limited residence time reactor the authors have measured Ca, Mg, Nd adsorption/exchange as a function of ionic strength, PCO2, and pH at 25°C. By the same approach, but using as input radioactive tracers, adsorption/exchange of Am, Pu, U, and Np on dolomite were measured as a function of ionic strength, PCO2, and pH at 25°C. Metal adsorption is typically favored at high pH. Calcium and Mg adsorb in near-stoichiometric proportions except at high pH. Adsorption of Ca and Mg is diminished at high ionic strengths (e.g., 0.5M NaCl) pointing to association of Na+ with the dolomite surface, and the possibility that Ca and Mg sorb as hydrated, outer-sphere complexes. Sulfate amplifies sorption of Ca and Mg, and possibly Nd as well. Exchange of Nd for surface Ca is favored at high pH, and when Ca levels are low. Exchange for Ca appears to control attachment of actinides to dolomite as well, and high levels of Ca2+ in solution will decrease Kds. At the same time, to the extent that high PCO2s increase Ca2+ levels, Kds will decrease with CO2 levels as well, but only if sorbing actinide-carbonate complexes are not observed to form (Am-carbonate complexes appear to sorb; Pu-complexes might sorb as well. U-carbonate complexation leads to desorption). This indirect CO2 effect is observed primarily at, and above, neutral pH. High NaCl levels do not appear to affect to actinide Kds.  相似文献   

3.
Researchers of the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences created a luminescence photometer of a new generation for the determination of trace amounts of uranium and transuranium elements (TUE). The limits of detection for actinides vary from 0.3 pg for uranium and neptunium to 2.0 pg for plutonium. For 237Np, the relative limit of detection is 0.008 Bq/L. The photometer was tested in the radioecological monitoring of a number of polluted zones in Russia. The dynamics of actinide migration in all of the studied zones enhanced in the series 239Pu < 241Am < 237Np. In this series, concentrations of radionuclides in water-soluble and exchange forms that are most mobile and determine the migration mobility of chemical elements increased in all of the studied soil types. In the group of fulvic acids, concentrations of radionuclides decreased in the series 237Np > 241Am > 239Pu irrespectively of the soil. In the group of humic acids, concentrations of radionuclides increased in the series 237Np < 239Pu < 241Am. The sorption coefficients of radionuclides by bottom sediments of the Markha River (Kraton-3 underground nuclear explosion site) and Lake Kyzyltash (East Urals Radioactive Trace) were calculated. Bioaccumulation factors of radionuclides by different plants in the impact area of the Kraton underground nuclear explosion were determined depending on the plant type.  相似文献   

4.
Rates of anaerobic respiration are of central importance for the long-term burial of carbon (C) in peatlands, which are a relevant sink in the global C cycle. To identify constraints on anaerobic peat decomposition, we determined detailed concentration depth profiles of decomposition end-products, i.e. methane (CH4) and dissolved inorganic carbon (DIC), along with concentrations of relevant decomposition intermediates at an ombrotrophic Canadian peat bog. The magnitude of in situ net production rates of DIC and CH4 was estimated by inverse pore-water modeling. Vertical transport in the peat was slow and dominated by diffusion leading to the buildup of DIC and CH4 with depth (5500 μmol L−1 DIC, 500 μmol L−1 CH4). Highest DIC and CH4 production rates occurred close to the water table (decomposition constant kd ∼ 10−3-10−4 a−1) or in some distinct zones at depth (kd ∼ 10−4 a−1). Deeper into the peat, decomposition proceeded very slowly at about kd = 10−7 a−1. This pattern could be related to thermodynamic and transport constraints. The accumulation of metabolic end-products diminished in situ energy yields of acetoclastic methanogenesis to the threshold for microbially mediated processes (−20 to −25 kJ mol−1 CH4). The methanogenic precursor acetate also accumulated (150 μmol L−1). In line with these findings, CH4 was formed by hydrogenotrophic methanogenesis at Gibbs free energies of −35 to −40 kJ mol−1 CH4. This was indicated by an isotopic fractionation αCO2-CH4 of 1.069-1.079. Fermentative degradation of acetate, propionate and butyrate attained Gibbs free energies close to 0 kJ mol−1 substrate. Although methanogenesis was apparently limited by some other factor in some peat layers, transport and thermodynamic constraints likely impeded respiratory processes in the deeper peat. Constraints on the removal of DIC and CH4 may thus slow decomposition and contribute to the sustained burial of C in northern peatlands.  相似文献   

