首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Groundwater quality in karst regions is largely controlled by natural processes and anthropogenic activities. Over the past 10?years, dissolved Sr and its radiogenic isotope, 87Sr/86Sr, were widely used to trace the sources of solutes in groundwater. However, there is little research about hydrogeochemistry and Sr isotopic compositions of the karst groundwater in Chongqing karst area. In this paper, thirty-five representative karst groundwater samples were collected from different aquifers (limestone and dolomite) and various land use types. Hydrochemical types of karst groundwater in Chongqing were mainly of the Ca-HCO3 type or Ca(Mg)-HCO3 type. The dissolved Sr concentrations of the studied groundwater ranged from 0.57 to 15.06???mmol/L, and the 87Sr/86Sr varied from 0.70751 to 0.71627. The groundwater samples from different aquifers and land use types showed distinctive dissolved Sr concentrations and 87Sr/86Sr. The very positive relationship between Ca/Sr and Mg/Sr in dolomite and limestone aquifers suggests that Ca, Mg and Sr element come mainly from the release of carbonate rock under the groundwater?Crock?CCO2 gas interaction. According to the 87Sr/86Sr ratio, the Sr element in karst groundwater in Chongqing was controlled by the weathering of limestone, dolomite and silicate rock (allogenic water in a non-karst area). The relationship 87Sr/86Sr versus Sr2+/[K+?+?Na+] shows that the anthropogenic inputs also obviously contribute to the Sr contents. The research results show that the karst groundwater in Chongqing is facing serious crisis of water quality, and needs to be protected further.  相似文献   

2.
Groundwater from karst subterranean streams is among the world’s most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are impacted by both natural environment and people. Therefore, the study of hydrochemistry and its solutes’ sources is very important to ensure the normal function of life support systems. In this paper, thirty?five representative karst groundwater samples were collected from different aquifers (limestone and dolomite) and various land use types in Chongqing to trace the sources of solutes and relative hydrochemical processes. Hydrogeochemical types of karst groundwater in Chongqing were mainly of the Ca?HCO3 type or Ca (Mg)?HCO3 type. However, some hydrochemical types of karst groundwater were the K+Na+Ca?SO4 type (G25 site) or Ca?HCO3+SO4 type (G26 and G14 site), indicating that the hydrochemistry of these sites might be strongly influenced by anthropogenic activities or unique geological characteristics. The dissolved Sr concentrations of the studied groundwater ranged from 0.57 to 15.06 μmmol/L, and the 87Sr/86Sr varied from 0.70751 to 0.71627. The δ34S?SO42? fell into a range of ?6.8‰?21.5‰, with a mean value of 5.6‰. The variations of both 87Sr/86Sr and Sr values of the groundwater samples indicated that the Sr element was controlled by the weathering of limestone, dolomite and silicate rock. However, the figure of 87Sr/86Sr vs. Sr2+/[K++Na+] showed that the anthropogenic inputs also obviously contributed to the Sr contents. For tracing the detailed anthropogenic effects, we traced the sources of solutes collected karst groundwater samples in Chongqing according to the δ34S value of potential sulfate sources. The variations of both δ34S and 1/SO42? values of the groundwater samples indicated that the atmospheric acid deposition (AAD), dissolution of gypsum (GD), oxidation of sul?de mineral (OS) or anthropogenic inputs (SF: sewage or fertilizer) have contributed to solutes in karst groundwater. The influence of oxidation of sul?de mineral, atmospheric acid deposit and anthropogenic inputs to groundwater in Chongqing karst areas was much widespread.  相似文献   

