首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of Mn(II) by O2 to Mn(III) or Mn(IV) is thermodynamically favored under the pH and pO2 conditions present in most near surface waters, but the kinetics of this reaction are extremely slow. This work investigated whether reactive oxygen species, produced through illumination of humic substances, could oxidize Mn at an environmentally relavent rate. The simulated sunlight illumination of a solution containing 200 μM Mn(II) and 5 mg/L Aldrich humic acid buffered at pH 8.1 produced ∼19 μM of oxidized Mn (MnOx where x is between one and two) after 45 minutes. The major oxidants reponsible for this reaction appear to be photoproduced superoxide radical anion, O2, and singlet molecular oxygen, 1O2. The dependencies of MnOx formation on Mn(II), humic acid, and H+ concentration were characterized. A kinetic model based largely on published rate constants was established and fit to the experimental data. As expected, analysis of the model indicates that the key reaction rate controlling MnOx production is the rate of decomposition of a MnO2+ complex formed from the reaction of Mn(II) with O2. This rate is strongly dependent on the Mn(II) complexing ligands in solution. The MnOx production in the seawater sample taken from Bodega Bay, USA and spiked with 200 μM Mn(II) was well reproduced by the model. Extrapolations from the model imply that Mn photo-oxidation should be a significant reaction in typical surface seawaters. Calculated rates, 5.8 to 55 pM h−1, are comparable to reported rates of biological Mn oxidation, 0.07 to 89 pM h−1. Four fresh water samples that were spiked with 200 μM Mn(II) also showed significant MnOx production. Based on these results, it appears that Mn photo-oxidation could constitute a significant, and apparently unrecognized geochemical pathway in natural waters.  相似文献   

2.
The removal of Mn(II) from coal mine drainage (CMD) by chemical addition/active treatment can significantly increase treatment costs. Passive treatment for Mn removal involves promotion of biological oxidative precipitation of manganese oxides (MnOx). Manganese(II) removal was studied in three passive treatment systems in western Pennsylvania that differed based on their influent Mn(II) concentrations (20–150 mg/L), system construction (±inoculation with patented Mn(II)-oxidizing bacteria), and bed materials (limestone vs. sandstone). Manganese(II) removal occurred at pH values as low as 5.0 and temperatures as low as 2 °C, but was enhanced at circumneutral pH and warmer temperatures. Trace metals such as Zn, Ni and Co were removed effectively, in most cases preferentially, into the MnOx precipitates. Based on synchrotron radiation X-ray diffraction and Mn K-edge extended X-ray absorption fine structure spectroscopy, the predominant Mn oxides at all sites were poorly crystalline hexagonal birnessite, triclinic birnessite and todorokite. The surface morphology of the MnOx precipitates from all sites was coarse and “sponge-like” composed of nm-sized lathes and thin sheets. Based on scanning electron microscopy (SEM), MnOx precipitates were found in close proximity to both prokaryotic and eukaryotic organisms. The greatest removal efficiency of Mn(II) occurred at the one site with a higher pH in the bed and a higher influent total organic C (TOC) concentration (provided by an upstream wetland). Biological oxidation of Mn(II) driven by heterotrophic activity was most likely the predominant Mn removal mechanism in these systems. Influent water chemistry and Mn(II) oxidation kinetics affected the relative distribution of MnOx mineral assemblages in CMD treatment systems.  相似文献   