5.
The sorption of Np(V) and Np(IV) onto kaolinite has been studied in the absence and presence of humic acid (HA) in a series of batch equilibrium experiments under different experimental conditions: [Np]0: 1.0 × 10-6 or 1.0 × 10-5 M, [HA]0: 0 or 50 mg/L, I: 0.01 or 0.1 M NaClO4, solid to liquid ratio: 4 g/L, pH: 6–11, anaerobic or aerobic conditions, without or with carbonate. The results showed that the Np(V) sorption onto kaolinite is affected by solution pH, ionic strength, Np concentration, presence of carbonate and HA. In the absence of carbonate, the Np(V) uptake increased with pH up to ∼96% at pH 11. HA further increased the Np(V) sorption between pH 6 and 9 but decreased the Np(V) sorption between pH 9 and 11. In the presence of carbonate, the Np(V) sorption increased with pH and reached a maximum of 54% between pH 8.5 and 9. At higher pH values, the Np(V) sorption decreased due to the presence of dissolved neptunyl carbonate species with a higher negative charge that were not sorbed onto the kaolinite surface which is negatively charged in this pH range. HA again decreased the Np(V) uptake in the near-neutral to alkaline pH range due to formation of aqueous neptunyl humate complexes. The decrease of the initial Np(V) concentration from 1.0 × 10−5 M to 1.0 × 10−6 M led to a shift of the Np(V) adsorption edge to lower pH values. A higher ionic strength increased the Np(V) uptake onto kaolinite in the presence of carbonate but had no effect on Np(V) uptake in the absence of carbonate.  相似文献   

6.
The particle-solution (Kd) relationships of Pu(III,IV) in the Esk Estuary are investigated, using new experimental data together with a synthesis of our earlier work. Adsorption of 236Pu(IV) by a suspension of intertidal mud (40 mg L−1) from the Esk Estuary was determined after 1 h, as a function of salinity and pH, in a series of controlled laboratory experiments. Desorption of 239, 240Pu(III,IV) from this environmentally contaminated sediment was determined concurrently. The short term (i.e., within a tidal cycle) non-conservative behaviour of Pu(III,IV) in both the laboratory experiments and the estuary appears to be dominated by a rapid, reversible surface complexation reaction, although only a small fraction (<5%) of the 239,240Pu(III,IV) activity of the environmentally contaminated sediment is able to participate in the reaction. The existence of this exchangeable or labile fraction can explain the apparent dependence of Pu(III,IV) Kd on sediment concentration. Thus, a single Kd value is able to describe both the observed adsorption and desorption behaviour and the effect of sediment concentration, when desorption is expressed with respect to the labile 239,240Pu(III,IV) fraction. For example, in R. Esk water, the adsorption of 236Pu(III,IV) and the desorption of 236,240Pu(III,IV), over a two order of magnitude concentration range of unwashed Esk Estuary sediment, can be accounted for by a single Kd of ∼3 × 103 L kg−1. The Kd for the labile Pu(III,IV) fraction varies mainly as a function of salinity. pH is not an important factor over the pH range 4–9, although H+ ion exchange does occur, probably through a similar surface complexation reaction. The kinetic and equilibrium characteristics of the Pu (III,IV) sorption behaviour conform to the pattern observed by Jannasch et al. (1988) and other workers for a range of trace elements.  相似文献   