3.
Processes controlling hydrogeochemistry in the Yuncheng Basin, China, were characterised using major-ion chemistry, 87Sr/86Sr ratios and ??13C values. Evapotranspiration during recharge increased solute concentrations by factors of ??5?C50 in deep palaeowaters, while higher degrees of evapotranspiration have occurred in shallow, modern groundwater. Aquifer sediments (loess) contain approximately 15 weight% calcite; trends in groundwater HCO3 concentrations and ??13C values (ranging from ?16.4 to ?8.2??) indicate that carbonate weathering is a significant source of DIC. Groundwater 87Sr/86Sr ratios (0.7110?C0.7162, median of 0.7116) are similar to those in both loess carbonate (0.7109?C0.7116) and local rainfall (0.7112), and are significantly lower than Sr in aquifer silicates (0.7184?C0.7251). Despite evidence for substantial carbonate dissolution, groundwater is generally Ca-poor (<?10% of total cations) and Na-rich, due to cation exchange. Saturation with respect to carbonate minerals occurs during or soon after recharge (all calcite and dolomite saturation indices are positive). Subsequent carbonate dissolution in the deep aquifer must occur as a second-stage process, in response to Ca loss (by ion exchange) and/or via incongruent dissolution of dolomite and impure calcite. The latter is consistent with positive correlations between ??13C values and Mg/Ca and Sr/Ca ratios (r 2?=?0.32 and 0.34).  相似文献   

4.
《Applied Geochemistry》2000,15(5):599-609
The effects of agriculture on the isotope geochemistry of Sr were investigated in two small watersheds in the Atlantic coastal plain of Maryland. Stratified shallow oxic groundwaters in both watersheds contained a retrievable record of increasing recharge rates of chemicals including NO3, Cl, Mg, Ca and Sr that were correlated with increasing fertilizer use between about 1940 and 1990. The component of Sr associated with recent agricultural recharge was relatively radiogenic (87Sr/86Sr=0.715) and it was overwhelming with respect to Sr acquired naturally by water–rock interactions in the oxidized, non-calcareous portion of the saturated zone. Agricultural groundwaters that penetrated relatively unoxidized calcareous glauconitic sediments at depth acquired an additional component of Sr from dissolution of early Tertiary marine CaCO3 (87Sr/86Sr=0.708) while undergoing O2 reduction and denitrification. Ground-water discharge contained mixtures of waters of various ages and redox states. Two streams draining the area are considered to have higher 87Sr/86Sr ratios and NO3 concentrations than they would in the absence of agriculture; however, the streams have consistently different 87Sr/86Sr ratios and NO3 concentrations because the average depth to calcareous reducing (denitrifying) sediments in the local groundwater flow system was different in the two watersheds. The results of this study indicate that agriculture can alter significantly the isotope geochemistry of Sr in aquifers and streams and that the effects could vary depending on the types, sources and amounts of fertilizers added, the history of fertilizer use and groundwater residence times.  相似文献   

5.
Carbonates in a 30 cm wide zoned kimberlite dyke from the De Beers Mine, Kimberley, S. Africa were studied by cathodoluminescence and electron microprobe techniques and their 87Sr/86Sr ratios were measured using an AEI-IM20 ion microprobe. Primary carbonates (including calcite dendrites, rhombohedral calcites in segregation vesicles and mosaic dolomite) have high Sr (0.69–1.35 wt.% SrO) and Ba (0.24–0.44% BaO) and 87Sr/86Sr ratios in the range 0.7046 to 0.7056. Secondary sparry calcite in amygdales and veins is characterised by low Ba (<0.05% BaO) and 87Sr/86Sr near 0.72. Rhombohedral calcite 0.5 cm from a contact with 2,900 my. old biotite-gneiss has minor element chemistry like that of primary carbonate, but an elevated 87Sr/86Sr ratio of 0.7103, possibly indicating crustal contamination in a boundary layer of the kimberlite magma. Amygdale-like segregations of carbonate and/or serpentine originated as gas-cavities and were not formed by liquid immiscibility. They are now filled either by secondary calcite or by minerals precipitated from residual kimberlite liquid. However, dendritic calcite and primary dolomite and calcite with high Sr, Ba and low 87Sr/86Sr demonstrate shared chemical characteristics between these carbonates and carbonatite. The primary kimberlite magma had initial 87Sr/86Sr close to 0.7046.  相似文献   