3.
Alvinella pompejana is a polychaetous annelid that inhabits narrow tubes along the walls of high-temperature hydrothermal vent chimneys. The worm hosts a rich community of epibiotic bacteria that coats its dorsal surface. Although the worm tube microhabitat is a challenging environment to sample, characterizing the thermal and geochemical regime is important for understanding the ecology of the worm and its bacteria, as the worm spends most of its time inside the tube. We characterized the physicochemical conditions of diffuse hydrothermal flow inside inhabited worm tubes using in situ analysis and wet chemical analysis of discrete water samples. Thermistor probes deployed inside worm tubes measured temperatures ranging from 28.6°C to 84.0°C, while temperatures at tube orifices ranged from 7.5°C to 40.0°C. In situ electrochemical analysis of tube fluids revealed undetectable oxygen (<5 μM) and surprisingly low levels of free H2S (<0.2 μM), with most of the sulfide existing as aqueous FeS molecular clusters. Acid-volatile sulfide measured on discrete samples of tube fluids ranged from 62.9 to 359.3 μM, while free sulfide (H2S) ranged from undetectable (<0.2 μM) to 46.5 μM. The pH ranged from 5.33 to 6.40, and sulfate ranged from 22.5 mM to 27.5 mM. Nitrate ranged from 13.9 to 20.0 μM, whereas ammonium ranged from 2.5 to 9.7 μM. Total Fe ranged from 72.1 to 730.2 μM. Mn, Zn, Ni, V, P, and Cu were present in micromolar amounts; Pb, Cd, Co, and Ag were present in nanomolar levels. The worm tube fluids contained between 72% to 91% of Mg concentrations typically found in deep seawater. Plots of Mg concentrations vs. other fluid components showed that the tube fluid is geochemically altered from theoretical mixing values. Values of SO42− were enriched inside the worm tube fluids, whereas NO3, Sr, Mn, Fe, Zn, and acid-volatile sulfide were depleted. The geochemistry of the tube microhabitat likely influences the structure of resident microbial communities.  相似文献   

4.
Microbial Mn(II) oxidation kinetics in response to oxygen concentration were assessed in suboxic zone water at six sites throughout the Black Sea. Mn(II) oxidation rates increased asymptotically with increasing oxygen concentration, consistent with Michaelis-Menten enzyme kinetics. The environmental half-saturation constant, KE, of Mn(II) removal (oxidation) varied from 0.30 to 10.5 μM dissolved oxygen while the maximal environmental rate, VE−max, ranged from 4 to 50 nM h−1. These parameters varied spatially and temporally, consistent with a diverse population of enzymes catalyzing Mn oxide production in the Black Sea. Coastally-influenced sites produced lower KE and higher VE−max constants relative to the Western and Eastern Gyre sites. In the Bosporus Region, the Mn(II) residence time calculated using our KE and VE−max values with 0.1 μM oxygen was 4 days, 25-fold less than previous estimates. Our results (i) indicate that rapid Mn(II) oxidation to solid phase Mn oxides in the Black Sea’s suboxic zone is stimulated by oxygen concentrations well below the 3-5 μM concentration reliably detected by current oceanographic methods, (ii) suggest the existence of multiple, diverse Mn(II)-oxidizing enzymes, (iii) are consistent with shorter residence times than previously calculated for Mn(II) in the suboxic zone and (iv) cast further doubt on the existence of proposed reactions coupling solid phase Mn oxide production to electron acceptors other than oxygen.  相似文献   

5.
Many waters sampled in Yellowstone National Park, both high-temperature (30–94 °C) and low-temperature (0–30 °C), are acid–sulfate type with pH values of 1–5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH < 2.7. Field pH measurements were predominantly used because the charge imbalance was <±10%. When the charge imbalance was generally >±10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values <3. The highest SO4 concentrations, in the thousands of mg/L, result from evaporative concentration at elevated temperatures as shown by the consistently high δ18O values (−10‰ to −3‰) and a δD vs. δ18O slope of 3, reflecting kinetic fractionation. Low SO4 concentrations (<100 mg/L) for thermal waters (>350 mg/L Cl) decrease as the Cl concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid–sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone’s acid waters but have not been observed in acid rock drainage of the same pH.  相似文献   

