首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《Coastal Engineering》2004,51(1):1-15
The shallow water equations (SWE) have been used to model a series of experiments examining violent wave overtopping of a near-vertical sloping structure with impacting wave conditions. A finite volume scheme was used to solve the shallow water equations. A monotonic reconstruction method was applied to eliminate spurious oscillations and ensure proper treatment of bed slope terms. Both the numerical results and physical observations of the water surface closely followed the relevant Rayleigh probability distributions. However, the numerical model overestimated the wave heights and suffered from the lack of dispersion within the shallow water equations. Comparisons made on dimensionless parameters for the overtopping discharge and percentage of waves overtopping between the numerical model and the experimental observations indicated that for the lesser impacting waves, the shallow water equations perform satisfactorily and provide a good alternative to computationally more expensive methods.  相似文献   

2.
The interaction between structure and wave is a typical phenomenon in naval architecture and ocean engineering. In this paper, numerical simulation is carried out to study the interaction between a two-dimensional submerged, fixed,horizontal rigid plate and solitary wave with our in-house meshless particle CFD solver MLParticle-SJTU. First, the in-house CFD solver is verified by experimental results conducted at the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology. During the verification, the plate is submerged under water and the solitary wave with a given amplitude is generated by a piston-type wave maker. Free surface elevation of the wave and the pressure impacting on the plate is recorded and compared with experimental data respectively. The predicted pressure and surface elevation agree well with the experimental results. Then in order to further investigate factors affecting wave-structure interaction, wave height, submerged depth and plate length are analyzed.  相似文献   

3.
The purpose of this paper is to investigate the instantaneous properties of wave slamming on the plate structure of an open structure.The advanced instantaneous measuring technique-Particle Image Velocimetry(PIV) is applied to acquire the instantaneous velocity field of wave slamming.From the cross-correlation analysis results of the images captured by the CCD camera,the flow fields of wave impacting on the structure are displayed visually,and the instantaneous whole-field fluid velocity vectors are obtained.The relation between the instantaneous peak impacting pressures and the instantaneous velocities of water particles is studied by probability analysis.  相似文献   

4.
D. Karmakar  T. Sahoo   《Ocean Engineering》2008,35(7):598-615
Using the recently developed expansion formulae for wave structure interaction problems, the scattering of surface water waves by a semi-infinite floating membrane due to abrupt change in bottom topography is analyzed. Both the cases of finite and infinite steps are analyzed. In the present paper, the analysis is based on the linearized theory of water waves and small amplitude membrane response. Combining the linearized kinematic and dynamic surface conditions on the water surface with the dynamic pressure condition on the membrane, a third order differential equation is derived to describe the membrane covered free surface condition. General wave energy relation for wave scattering by floating horizontal membrane is derived by the application of law of conservation of energy flux and alternately by the direct application of Green's second identity. In the floating membrane covered region, the wave energy density is a combination of the kinetic and potential energy density due to the surface gravity waves, and the surface energy density which is due to the existence of the floating membrane on the free surface. Gravity wave transformations due to an abrupt change in bottom topography in the presence of a floating membrane in finite water depth are analyzed based on shallow water approximation. Numerical results are computed and analyzed to understand the wave transformation due to the floating membrane when there is an abrupt change in topography in different cases.  相似文献   

5.
楔形体在波浪中自由入水的数值模拟   总被引:1,自引:0,他引:1  
物体入水时波浪的影响不可忽略,基于流体力学模型采用VOF法,并利用自定义函数,模拟了楔形体的自由入水过程;同时结合推波板原理及海绵层消波理论实现了数值水槽的造消波,完成了波浪中楔形体自由入水的模拟,计算了楔形体入水时所受的水作用力、自由液面变化及物面压强分布等,研究了不同波高、周期以及在波浪不同位置入水时对楔形体的影响。结果表明:本文建立的数值模型可很好地模拟楔形体入水造成的射流及空泡的形成发展过程,波浪对楔形体入水的影响主要由波浪内部流场变化及表面波形决定,在波浪不同位置处入水对楔形体受力及入水形态均有较大影响。  相似文献   

6.
基于相参X-波段海洋雷达的海表轮廓测量研究   总被引:4,自引:2,他引:2  
X-波段海洋雷达测量所得海面散射单元的多普勒信息与散射单元的雷达视向速度密切相关。首先,基于符号多普勒估计方法,对X-波段雷达海面回波的多普勒频移信息进行了估计;在此基础上,应用各分辨单元回波的多普勒频移信息,建立了海浪表面轮廓的反演算法。该算法中,同时考虑了雷达入射角、方位角和雷达空间分辨率等因素对反演结果的影响。通过将反演结果与浮标测量数据相比较,发现雷达空间分辨率起到了类似低通滤波的作用,该作用对短重力波谱影响显著。同时,还应用加拿大麦克马斯特大学的IPIX雷达数据对海表轮廓进行了反演,并将反演所得有效波高、海浪周期与现场测量数据进行了比较,反演结果与现场测量结果吻合较好。  相似文献   