6.
《Applied Geochemistry》2005,20(11):2063-2081
This paper deals with chemical and isotope analyses of 21 springs, which were monitored 3 times in the course of 2001; the monitoring program was focused on the groundwater of the Gran Sasso carbonate karst aquifer (Central Italy), typical of the mountainous Mediterranean area.Based on the hydrogeological setting of the study area, 6 groups of springs with different groundwater circulation patterns were distinguished. The hydrogeochemistry of their main components provided additional information about groundwater flowpaths, confirming the proposed classification. The spatial distribution of their ion concentrations validated the assumptions underlying the hydrogeological conceptual model, showing diverging groundwater flowpaths from the core to the boundaries of the aquifer. Geochemical modelling and saturation index computation elucidated water–carbonate rock interaction, contribution by alluvial aquifers at the karst aquifer boundaries, as well as impacts of human activities.The analysis of 18O/16O and 2H/H values and their spatial distribution in the aquifer substantiated the hydrogeology-based classification of 6 groups of springs, making it possible to trace back groundwater recharge areas based on mean isotope elevations; the latter were calculated by using two rain monitoring stations. 87Sr/86Sr analyses showed seasonal changes in many springs: in winter–spring, the changes are due to inflow of new recharge water, infiltrating into younger rocks and thus increasing 87Sr/86Sr values; in summer–autumn, when there is no recharge and spring discharge declines, changes are due to base flow groundwater circulating in more ancient rocks, with a subsequent drop in 87Sr/86Sr values.The results of this study stress the contribution that spatio-temporal isotope monitoring can give to the definition of groundwater flowpaths and hydrodynamics in fissured and karst aquifers, taking into account their hydrogeological and hydrogeochemical setting.  相似文献   

7.
In this study a typical coastal karst aquifer, developed in lower Cretaceous limestones, on the western Mediterranean seashore (La Clape massif, southern France) was investigated. A combination of geochemical and isotopic approaches was used to investigate the origin of salinity in the aquifer. Water samples were collected between 2009 and 2011. Three groundwater groups (A, B and C) were identified based on the hydrogeological setting and on the Cl concentrations. Average and maximum Cl concentrations in the recharge waters were calculated (ClRef. and ClRef.Max) to be 0.51 and 2.85 mmol/L, respectively). Group A includes spring waters with Cl concentrations that are within the same order of magnitude as the ClRef concentration. Group B includes groundwater with Cl concentrations that range between the ClRef and ClRef.Max concentrations. Group C includes brackish groundwater with Cl concentrations that are significantly greater than the ClRef.Max concentration. Overall, the chemistry of the La Clape groundwater evolves from dominantly Ca–HCO3 to NaCl type. On binary diagrams of the major ions vs. Cl, most of the La Clape waters plot along mixing lines. The mixing end-members include spring waters and a saline component (current seawater or fossil saline water). Based on the Br/Clmolar ratio, the hypothesis of halite dissolution from Triassic evaporites is rejected to explain the origin of salinity in the brackish groundwater.Groundwaters display 87Sr/86Sr ratios intermediate between those of the limestone aquifer matrix and current Mediterranean seawater. On a Sr mixing diagram, most of the La Clape waters plot on a mixing line. The end-members include the La Clape spring waters and saline waters, which are similar to the deep geothermal waters that were identified at the nearby Balaruc site. The 36Cl/Cl ratios of a few groundwater samples from group C are in agreement with the mixing hypothesis of local recharge water with deep saline water at secular equilibrium within a carbonate matrix. Finally, PHREEQC modelling was run based on calcite dissolution in an open system prior to mixing with the Balaruc type saline waters. Modelled data are consistent with the observed data that were obtained from the group C groundwater. Based on several tracers (i.e. concentrations and isotopic compositions of Cl and Sr), calculated ratios of deep saline water in the mixture are coherent and range from 3% to 16% and 0% to 3% for groundwater of groups C and B, respectively.With regard to the La Clape karst aquifer, the extension of a lithospheric fault in the study area may favour the rise of deep saline water. Such rises occur at the nearby geothermal Balaruc site along another lithospheric fault. At the regional scale, several coastal karst aquifers are located along the Gulf of Lion and occur in Mezosoic limestones of similar ages. The 87Sr/86Sr ratios of these aquifers tend toward values of 0.708557, which suggests a general mixing process of shallow karst waters with deep saline fossil waters. The occurrence of these fossil saline waters may be related to the introduction of seawater during and after the Flandrian transgression, when the highly karstified massifs invaded by seawater, formed islands and peninsulas along the Mediterranean coast.  相似文献   