7.
79Se is a potentially mobile long-lived fission product, which may make a dominant contribution to the long-term radiation exposure resulting from deep geological disposal of radioactive waste. Its mobility is affected by sorption on minerals. Selenium sorption processes have been studied mainly by considering interaction with a single mineral surface. In the case of multi-component systems (e.g. soils), it is difficult to predict the radioelement behaviour only from the mineral constituents. This study contributes to the understanding of multi-component controls of Se concentrations towards predicting Se behaviour in soils after migration from a disposal site. This goal was approached by measuring selenite sorption on mono and multi-phase systems physically separated by dialysis membranes. To the best of the authors’ knowledge, very few studies have used dialysis membranes to study the sorption competition of selenite between several mineral phases. Other workers have used this method to study the sorption of pesticides on montmorillonite in the presence of dissolved organic matter. Indeed, this method allows measurement of individual Kd in a system composed of several mineral phases. Dialysis membranes allowed (i) determination of the competition of two mineral phases for selenite sorption (ii) and determination of the role of humic acids (HAs) on selenite sorption in oxidising conditions. Experimental results at pH 7.0 show an average Se(IV) sorption distribution coefficient (Kd) of approximately 125 and 9410 L kg−1 for bentonite and goethite, respectively. The average Kd for goethite decreases to 613 L kg−1 or 3215 L kg−1 in the presence of bentonite or HA, respectively. For bentonite, the average Kd decreases slightly in the presence of goethite (60 L kg−1) and remains unchanged in the presence of HA. The experimental data were successfully modelled with a surface complexation model using the PHREEQC geochemical code. The drastic decrease in Se(IV) sorption on goethite in a multi-phase system is attributed to competition with dissolved silica released by bentonite. As with Si the HA compete with Se for sorption sites on goethite.  相似文献   

8.
The results from batch sorption experiments on montmorillonite systems have demonstrated that bivalent transition metals compete with one another for sorption sites. For safety analysis studies of high level radioactive waste repositories with compacted bentonite near fields, the importance of competitive sorption on the migration of radionuclides needs to be evaluated. Under reducing conditions, the bentonite porewater chosen has a Fe(II) concentration of ∼5.3 × 10−5 M through saturation with siderite. The purpose of this paper is to assess the influence of such high Fe(II) concentrations on the transport of Ni(II) through compacted bentonite, Ni(II) was chosen as an example of a bivalent transition metal. The one-dimensional calculations were carried out at different Ni(II) equilibrium concentrations at the boundary (Ni(II)EQBM) with the reactive transport code MCOTAC incorporating the two site protolysis non electrostatic surface complexation/cation exchange sorption model, MCOTAC-sorb. At a Ni(II)EQBM level of 10−7 M without Fe(II) competition, the reactive transport calculations using a constant Kd approach and the MCOTAC-sorb calculation yielded the same breakthrough curves. At higher Ni(II)EQBM (10−5 M), the model calculations with MCOTAC-sorb indicated a breakthrough which was shifted to later times by a factor of ∼5 compared with the use of the constant Kd approach.When sorption competition was included in the calculations, the magnitude of the influence depended on the sorption characteristics of the two competing sorbates and their respective concentrations. At background Fe(II) concentrations of 5.3 × 10−5 M, and a Ni(II)EQBM level of 10−7 M, the Ni(II) breakthrough time was ∼15 times earlier than in the absence of competition. At such Fe(II) concentrations the Ni(II) breakthrough curves at all source concentrations less than 3.5 × 10−5 M (fixed by the NiCO3,S solubility limit) are the same i.e. Ni(II) exhibits linear (low) sorption.Competitive sorption effects can have significant influences on the transport of radionuclides through compacted bentonite i.e. reduce the migration rates. Since, for the case considered here, the Fe(II) concentration in the near field of a high-level radioactive waste repository may change in time and space, the transport of bivalent transition metal radionuclides can only be properly modelled using a multi-species reactive transport code which includes a sorption model.  相似文献   