7.
The purpose of this study is to investigate the phenomenon of free surface flow impacting on elastic structures, which is a research topic of great interest in ship and ocean engineering. A series of quasi two-dimensional experiments on dam-break with an elastic plate are conducted. The main features of free surface flow impacting on elastic structures including large impacting force, structural vibration, violent free surface flow, are investigated. The coupled FDM–FEM method developed by the authors is applied for numerical simulation of such dam-break problem. Extensive analysis and discussion based on the comparisons between experimental data and numerical results are made and presented in this paper.  相似文献   

8.
任冰  高睿  金钊  王国玉  王永学 《海洋学报》2012,34(1):163-177
基于光滑粒子流体动力学(SPH)方法的二维数值波浪水槽模拟了规则波对透空式结构物的冲击作用。通过黎曼解和CSPM相结合的方法对连续方程和动量方程进行了修正。对造波边界采用虚粒子法模拟。提出了一种耦合计算方法来消除造波边界附近的压力波动现象,在结构物边界处设置了适合的冲击边界条件。应用修正的SPH模型模拟了规则波对浪溅区结构物的冲击作用,给出了结构物附近流场和压力场的变化特征,并应用物理模型试验结果对数值模型进行了验证。  相似文献   

9.
浅海水下地形的SAR遥感仿真研究   总被引:2,自引:0,他引:2  
结合连续性方程和布拉格后向散射模型,在准一维简化浅海水下地形情况下,建立了浅海水下地形SAR海面相对后向散射强度仿真模型,将浅海水下地形区域的SAR海面后向散射强度的相对变化与大尺度背景流场、海面风场和雷达系统参数等联系起来.海上实验和研究结果表明,浅海水下地形的SAR成像主要由通过受水下地形影响的海表层流场对海表面风引起的微尺度波的水动力调制而获取浅海水下地形信息,其中潮流与水下地形的相互作用过程改变海表层流场,变化的海表层流与海表面微尺度波之间的相互作用改变海表面波的空间分布,雷达波与海表面波之间的相互作用决定雷达海面后向散射强度.因此SAR图像中浅海水下地形或水深信息量的多少不仅与海表层流场和海面风速有关,而且与雷达工作波段、雷达波束入射角和极化方式也密切相关.认为由水下地形变化引起的缓慢变化的表层流场中海表面定常微尺度波谱能量密度的变化满足波作用量谱平衡方程;而在波数空间中,海表面微尺度波谱的成长过程也可以用波数谱平衡方程描述,在此基础上,得出了海表面波高频谱(毛细-重力波)形式的解析表达式.众所周知,浅海水下地形信息是由于水下地形影响下SAR海面后向散射强度与背景海面后向散射强度的相对差异而在SAR图像上的呈现,从而在建立浅海水下地形SAR海面相对后向散射强度仿真模型的基础上,仿真计算了浅海水下地形SAR海面相对后向散射强度相对于海表层流场、海面风场等海况参数和SAR工作波段、SAR波束入射角、极化方式等雷达系统参数的数值仿真结果,分析得到了有关浅海水下地形SAR海面相对后向散射强度的特征和SAR浅海水下地形遥感的最佳海况参数与最佳雷达系统参数,为研究和开展SAR浅海水下地形遥感研究提供了有价值的参考.  相似文献   

10.
11.
The interaction between current-free higher-order water waves with a wave-free uniform current normal to the wave crests is considered. The combined wave-current motion resulting from the interaction is assumed stable and irrotational. The velocity potential, dispersion relation, the particle kinematics and pressure distribution up to the third order in wave amplitude are developed. The conservation of mean mass, momentum and energy, together with the dispersion relation on the free surface are used to derive a set of four nonlinear equations, through which the relationship between wave-free current, current-free wave and the combined wave-current parameters is established. Numerical results for a range of current values are also presented.  相似文献   

12.
可渗透结构具有使波浪作用减弱的效应,而海水的层化及水波的非线性使结构的波绕射产生多层复杂机制。将可渗透结构应用于复杂海况条件中,海水的层化性、波浪的非线性及结构的透空性构成了波绕射的一个十分复杂的数学问题。该问题存在理论研究的必要性,而文章则着重探讨其数学分析的可能性。通过引入二层海的层化海模式及Stokes二阶波的非线性波模式,给出了二阶多色波对透空结构的波绕射的定解问题提法,提出了复合形式的二阶多色波辐射条件式及可渗透结构的二阶物面条件式,应用特征函数解法与积分法推导了多色波对结构绕射的一阶势解与二阶作用的耦合积分解式,并讨论了解式所涉及无穷积分的算法。  相似文献   

13.
单桩基础周围斜坡海床中的波致孔隙水压力响应与纯斜坡海床存在较大差异。为了解不同波高、波周期条件下,单桩基础周围波浪传播变形及其对斜坡海床孔压振荡响应的影响,在波浪水槽末端铺设了长6 m、坡度1∶16的斜坡砂床进行试验。通过改变桩身位置和波浪参数,测量斜坡段各处波面形态,采集单桩周围孔隙水压力,分析了桩身位置及波浪参数对斜坡海床孔压响应的影响。结果表明:相同入射波条件下,随距坡脚水平距离增加,波高、近底流速和桩周孔隙水压力幅值都随之增大;桩周孔隙水压力幅值分布规律为:桩前孔压幅值明显大于桩侧与桩后孔压幅值。当Keulegan-Carpenter数大于6时,随着波高和波周期增大,马蹄涡产生的负压区使得桩侧海床孔隙水压力与纯斜坡海床孔隙水压力差值迅速增加。  相似文献   