8.
To compare relative reaction rates of mineral dissolution in a mineralogically simple groundwater aquifer, we studied the controls on solute concentrations, Sr isotopes, and rare earth element and yttrium (REY) systematics in the Cape Cod aquifer. This aquifer comprises mostly carbonate-free Pleistocene sediments that are about 90% quartz with minor K-feldspar, plagioclase, glauconite, and Fe-oxides. Silica concentrations and pH in the groundwater increase systematically with increasing depth, while Sr isotopic ratios decrease. No clear relationship between 87Sr/86Sr and Sr concentration is observed. At all depths, the 87Sr/86Sr ratio of the groundwater is considerably lower than the Sr isotopic ratio of the bulk sediment or its K-feldspar component, but similar to that of a plagioclase-rich accessory separate obtained from the sediment. The Si-87Sr/86Sr-depth relationships are consistent with dissolution of accessory plagioclase. In addition, solutes such as Sr, Ca, and particularly K show concentration spikes superimposed on their respective general trends. The K-Sr-87Sr/86Sr systematics suggests that accessory glauconite is another major solute source to Cape Cod groundwater. Although the authigenic glauconite in the Cape Cod sediment is rich in Rb, it is low in in-grown radiogenic 87Sr because of its young Pleistocene age. The low 87Sr/86Sr ratios are consistent with equilibration of glauconite with seawater. The impact of glauconite is inferred to vary due to its variable abundance in the sediments. In the Cape Cod groundwater, the variation of REY concentrations with sampling depth resembles that of K and Rb, but differs from that of Ca and Sr. Shale-normalized REY patterns are light REY depleted, show negative Ce anomalies and super-chondritic Y/Ho ratios, but no Eu anomalies. REY input from feldspar, therefore, is insignificant compared to input from a K-Rb-bearing phase, inferred to be glauconite. These results emphasize that interpretation of groundwater chemistry, even in relatively simple aquifers, may be complicated by solute contributions from “exotic” accessory minerals such as glauconite. To detect such peculiarities, groundwater studies should combine the study of elemental concentration and isotopic composition of several solutes that show different geochemical behavior.  相似文献   

9.
Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Electronic Publication  相似文献   

10.
Calcite content, Sr concentrations, and isotopes of calcites in the Chinese deserts are systematically studied in this paper. Calcite contents, which are calculated according to acid-soluble Ca contents in the deserts, are generally higher in the sandy deserts than in the sandy lands and decrease roughly from northwest to northeast of China. Acid-soluble Sr is well correlated with calcite in the Chinese deserts, implying acid-soluble Sr comes mainly from the calcite dissolution. Sr concentrations in calcites, calculated on the basis of calcite contents and acid-soluble Sr concentrations in the deserts, have an inverse relation to calcite contents, essentially mirroring the degree of Sr substitution for Ca in the calcite development. Desert calcites have regional variations in Sr isotopic ratios. Calcite Sr isotopic ratios depend on geological settings and chemical weathering. The Badain Jaran, and Tengger deserts are probably affected by additional factors such as the remote groundwater cycle or overturning of underlying sand deposits.Only four deserts (Taklimakan, Qaidam, Badain Jaran, and Tengger) appear to be potential sources of eolian deposits in the Chinese Loess Plateau (CLP). Isotopic signatures of calcite Sr and silicate Nd further indicate that the Tengger desert was not an important source for eolian deposits in the CLP. Eolian calcite was probably enriched due to wind sorting from the potential sources to the CLP and suffered weathering–leaching after it accumulated in the CLP. Sr isotopic compositions and Ca/Sr molar ratios of calcites are different between the deserts and the Lingtai profile, due to the integrated effect of wind sorting and weathering–leaching.It is essential to calculate accurately the 87Sr/86Sr ratio and Sr concentration of eolian calcite entering the oceans according to geochemical data of the Chinese deserts, because of the importance of the Chinese deserts in the global dust cycle. The calculated Sr concentration and 87Sr/86Sr ratio of eolian calcite entering the North Pacific Ocean, are 11.75 μmol/g and 0.71032, respectively. The calculated values in this study are close to the recommended values by Jacobson [Jacobson A. D. (2004) Has the atmospheric supply of dissolved calcite dust to seawater influenced the evolution of marine 87Sr/86Sr ratios over the past 2.5 million years? Geochem. Geophys. Geosyst. 5(12), 1–9, Q12002. doi:10.1029/2004GC000750]. Using the same model as that of Jacobson (2004), the effect of Asia dust on the evolution of seawater Sr isotopes is evaluated. (87Sr/86Sr)seawater increases by 0.3 × 10−5 if the lower dust flux of 2.34 × 108 mol Sr/yr is used in the model, suggesting the little effect of Asian dust on the seawater Sr record in the Quaternary. The increase in (87Sr/86Sr)seawater is 1.5 × 10−5 if the higher value of 1.17 × 109 mol Sr/yr is used, as observed in the Quaternary Sr record. These results further support the suggestions of Jacobson (2004).  相似文献   