9.
Sorption edge data for Ni(II), Co(II), Eu(III) and Sn(IV) [Bradbury M. H. and Baeyens B. (2009) Sorption modelling on illite. Part I: titration measurements and sorption of Ni(II), Co(II), Eu(III) and Sn(IV), Part I] on purified Na-Illite du Puy are available from some previous work, and some new measurements for Am(III), Th(IV), Pa(V) and U(VI) are presented here. All of these sorption edge measurements have been modelled with a 2 site protolysis non-electrostatic surface complexation and cation exchange (2SPNE SC/CE) sorption model for which the site types, site capacities and protolysis constants were fixed [Bradbury M. H. and Baeyens B. (2009), Part I]. In addition, two further data sets for the sorption of Am(III) and Np(V) on Illite du Puy, obtained from the literature, were also modelled in this work. Thus, surface complexation constants for the strong sites in the 2SPNE SC/CE sorption model for nine metals with valence states from II to VI have been obtained. A linear relationship between the logarithm of strong site metal binding constants, SKx−1, and the logarithm of the corresponding aqueous hydrolysis stability constant, OHKx, extending over nearly 35 orders of magnitude is established here for illite for these nine metals. Such correlations are often termed linear free energy relationships (LFER), and although they are quite common in aqueous phase chemistry, they are much less so in surface chemistry, especially over this large range. The LFER for illite could be described by the equation: where, “x” is an integer. A similar relationship has been previously obtained for montmorillonite, thus LFERs relating to the sorption on two of the most important clay minerals present in natural systems have been established. Such an LFER approach is an extremely useful tool for estimating surface complexation constants for metals in a chemically consistent manner. It provides a means of obtaining sorption values for radionuclides for which there are no measured values and thus allows gaps in missing sorption data to be filled. An ultimate goal of this approach is to develop a thermodynamic sorption database. This could then be used in radioactive waste management performance assessment studies to calculate sorption in natural systems, and thereby replace the current usage of single solid liquid distribution coefficients (Kd values) to describe radionuclide uptake. Finally, with the data now available, the 2SPNE SC/CE sorption model can be ported into reactive transport models allowing radionuclide migration to be calculated under spatially and temporally changing conditions.  相似文献   

10.
An analytical expression that evaluates the effect of pH and the redox potential (E) on Pu-colloid association was studied on a model basis. It includes surface complexation with one type of surface site and its formulation leads to a distribution coefficient (Kd) as a function of the pH (hydrolysis) and E (redox sensitive species). The formulation also considers the values of the stability and hydrolysis constants for all species present in solution and associated at the surface. Correlations between hydrolysis and surface complexation constants reported in the literature have been applied systematically to evaluate sorption of all species for each colloid system. The presence of ligands in solution was also taken into account. The model was applied to study the association of Pu onto colloids coated with AlOH, FeOH or SiOH groups in the presence and in the absence of carbonates in solution. The tests performed with the model suggest that the oxidation of Pu(III) to Pu(IV) has the potential to increase sorption, as demonstrated by the increased Kd values. Under natural conditions Pu may be present at oxidation states of (III)--(VI), and the effect of redox potential is significant because of the differences in the sorption of each oxidation state. When carbonates are present in the solution, the calculated values of distribution coefficient were lower than those calculated in the absence of carbonates, particularly in the case of Pu(VI). The Kd values obtained with the developed model are compared with experimental values reported for the sorption of Pu onto colloids. This model can equally be applied to study the sorption of other redox sensitive elements.  相似文献   

11.
《Applied Geochemistry》2002,17(6):837-853
This study presents the characterization of Pu-bearing precipitates and the results from uptake studies of Np and Pu on inorganic colloidal particulates in J-13 water from the Yucca Mountain site. Plutonium solubilities determined experimentally at pH values of 6, 7, and 8.5 are about two orders of magnitude higher than those calculated using the existing thermodynamic database indicating the influence of colloidal Pu(IV) species. Solid phase characterization using X-ray diffraction revealed primarily Pu(IV) in all precipitates formed at pH 6, 7, and 8.5. The solubility controlling Pu-bearing solids precipitated at ambient temperature consisted of amorphous Pu(OH)4(s) with several Pu–O distances between 2.3 and 2.7 Å that are characteristic for Pu(IV) colloids. High temperature (90 °C) increased solid phase crystallinity and produced Pu(IV) solids that contained Pu oxidation state impurities. X-ray absorption spectroscopic studies revealed diminished Pu–O and Pu–Pu distances that were slightly different from those in crystalline PuO2(s). A Pu–O bond of 1.86 Å was identified that is consistent with the plutonyl(V) distance of 1.81 Å in PuO2+(aq). Hematite, montmorillonite, and silica colloids were used for uptake experiments with 239Pu(V) and 237Np(V). The capacity of hematite to sorb Pu significantly exceeded that of montmorillonite and silica. A low desorption rate was indicative of highly stable Pu-hematite colloids, which may facilitate Pu transport to the accessible environment. Neptunium uptake on all mineral phases was far less than Pu(V) uptake suggesting that a potential Pu(V)–Pu(IV) reductive sorption process was involved. The temperature effect on Pu solubility and pseudocolloid formation is also discussed.  相似文献   