14.
A nonlinear numerical model has been formulated to study the propagation of a monochromatic surface wave. The model is formulated through the vertical integration of the continuity equation and the equations of motion. This model is investigated for wave propagation, velocity distribution, energy propagation and varying Courant, Friedrichs and Lewy's (CFL) condition. The applicability of this model for both shallow- and deep-water wave is also examined. The results and analyses are shown in details. The results obtained from the model are compared with the Stokes third-order wave theory and with the relevant experimental data.  相似文献   

15.
C.Z. Wang  G.X. Wu  K.R. Drake 《Ocean Engineering》2007,34(8-9):1182-1196
Interactions between water waves and non-wall-sided cylinders are analyzed based on velocity potential theory with fully nonlinear boundary conditions on the free surface and the body surface. The finite element method (FEM) is adopted together with a 3D mesh generated through an extension of a 2D Delaunay grid on a horizontal plane along the depth. The linear matrix equation for the velocity potential is constructed by imposing the governing equation and boundary conditions through the Galerkin method and is solved through an iterative method. By imposing the gradient of the potential equal to the velocity, the Galerkin method is used again to obtain the velocity field in the fluid domain. Simulations are made for bottom mounted and truncated cylinders with flare in a numerical tank. Periodic waves and wave groups are generated by a piston type wave maker mounted on one end of the tank. Results are obtained for forces, wave profiles and wave runups. Further simulations are made for a cylinder with flare subjected to forced motion in otherwise still open water. Results are provided for surge and heave motion in different amplitudes, and for a body moving in a circular path in the horizontal plane. Comparisons are made in several cases with the results obtained from the second order solution in the time domain.  相似文献   

16.
Refraction of incoherent random gravity waves with currents and bottom topography results in spatial variations in the spectral characteristics of the free surface. Prediction of such variations based on the radiation transfer equation is in a simple analytic form for the case of one dimensional inhomogeneities in currents and topography. This analytic form is examined in terms of two-dimensional wave number- and polar frequency-direction spectra along the associated dynamic and kinematic constraints relevant to wave breaking and reflection. Results are specialized to the simplest case of horizontal shear currents in deep and shallow water with explicit examples to illustrate the relative and combined effects of currents and topography on free surface spectra.  相似文献   

17.
Spatial distribution of wave overtopping water behind coastal structures   总被引:1,自引:0,他引:1  
Spatial distribution of random wave overtopping water behind coastal structures was investigated using a numerical model based on Reynolds-Averaged Navier-Stokes solver (RANS) and Volume of Fluid (VOF) surface capturing scheme (RANS-VOF). The computed spatial distributions of wave overtopping water behind the structure agree well with the measurements by Pullen et al (2008) for a vertical wall and Lykke Andersen and Burcharth (2006) for a 1:2 sea dike. A semi-analytical model was derived to relate spatial distribution of wave overtopping water behind coastal structures to landward ground level, velocity and layer thickness on the crest. This semi-analytical model agrees reasonably well with both numerical model results and measurements close to coastal structures. Our numerical model results suggest that the proportion of wave overtopping water passing a landward location increases with a seaward slope when it is less than 1:3 and decreases with a seaward slope when it gets steeper. The proportion of wave overtopping water passing a landward location increases with landward ground level and overtopping discharge. It also increases with the product of incident wave height and wavelength, but decreases with increasing relative structure freeboard and crest width. We also found that the extent of hazard area due to wave overtopping is significantly reduced by using a permeable structure crown. Findings in this study will enable engineers to establish the extent of hazard zones due to wave overtopping behind coastal structures.  相似文献   

18.
Surface waves generated by a moving ship in water of finite depth are affected by the rheological properties of the movable bottom. The aim of this work is to evaluate the wave resistance exerted on a hovercraft modeled as a two-dimensional pressure distribution moving on the free surface of water with nonrigid bottom. Analysis of three-dimensional flows in two-fluid layers of finite depths is performed by assuming an inviscid upper layer (water) and a viscous lower layer (nonrigid bottom). Numerical calculations show that the maximum wave resistance occurs in the vicinity of the critical Froude number F=1. This maximum value decreases as the muddy bottom becomes less rigid.  相似文献   

19.
《Coastal Engineering》2005,52(2):139-149
An improved parabolic water wave transformation model is developed based on generalized [1/1] Padé approximation. For forward scattered waves, the parabolic equation is solved using a marching scheme. The values of wave angles are calculated after the solution of each line; so that better [1/1] generalized Padé approximation is performed. The nonlinear effects are included using a modified dispersion equation. The model is easy to use and performs very well for complex bathymetry. The model is tested for cases of wave angles up to 70°. The numerical results show that for large wave angles, the new parabolic model is better than all the existing parabolic models based on rational approximation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号