6.
This paper presents the results of extensive field trials measuring rates of Fe(II) oxidation at a number of Fe-bearing mine drainage discharges in the UK. Batch experiments were carried out with samples taken at regular intervals and Fe(II) concentration determined spectrophotometrically using 2′2-bipyridyl as the complexing agent. Initial concentrations for Fe(II) were 5.65-76.5 mg/L. Temperature, pH and dissolved O2 (DO) were logged every 10 s, with pH at the start of the experiments in the range 5.64-6.95 and alkalinity ranging from 73 to 741 mg/L CaCO3 equivalent. A numerical model based on a fourth order Runge-Kutta method was developed to calculate values for k1, the rate constant for homogeneous oxidation, from the experimental data. The measured values of pH, temperature, [Fe(II)] and DO were input into the model with resulting values for k1 found to be in the range 2.7 × 1014-2.7 × 1016 M−2 atm−1 min−1. These values for k1 are 1-3 orders of magnitude higher than previously reported for laboratory studies at a similar pH. Comparison of the observed Fe(II) oxidation rates to data published by other authors show a good correlation with heterogenous oxidation rates and may indicate the importance of autocatalysis in these systems. These higher than expected rates of Fe oxidation could have a significant impact on the design of treatment schemes for the remediation of mine drainage and other Fe-bearing ground waters in the future.  相似文献   

7.
《Applied Geochemistry》1999,14(4):511-530
The oxidation of Fe(II) is apparently the rate-limiting step in passive treatment of coal mine drainage. Little work has been done to determine the kinetics of oxidation in such field systems, and no models of passive treatment systems explicitly consider iron oxidation kinetics. A Stella II model using Fe(II)init concentration, pH, temperature, Thiobacillus ferrooxidans and O2 concentration, flow rate, and pond volume is used to predict Fe(II) oxidation rates and concentrations in seventeen ponds under a wide range of conditions (pH 2.8 to 6.8 with Fe(II) concentrations of less than 240 mg L−1) from 6 passive treatment facilities. The oxidation rate is modeled based on the combination of published abiotic and biological laboratory rate laws. Although many other variables have been observed to influence Fe(II) oxidation rates, the 7 variables above allow field systems to be modeled reasonably accurately for conditions in this study.Measured T. ferrooxidans concentrations were approximately 107 times lower than concentrations required in the model to accurately predict field Fe(II) concentrations. This result suggests that either 1) the most probable number enumeration method underestimated the bacterial concentrations, or 2) the biological rate law employed underestimated the influence of bacteria, or both. Due to this discrepancy, bacterial concentrations used in the model for pH values of less than 5 are treated as fit parameters rather than empirically measured values.Predicted Fe(II) concentrations in ponds agree well with measured Fe(II) concentrations, and predicted oxidation rates also agree well with field-measured rates. From pH 2.8 to approximately pH 5, Fe(II) oxidation rates are negatively correlated with pH and catalyzed by T. ferrooxidans. From pH 5 to 6.4, Fe(II) oxidation appears to be primarily abiotic and is positively correlated with pH. Above pH 6.4, oxidation appears to be independent of pH. Above pH 5, treatment efficiency is affected most by changing design parameters in the following order: pH>temperature≈influent Fe(II)>pond volume≈O2. Little to no increase in Fe(II) oxidation rate occurs due to pH increases above pH 6.4. Failure to consider Fe(II) oxidation rates in treatment system design may result in insufficient Fe removal.  相似文献   