12.
Various sorption phenomena, such as aging, hysteresis and irreversible sorption, can cause differences between contaminant (ad)sorption and desorption behavior and lead to apparent sorption ‘asymmetry’. We evaluate the relevance of these characteristics for neptunium(V) (Np(V)) sorption/desorption on goethite using a 34-day flow-cell experiment and kinetic modeling. Based on experimental results, the Np(V) desorption rate is much slower than the (ad)sorption rate, and appears to decrease over the course of the experiment. The best model fit with a minimum number of fitting parameters was achieved with a multi-reaction model including (1) an equilibrium Freundlich site (site 1), (2) a kinetically-controlled, consecutive, first-order site (site 2), and (3) a parameter ψ2,de, which characterizes the desorption rate on site 2 based on a concept related to transition state theory (TST). This approach allows us to link differences in adsorption and desorption kinetics to changes in overall reaction pathways, without assuming different adsorption and desorption affinities (hysteresis) or irreversible sorption behavior a priori. Using modeling as a heuristic tool, we determined that aging processes are relevant. However, hysteresis and irreversible sorption behavior can be neglected within the time-frame (desorption over 32 days) and chemical solution conditions evaluated in the flow-cell experiment. In this system, desorption reactions are very slow, but they are not irreversible. Hence, our data do not justify an assumption of irreversible Np(V) sorption to goethite in transport models, which effectively limits the relevance of colloid-facilitated Np(V) transport to near-field environments. However, slow Np(V) desorption behavior may also lead to a continuous contaminant source term when metals are sorbed to bulk mineral phases. Additional long-term experiments are recommended to definitely rule out irreversible Np(V) sorption behavior at very low surface loadings and environmentally-relevant time-scales.  相似文献   

13.
Sorption of Ni(II) onto chlorite surfaces was studied as a function of pH (5–10), ionic strength (0.01–0.5 M) and Ni concentration (10−8–10−6 M) in an Ar atmosphere using batch sorption with radioactive 63Ni as tracer. Such studies are important since Ni(II) is one of the major activation products in spent nuclear fuel and sorption data on minerals such as chlorite are lacking. The sorption of Ni(II) onto chlorite was dependent on pH but not ionic strength, which indicates that the process primarily comprises sorption by surface complexation. The maximum sorption was at pH ∼ 8 (Kd = ∼10−3 cm3/g). Desorption studies over a period of 1–2 weeks involving replacement of the aqueous solution indicated a low degree of desorption. The acid–base properties of the chlorite mineral were determined by titration and described using a non-electrostatic surface complexation model in FITEQL. A 2-pK NEM model and three surface complexes, Chl_OHNi2+, Chl_OHNi(OH)+ and Chl_OHNi(OH)2, gave the best fit to the sorption results using FITEQL. The high Kd values and low degree of desorption observed indicate that under expected groundwater conditions, a large fraction of Ni(II) that is potentially leachable from spent nuclear fuel may be prevented from migrating by sorption onto chlorite surfaces.  相似文献   

14.
The kinetics of radionuclide desorption from bentonite colloids and subsequent sorption onto fracture filling material can influence colloid-facilitated radionuclide migration in ground water. To shed light on the significance of these issues batch-type experiments using a cocktail of strong and weak sorbing radionuclides as well as FEBEX bentonite colloids in the presence of fracture filling material from Grimsel (Switzerland) under Grimsel ground water conditions have been conducted. Results show that tri- and tetravalent radionuclides, 232Th(IV), 242Pu(IV) and 243Am(III) are clearly colloid associated in contrast to 233U(VI), 237Np(V) and 99Tc(VII). Concentrations of colloid-borne 232Th(IV), 242Pu(IV) and 243Am(III) decrease after ∼100 h showing desorption from bentonite colloids while 233U(VI) and 99Tc(VII) concentrations remain constant over the entire experimental time of 7500 h thus showing no interaction either to colloids or to the fracture filling material. 232Th(IV) and 242Pu(IV) data yield a slower dissociation from colloids compared to 243Am(III) indicating stronger RN–colloid interaction. In the case of 237Np(V), a decrease in concentration after ∼300 h is observed which can be explained either by slow reduction to Np(IV) and subsequent sorption to mineral surfaces in accordance with the evolution of pe/pH and/or by a slow sorption onto the fracture filling material. No influence of the different fracture filling material size fractions (0.25–0.5 mm, 0.5–1 mm and 1–2 mm) can be observed implying reaction independence of the mineral surface area and mineralogical composition. The driving force of the observed metal ion desorption from colloids is binding to fracture filling material surfaces being in excess of the available colloid surface area (76:1, 55:1 and 44:1 for the 0.25–0.5 mm, 0.5–1 mm and 1–2 mm size fraction of the FFM, respectively).  相似文献   