11.
This study uses 3H concentrations, 14C activities (a14C), 87Sr/86Sr ratios, and δ13C values to constrain calcite dissolution in groundwater from the Ovens catchment SE Australia. Taken in isolation, the δ13C values of dissolved organic C (DIC) and 87Sr/86Sr ratios in the Ovens groundwater imply that there has been significant calcite dissolution. However, the covariance of 3H and 14C and the calculated initial 14C activities (a014C) imply that most groundwater cannot have dissolved more than 20% of 14C-free calcite under closed-system conditions. Rather, calcite dissolution must have been partially an open-system process allowing 13C and 14C to re-equilibrate with CO2 in the unsaturated zone. Recognising that open-system calcite dissolution has occurred is important for dating deeper groundwater that is removed from its recharge area in this and other basins. The study is one of the first to use 14C and 3H to constrain the degree of calcite dissolution and illustrates that it is a valuable tool for assessing geochemical processes in recharge areas.  相似文献   

12.
Irrigation in semi-arid agricultural regions can have profound effects on recharge rates and the quality of shallow groundwater. This study coupled stable isotopes (2??, 18O), age-tracers (3H, CFCs, 14C), 87Sr/86Sr ratios, and elemental chemistry to determine the sources, residence times, and flowpaths of groundwater and agricultural contaminants (e.g. NO 3 ?C ) in the Saddle Mountains Basalt Aquifer in central Washington, USA, where over 80% of the population depend on groundwater for domestic use. Results demonstrate the presence of two distinct types of water: contaminated irrigation water and pristine regional groundwater. Contaminated irrigation water has high NO 3 ?C concentrations (11?C116? mg/l), 87Sr/86Sr ratios (0.70659?C0.71078) within range of nitrogen-based fertilizers, detectable tritium (2.8?C13.4 TU), CFC ages 20?C40?years, high ??18O values (?16.9 to ?13.5??), and ??100 percent modern 14C. Pristine regional groundwater has low NO 3 ?C concentrations (1?C5? mg/l), no detectable tritium (??0.8 TU), low ??18O values (?18.9 to ?17.3??) and 14C ages from ??15 to 33?ky BP. Nitrogen and oxygen isotopes of NO 3 ?C , combined with high dissolved oxygen values, show that denitrification is not an important process in the organic-poor basalt aquifers resulting in transport of high NO 3 ?C irrigation water to depths greater than 40?m in less than 30? years.  相似文献   

13.
《Applied Geochemistry》2000,15(4):493-500
A study was undertaken to explore whether the isotopic compositions of Pb and Sr are useful to distinguish mixtures of uncontaminated groundwater, seawater, and landfill leachate at the Fresh Kills landfill, Staten Island, New York. Ratios of 87Sr/86Sr ranged from 0.7088 to 0.7137 and could be used to distinguish Sr that was derived from seawater from that in uncontaminated groundwater. Lead isotopic abundances did not vary systematically among the different water sources. Plots of 87Sr/86Sr versus dissolved organic C, B, and NH4+ defined perpendicular trends, documenting where leachate or sea water mixed with uncontaminated groundwater, and demonstrating that leachate has not contaminated groundwater in aquifers beneath the landfill.  相似文献   