8.
The objective of this research is to assess critically the experimental rate data for O2 oxidation of dissolved Mn(II) species at 25°C and to interpret the rates in terms of the solution species of Mn(II) in natural waters. A species kinetic rate expression for parallel paths expresses the total rate of Mn(II) oxidation as Σki aij, where ki is the rate constant of species i and aij is the species concentration fraction in solution j. Among the species considered in the rate expression are Mn(II) hydrolysis products, carbonate complexes, ammonia complexes, and halide and sulfate complexes, in addition to the free aqueous ion. Experiments in three different laboratory buffers and in seawater yield an apparent rate constant for Mn(II) disappearance, kapp,j ranging from 8.6 × 10−5 to 2.5 × 10−2 (M−1s−1), between pH 8.03 and 9.30, respectively. Observed values of kapp exceed predictions based on Marcus outer-sphere electron transfer theory by more than four orders of magnitude, lending strong support to the proposal that Mn(II) + O2 electron transfer follows an inner-sphere path. A multiple linear regression analysis fit of the observed rates to the species kinetic rate expression yields the following oxidation rate constants (M−1s−1) for the most reactive species: MnOH+, 1.66 × 10−2; Mn(OH)2, 2.09 × 101; and Mn(CO3)22−, 8.13 × 10−2. The species kinetic rate expression accounts for the influence of pH and carbonate on oxidation rates of Mn(II), through complex formation and acid-base equilibria of both reactive and unreactive species. At pH ∼8, the greater fraction of the total rate is carried by MnOH+. At pH greater than ∼8.4, the species Mn(OH)2 and Mn(CO3)22− make the greater contributions to the total rate.  相似文献   

9.
Headwater stream, draining from a rural catchment in NW Spain, was sampled during baseflow and storm-event conditions to investigate the temporal variability in dissolved and particulate Al, Fe, Mn, Cu and Zn concentrations and the role of discharge (Q), pH, dissolved organic carbon (DOC) and suspended sediment (SS) in the transport of dissolved and particulate metals. Under baseflow and storm-event conditions, concentrations of the five metals were highly variable. The results of this study reveal that all metal concentrations are correlated with SS. DOC and SS appeared to influence both the metal concentrations and the partitioning of metals between dissolved and particulate. The SS was a good predictor of particulate metal levels. Distribution coefficients (KD) were similar between metals (4.72–6.55) and did not change significantly as a function of discharge regime. Stepwise multiple linear regression analysis reveals that the most important variable to explain storm-event KD for Al and Fe is DOC. The positive relationships found between metals, in each fraction, indicate that these elements mainly come from the same source. Metal concentrations in the stream were relatively low.  相似文献   

10.
Oxic limestone beds are commonly used for the passive removal of Mn(II) from coal mine drainage (CMD). Aqueous Mn(II) is removed via oxidative precipitation of Mn(III/IV) oxides catalyzed by Mn(II)-oxidizing microbes and Mn oxide (MnOx) surfaces. The relative importance of these two processes for Mn removal was examined in laboratory experiments conducted with sediments and CMD collected from eight Mn(II)-removal beds in Pennsylvania and Tennessee, USA. Sterile and non-sterile sediments were incubated in the presence/absence of air and presence/absence of fungicides to operationally define the relative contributions of Mn removal processes. Relatively fast rates of Mn removal were measured in four of the eight sediments where 63–99% of Mn removal was due to biological oxidation. In contrast, in the four sediments with slow rates of Mn(II) removal, 25–63% was due to biological oxidation. Laboratory rates of Mn(II) removal were correlated (R2 = 0.62) to bacterial biomass concentration (measured by phospholipid fatty acids (PLFA)). Furthermore, laboratory rates of Mn(II) removal were correlated (R2 = 0.87) to field-scale performance of the Mn(II)-removal beds. A practical recommendation from this study is to include MnOx-coated limestone (and associated biomass) from an operating bed as “seed” material when constructing new Mn(II)-removal beds.  相似文献   