15.
Strontium-90 is a beta emitting radionuclide produced during nuclear fission, and is a problem contaminant at many nuclear facilities. Transport of 90Sr in groundwaters is primarily controlled by sorption reactions with aquifer sediments. The extent of sorption is controlled by the geochemistry of the groundwater and sediment mineralogy. Here, batch sorption experiments were used to examine the sorption behaviour of 90Sr in sediment–water systems representative of the UK Sellafield nuclear site based on groundwater and contaminant fluid compositions. In experiments with low ionic strength groundwaters (<0.01 mol L−1), pH variation is the main control on sorption. The sorption edge for 90Sr was observed between pH 4 and 6 with maximum sorption occurring (Kd ∼ 103 L kg−1) at pH 6–8. At ionic strengths above 10 mmol L−1, and at pH values between 6 and 8, cation exchange processes reduced 90Sr uptake to the sediment. This exchange process explains the lower 90Sr sorption (Kd ∼ 40 L kg−1) in the presence of artificial Magnox tank liquor (IS = 29 mmol L−1). Strontium K-edge EXAFS spectra collected from sediments incubated with Sr2+ in either HCO3-buffered groundwater or artificial Magnox tank liquor, revealed a coordination environment of ∼9 O atoms at 2.58–2.61 Å after 10 days. This is equivalent to the Sr2+ hydration sphere for the aqueous ion and indicates that Sr occurs primarily in outer sphere sorption complexes. No change was observed in the Sr sorption environment with EXAFS analysis after 365 days incubation. Sequential extractions performed on sediments after 365 days also found that ∼80% of solid associated 90Sr was exchangeable with 1 M MgCl2 in all experiments. These results suggest that over long periods, 90Sr in contaminated sediments will remain primarily in weakly bound surface complexes. Therefore, if groundwater ionic strength increases (e.g. by saline intrusion related to sea level rise or by design during site remediation) then substantial remobilisation of 90Sr is to be expected.  相似文献   

16.
In order to better understand the compositional and structural complexity of dissolved organic matter (DOM) macromolecules and provide mechanistic information on the binding of hydrophobic organic contaminants (HOCs) to DOM, we fractionated large amounts of lake water into three hydrophobic DOM-fractions. The variation of the partitioning coefficients (K DOC) of pyrene at different pH levels was examined by florescence quenching titration. Results show that, relative to the more polar acidic DOM-fractions, the hydrophobic neutral fraction exhibits a higher sorption ability to pyrene. Generally, the sorption of pyrene to the three hydrophobic fractions is strongly pH-dependent. The K DOC values of pyrene generally increase with decreasing pH levels, which is especially obvious in the sorption of pyrene to the fulvic acid fractions, suggesting that the binding is controlled by hydrophobic interactions. The mechanisms underlying the binding of pyrene to the hydrophobic fractions were also discussed. Our data are beneficial to further understanding the binding of HOCs to DOM and how it has been affected, which may result in more accurate predictions of K DOC.  相似文献   