14.
Grasslands of north-central Kansas are underlain by carbonate aquifers and shale aquitards. Chemical weathering rates in carbonates are poorly known, and, because large areas are underlain by these rocks, solute fluxes are important to estimating global weathering rates. Grasslands exist where the amount of precipitation is extremely variable, both within and between years, so studies in grasslands must account for changes in weathering that accompany changes in precipitation. This study: (1) identifies phases that dominate chemical fluxes at Konza Prairie Biological Station (KPBS) and Long-Term Ecological Research Site, and (2) addresses the impact of variable precipitation on mineral weathering. The study site is a remnant tallgrass prairie in the central USA, representing baseline weathering in a mid-temperate climate grassland.Groundwater chemistry and hydrology in the 1.2 km2 watershed used for this study suggest close connections between groundwater and surface water. Water levels fluctuate seasonally. High water levels coincide with periods of precipitation plus low evapotranspiration rather than during precipitation peaks during the growing season. Precipitation is concentrated before recharging aquifers, suggesting an as yet unquantified residence time in the thin soils.Groundwater and surface water are oversaturated with respect to calcite within limitations of available data. Water is more dilute in more permeable aquifers, and water from one aquifer (Morrill) is indistinguishable from surface water. Cations other than Ca co-vary with each other, especially Sr and Mg. Potassium and Si co-vary in all aquifers and surface water, and increases in concentrations of these elements are the best indicators of silicate weathering at this study site. Silicate-weathering indices correlate inversely to aquifer hydraulic conductivity.87Sr/86Sr in water ranges from 0.70838 to 0.70901, and it decreases with increasing Sr concentration and with increasing silicate-weathering index. Carbonate extracted from aquifer materials, shales, soil, and tufa has Sr ranging from about 240 (soil) to 880 ppm (Paleozoic limestone). 87Sr/86Sr ranges from 0.70834 ± 0.00006 (limestone) to 0.70904 ± 0.00019 (soil). In all cases, 87Sr/86Sr of aquifer limestone is lower than 87Sr/86Sr of groundwater, indicating a phase in addition to aquifer carbonate is contributing solutes to water.Aquifer recharge controls weathering: during periods of reduced recharge, increased residence time increases the total amount of all phases dissolved. Mixing analysis using 87Sr/86Sr shows that two end members are sufficient to explain sources of dissolved Sr. It is proposed that the less radiogenic end member is a solution derived from dissolving aquifer material; longer residence time increases its contribution. The more radiogenic end member solution probably results from reaction with soil carbonate or eolian dust. This solution dominates solute flux in all but the least permeable aquifer and demonstrates the importance that land-surface and soil-zone reactions have on groundwater chemistry in a carbonate terrain.  相似文献   

15.
 Groundwater from some Quaternary and upper Tertiary aquifers in western Jutland, Denmark, is heavily influenced by "brown water", i.e., groundwater with a high content of naturally occurring dissolved organic matter. Stable-isotope analyses (18O/16O and D/H) indicate that both Quaternary and upper Tertiary aquifers are dominated by meteoric water. However, strontium-isotope analyses make it possible to distinguish between water samples from Quaternary and Miocene aquifers. Relatively low 87Sr/86Sr ratios, i.e., ∼0.7083, in Sr-rich water samples indicate that the majority of dissolved Sr in groundwater from Miocene as well as Quaternary strata is probably derived from Miocene marine skeletal carbonate matter in the subsurface. This situation is probably the result of Quaternary glacial reworking of upper Tertiary material and/or hydraulic contact between Quaternary and Miocene aquifers. A positive correlation between Sr contents and non-volatile organic carbon indicates that the remarkably high contents of organic matter recorded in these aquifers almost certainly are derived from Miocene sources as well. Received, February 1999 / Revised, July 1999 / Accepted, July 1999  相似文献   