11.
We studied the role of microbial photosynthesis in the oxidation of Fe(II) to Fe(III) in a high Fe(II) and high Mn(II) hot spring devoid of sulfide and atmospheric oxygen in the source waters. In situ light and dark microelectrode measurements of Fe(II), Mn(II) and O2 were made in the microbial mat consisting of cyanobacteria and anoxygenic photosynthetic Chloroflexus sp. We show that Fe(II) oxidation occurred when the mat was exposed to varying intensities of sunlight but not near infrared light. We did not observe any Mn(II) oxidation under any light or dark condition over the pH range 5-7. We observed the impact of oxygenic photosynthesis on Fe(II) oxidation, distinct from the influence of atmospheric O2 and anoxygenic photosynthesis. In situ Fe(II) oxidation rates in the mats and cell suspensions exposed to light are consistent with abiotic oxidation by O2. The oxidation of Fe(II) to form primary Fe(III) phases contributed to banded iron-formations (BIFs) during the Precambrian. Both oxygenic photosynthesis, which produces O2 as an oxidizing waste product, and anoxygenic photosynthesis in which Fe(II) is used to fix CO2 have been proposed as Fe(II) oxidation mechanisms. Although we do not know the specific mechanisms responsible for all Precambrian Fe(II) oxidation, we assessed the relative importance of both mechanisms in this modern hot spring environment. In this environment, cyanobacterial oxygen production accounted for all the observed Fe(II) oxidation. The rate data indicate that a modest population of cyanobacteria could have mediated sufficient Fe(II) oxidation for some BIFs.  相似文献   

12.
The mechanism of pyrite oxidation in carbonate-containing alkaline solutions at 80 °C was investigated with the help of rate experiments, thermodynamic modeling and diffuse reflectance infrared spectroscopy (DRIFTS). Pyrite oxidation rate increased with pH and was enhanced by addition of bicarbonate/carbonate ions. The carbonate effect was found to be limited to moderately alkaline conditions (pH 8-11). Metastable Eh-pH diagrams, at 25 °C, indicate that soluble iron-carbonate complexes (FeHCO3, FeCO30, Fe(CO3)(OH) and FeCO32−) may coexist with pyrite in the pH range of 6-12.5. Above pH 11 and 13, the Fe(II) and Fe(III) hydroxocomplexes, respectively, become stable, even in the presence of carbonate/bicarbonate ions. Surface-bound carbonate complexes on iron were also identified with DRIFTS as products of pyrite oxidation in addition to iron oxyhydroxides and soluble sulfate species. The conditions under which thermodynamic and DRIFTS analyses indicate the presence of carbonate compounds also correspond to those in which the fastest rate of pyrite oxidation in carbonate solutions was observed. Following the Singer-Stumm model for pyrite oxidation in acidic solutions, it is assumed that Fe(III) is the preferred pyrite oxidant under alkaline conditions. We propose that carbonate ions facilitate the electron transfer from soluble iron(II)-carbonate to O2, increase the iron solubility, and provide buffered, favorable alkaline conditions at the reaction front, which in turn favors the overall kinetics of pyrite oxidation. Therefore, the electron transfer from sulfur atoms to O2 is facilitated by the formation of the cycle of Fe(II)-pyrite/Fe(III)-carbonate redox couple at the pyrite surface.  相似文献   

13.
Sorption of rare earth elements (REEs) and Ce oxidation on natural and synthetic Mn oxides have been investigated by many researchers. Although Mn(II)-oxidizing microorganisms are thought to play an important role in the formation of Mn oxides in most natural environments, Ce oxidation by biogenic Mn oxide and the relevance of microorganisms to the Ce oxidation process have not been well understood. Therefore, in this study, we conducted sorption experiments of REEs on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. The distribution coefficients, Kd(REE), between biogenic Mn oxide (plus hyphae) and 10 mmol/L NaCl solution showed a large positive Ce anomaly and convex tetrad effect variations at pH 3.8, which was consistent with previous works using synthetic Mn oxide. The positive Ce anomaly was caused by oxidation of Ce(III) to Ce(IV) by the biogenic Mn oxide, which was confirmed by analysis of the Ce LIII-edge XANES spectra. With increasing pH, the positive Ce anomaly and convex tetrad effects became less pronounced. Furthermore, negative Ce anomalies were observed at a pH of more than 6.5, suggesting that Ce(IV) was stabilized in the solution (<0.2 μm) phase, although Ce(III) oxidation to Ce(IV) on the biogenic Mn oxide was confirmed by XANES analysis. It was demonstrated that no Ce(III) oxidation occurred during sorption on the hyphae of strain KR21-2 by the Kd(REE) patterns and XANES analysis. The analysis of size exclusion HPLC-ICP-MS showed that some fractions of REEs in the filtrates (<0.2 μm) after sorption experiments were bound to organic molecules (40 and <670 kDa fractions), which were possibly released from hyphae. A line of our data indicates that the negative Ce anomalies under circumneutral pH conditions arose from Ce(III) oxidation on the biogenic Mn oxide and subsequent complexation of Ce(IV) with organic ligands. The suppression of tetrad effects is also explained by the complexation of REEs with organic ligands. The results of this study demonstrate that the coexistence of the biogenic Mn oxide and hyphae of strain KR21-2 produces a specific redox chemistry which cannot be explained by inorganic species.  相似文献   