17.
The importance of accessing safe aquifers in areas with high As is being increasingly recognized. The present study aims to investigate the sorption and mobility of As at the sediment-groundwater interface to identify a likely safe aquifer in the Holocene deposit in southwestern Bangladesh. The upper, shallow aquifer at around 18 m depth, which is composed mainly of very fine, grey, reduced sand and contains 24.3 μg/g As, was found to produce highly enriched groundwater (190 μg/L As). In contrast, deeper sediments are composed of partly oxidized, brownish, medium sand with natural adsorbents like Fe- and Al-oxides; they contain 0.76 μg/g As and impart low As concentrations to the water (4 μg/L). These observations were supported by spectroscopic studies with SEM, TEM, XRD and XRF, and by adsorption, leaching, column tests and sequential extraction. A relatively high in-situ dissolution rate (Rr) of 1.42 × 10−16 mol/m2/s was derived for the shallower aquifer from the inverse mass-balance model. The high Rr may enhance As release processes in the upper sediment. The field-based reaction rate (Kr) was extrapolated to be roughly 1.23 × 10−13 s−1 and 6.24 × 10−14 s−1 for the shallower and deeper aquifer, respectively, from the laboratory-obtained adsorption/desorption data. This implies that As is more reactive in the shallower aquifer. The partition coefficient for the distribution of As at the sediment-water interface (Kd-As) was found to range from 5 to 235 L/kg based on in-situ, batch adsorption, and flow-through column techniques. Additionally, a parametric equation for Kd-As (R2 = 0.67) was obtained from the groundwater pH and the logarithm of the leachable Fe and Al concentrations in sediment. A one-dimensional finite-difference numerical model incorporating Kd and Kr showed that the shallow, leached As can be immobilized and prevented from reaching the deeper aquifer (∼150 m) after 100 year by a natural filter of oxidizing sand and adsorbent minerals like Fe and Al oxides; in this scenario, 99% of the As in groundwater is reduced. The deeper aquifer appears to be an adequate source of sustainable, safe water.  相似文献   

18.
To assess the competitive sorption and desorption of cadmium (Cd) and lead (Pb), batch equilibrium experiments were performed using single- and binary-metal solutions in surface samples of three paddy soils from eastern China. Sorption isotherms were well fitted with one-metal and competitive Langmuir equation for single- and binary-metal system, respectively. The distribution coefficient (K d) values were K d single (Pb) > K d binary (Pb) > K d single (Cd) > K d binary (Cd), indicating that Pb was stronger sorbed by these soils than Cd in binary metal system. Soils with high pH and clay content had the greatest sorption capacity as estimated by the maximum sorption parameter (Q). The co-existence of both metals reduces their tendency of sorption, whereas Cd sorption was affected to a greater extent than that of Pb. The Langmuir binding strength parameter (b) in binary sorption system was greater than that in single sorption system for all soils (b < b 1), indicating that competition for sorption sites promote the retention of both metals into more specific sorption sites. Sorption of Cd and Pb decreased soil pH by 1.61 U for YRS, 1.39 U for PCS, and 0.91 U for SLS. The decreases of pH in binary metal system were greater than in single-metal system for three soils. Cadmium and Pb desorption increased with increasing Cd and Pb sorption saturation for all soils; however, Cd desorption ratio in binary metal system (d Cd*) was much greater than Pb (d Pb*), indicating that under the competitive sorption conditions, the sorbed Cd was more readily desorbed from the soils than the sorbed Pb.  相似文献   

19.
Sorption results obtained with Boom clay for Am, Pu, Eu, Tc and Np under near in-situ conditions are presented, and the significance ofKd values in Boom clay is discussed. Clay humic acids are shown to be a controlling factor in the sorption of Am, Eu, Np.

Results with Tc and Pu are different and need further examination. Experiments to determine the mobility of light molecular weight organic material in compacted Boom clay is discussed.  相似文献   


20.
The sorption of cesium and iodide ions onto KENTEX-bentonite was investigated using batch test and in-diffusion test methods. The cesium ions were highly sorbed on the bentonite, and the experimental data fit the Freundlich isotherm well. The distribution coefficient, K d, of the cesium ions was variably affected by the chemical conditions of the solution (initial ion concentration, pH, salinity) and temperature. An increasing pH of solution increased the K d. However, there were different K d values that decrease with an increase in the initial ion concentration, salinity, and temperature. The iodide ions, on the contrary, were negligibly sorptive. The K d values obtained from the in-diffusion tests were quite lower than those from the batch tests, which could be explained by changes in the pore water chemistry and surface area available for sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号