16.
The 87Sr/86Sr ratios and strontium concentrations for thirty-three samples of marine carbonate rocks of Middle Triassic to Early Jurassic age have been determined. The samples were collected from four measured sections in the areas of Val Camonica in northern Italy. The strontium concentrations vary from 40 to 7000 ppm. Most of the samples are calcitic limestones containing less than 10% of non-carbonate residues. Dolomitic samples and those containing appreciable non-carbonate residues have significantly diminished strontium concentrations. 87Sr/86Sr ratios of the carbonate phases of these rocks appear to be unaffected by dolomitization and by the presence of non-carbonate minerals. The average 87Sr/86Sr ratios of the formations vary systematically in a stratigraphic sense. The ratio increased from Early Anisian to Early-Middle Ladinian, declined during Late Ladinian and Carnian, rose again during the Norian and then declined throughout the Late Norian (Rhaetian), Hettangian, Sinemurian and Pliens-bachian ages. The average 87Sr/86Sr ratios, relative to 0.7080 for the Eimer and Amend standard, are: Anisian: 0.70805 ± 00019; Early Ladinian: 0.7085 ± 0.00038; Late Ladinian: 0.70791 ± 0.00013; Carnian: 0.70776 ± 0.00015; Norian and Rhaetian: 0.70791 ± 0.00014; Hettangian: 0.70762 ± 0.00021; Sinemurian: 0.7070 ± 0.00038; Pliensbachian: 0.7070 ± 0.00015. These variations reflect changes in the isotopic composition of Sr entering the oceans in early Mesozoic time due to varying rates of weathering and erosion of young volcanic rocks (low 87Sr/86Sr) and old granitic rocks (high 87Sr/86Sr). The data presented in this report contribute to a growing body of information regarding the changes that have occurred in the 87Sr/86Sr ratio of the oceans in Phanerozoic time.  相似文献   

17.
Changes in the climatic conditions during the Late Quaternary and Holocene greatly impacted the hydrology and geochemical evolution of groundwaters in the Great Lakes region. Increased hydraulic gradients from melting of kilometer-thick Pleistocene ice sheets reorganized regional-scale groundwater flow in Paleozoic aquifers in underlying intracratonic basins. Here, we present new elemental and isotopic analyses of 134 groundwaters from Silurian-Devonian carbonate and overlying glacial drift aquifers, along the margins of the Illinois and Michigan basins, to evaluate the paleohydrology, age distribution, and geochemical evolution of confined aquifer systems. This study significantly extends the spatial coverage of previously published groundwaters in carbonate and drift aquifers across the Midcontinent region, and extends into deeper portions of the Illinois and Michigan basins, focused on the freshwater-saline water mixing zones. In addition, the hydrogeochemical data from Silurian-Devonian aquifers were integrated with deeper basinal fluids, and brines in Upper Devonian black shales and underlying Cambrian-Ordovician aquifers to reveal a regionally extensive recharge system of Pleistocene-age waters in glaciated sedimentary basins. Elemental and isotope geochemistry of confined groundwaters in Silurian-Devonian carbonate and glacial drift aquifers show that they have been extensively altered by incongruent dissolution of carbonate minerals, dissolution of halite and anhydrite, cation exchange, microbial processes, and mixing with basinal brines. Carbon isotope values of dissolved inorganic carbon (DIC) range from −10 to −2‰, 87Sr/86Sr ratios range from 0.7080 to 0.7090, and δ34S-SO4 values range from +10 to 30‰. A few waters have elevated δ13CDIC values (>15‰) from microbial methanogenesis in adjacent organic-rich Upper Devonian shales. Radiocarbon ages and δ18O and δD values of confined groundwaters indicate they originated as subglacial recharge beneath the Laurentide Ice Sheet (14-50 ka BP, −15 to −13‰ δ18O). These paleowaters are isolated from shallow flow systems in overlying glacial drift aquifers by lake-bed clays and/or shales. The presence of isotopically depleted waters in Paleozoic aquifers at relatively shallow depths illustrates the importance of continental glaciation on regional-scale groundwater flow. Modern groundwater flow in the Great Lakes region is primarily restricted to shallow unconfined glacial drift aquifers. Recharge waters in Silurian-Devonian and unconfined drift aquifers have δ18O values within the range of Holocene precipitation: −11 to −8‰ and −7 to −4.5‰ for northern Michigan and northern Indiana/Ohio, respectively. Carbon and Sr isotope systematics indicate shallow groundwaters evolved through congruent dissolution of carbonate minerals under open and closed system conditions (δ13CDIC = −14.7 to−11.1‰ and 87Sr/86Sr = 0.7080-0.7103). The distinct elemental and isotope geochemistry of Pleistocene- versus Holocene-age waters further confirms that surficial flow systems are out of contact with the deeper basinal-scale flow systems. These results provide improved understanding of the effects of past climate change on groundwater flow and geochemical processes, which are important for determining the sustainability of present-day water resources and stability of saline fluids in sedimentary basins.  相似文献   

18.
A 4-yr study of spatial and temporal variability in the geochemistry of vadose groundwaters from caves within the Edwards aquifer region of central Texas offers new insights into controls on vadose groundwater evolution, the relationship between vadose and phreatic groundwaters, and the fundamental influence of soil composition on groundwater geochemistry. Variations in Sr isotopes and trace elements (Mg/Ca and Sr/Ca ratios) of dripwaters and soils from different caves, as well as phreatic groundwaters, provide the potential to distinguish between local variability and regional processes controlling fluid geochemistry, and a framework for understanding the links between climatic and hydrologic processes.The Sr isotope compositions of vadose cave dripwaters (mean 87Sr/86Sr = 0.7087) and phreatic groundwaters (mean 87Sr/86Sr = 0.7079) generally fall between values for host carbonates (mean 87Sr/86Sr = 0.7076) and exchangeable Sr in overlying soils (mean 87Sr/86Sr = 0.7088). Dripwaters have lower Mg/Ca and Sr/Ca ratios, and higher 87Sr/86Sr values than phreatic groundwaters. Dripwater 87Sr/86Sr values also inversely correlate with both Mg/Ca and Sr/Ca ratios. Mass-balance modeling combined with these geochemical relationships suggest that variations in fluid compositions are predominantly controlled by groundwater residence times, and water-rock interaction with overlying soils and host aquifer carbonate rocks. Consistent differences in dripwater geochemistry (i.e., 87Sr/86Sr, Mg/Ca, and Sr/Ca) between individual caves are similar to compositional differences in soils above the caves. While these differences appear to exert significant control on local fluid evolution, geochemical and isotopic variations suggest that the controlling processes are regionally extensive. Temporal variations in 87Sr/86Sr values and Mg/Ca ratios of dripwaters from some sites over the 4-yr interval correspond with changes in both aquifer and climatic parameters. These results have important implications for the interpretation of trace element and isotopic variations in speleothems as paleoclimate records, as well as the understanding of controls on water chemistry for both present-day and ancient carbonate aquifers.  相似文献   

19.
20.
Carbonate, largely in the form of dolomite, is found throughout the host rocks and ores of the Nchanga mine of the Zambian Copperbelt. Dolomite samples from the hanging wall of the mineralization show low concentrations of rare-earth elements (REE) and roof-shaped, upward convex, shale-normalized REE patterns, with positive Eu*SN anomalies (1.54 and 1.39) and marginally negative Ce anomalies (Ce*SN 0.98,0.93). In contrast, dolomite samples associated with copper and cobalt mineralization show a significant rotation of the REE profile, with HREE enrichment, and La/LuSN ratios <1 (0.06–0.42). These samples also tend to show variable but predominantly negative Eu*SN and positive cerium anomalies and an upwardly concave MREE distribution (Gd-Er). Malachite samples from the Lower Orebody show roof-tile-normalized REE patterns with negative europium anomalies (Eu*SN 0.65–0.80) and negative cerium anomalies (Ce*SN 0.86–0.9). The carbonate 87Sr/86Sr signature correlates with the associated REE values. The uppermost dolomite samples show Neoproterozoic seawater-like 87Sr/86Sr ratios ranging from 0.7111 to 0.7116, whereas carbonate from Cu–Co mineralized samples show relatively low concentrations of strontium and more radiogenic 87Sr/86Sr, ranging between 0.7136–0.7469. The malachite samples show low concentrations of strontium, but give a highly radiogenic 87Sr/86Sr of 0.7735, the most radiogenic 87Sr/86Sr ratio. These new data suggest that the origin and timing of carbonate precipitation at Nchanga is reflected in the REE and Sr isotope chemistry. The upper dolomite samples show a modified, but essentially seawater-like signature, whereas the rotation of the REE profile, the MREE enrichment, the development of a negative Eu*SN anomaly and more radiogenic 87Sr/86Sr suggests the dolomite in the Cu–Co mineralized samples precipitated from basinal brines which had undergone significant fluid–rock interaction. Petrographic, REE, and 87Sr/86Sr data for malachite are consistent with the original sulfide Lower Orebody being subject to a later oxidizing event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号