14.
A laboratory study was undertaken to ascertain the role of surface catalysis in Mn(II) oxidative removal. γ-FeOOH, a ferric oxyhydroxide formed by O2 oxidation of ferrous iron in solution, was studied in the following ways: surface charge characteristics by acid base titration, adsorption of Mn(II) and surface oxidation of Mn(II). A rate law was formulated to account for the effects of pH and the amount of surface on the surface oxidation rate of Mn(II). The presence of milli-molar levels of γ-FeOOH was shown to reduce significantly the half-life of Mn(II) in 0.7 M NaCl from hundreds of hours to hours. The numerical values of the surface rate constants for the γ-FeOOH and that reported for colloidal MnO2 are comparable in order of magnitude.  相似文献   

15.
Permanganate (MnO4) has widely been used as an effective oxidant for drinking water treatment systems, as well as for in situ treatment of groundwater impacted by various organic contaminants. The reaction stoichiometry of As(III) oxidation by permanganate has been assumed to be 1.5, based on the formation of solid product, which is putatively considered to be MnO2(s). This study determined the stoichiometric ratio (SR) of the oxidation reaction with varying doses of As(III) (3-300 μM) and MnO4 (0.5 or 300 μM) under circumneutral pH conditions (pH 4.5-7.5). We also characterized the solid product that was recovered ∼1 min after the oxidation of 2.16 mM As(III) by 0.97 mM MnO4 at pH 6.9 and examined the feasibility of secondary heterogeneous As(III) oxidation by the solid product. When permanganate was in excess of As(III), the SR of As(III) to Mn(VII) was 2.07 ± 0.07, regardless of the solution pH; however, it increased to 2.49 ± 0.09 when As(III) was in excess. The solid product was analogous to vernadite, a poorly crystalline manganese oxide based on XRD analysis. The average valence of structural Mn in the solid product corresponded to +III according to the splitting interval of the Mn3s peaks (5.5 eV), determined using X-ray photoelectron spectroscopy (XPS). The relative proportions of the structural Mn(IV):Mn(III):Mn(II) were quantified as 19:62:19 by fitting the Mn2p3/2 spectrum of the solid with the five multiplet binding energy spectra for each Mn valence. Additionally, the O1s spectrum of the solid was comparable to that of Mn-oxide but not of Mn-hydroxide. These results suggest that the solid product resembled a poorly crystalline hydrous Mn-oxide such as (MnII0.19MnIII0.62MnIV0.19)2O3·nH2O, in which Mn(II) and Mn(IV) were presumably produced from the disproportionation of aqueous phase Mn(III). Thermodynamic calculations also show that the formation of Mn(III) oxide is more favorable than that of Mn(IV) oxide from As(III) oxidation by permanganate under circumneutral pH conditions. Arsenic(III), when it remained in the solution after all of the permanganate was consumed, was effectively oxidized by the solid product. This secondary heterogeneous As(III) oxidation consisted of three steps: sorption to and oxidation on the solid surface and desorption of As(V) into solution, with the first step being the rate-limiting process as observed in As(III) oxidation by various Mn (oxyhydr)oxides reported elsewhere. We also discussed a potential reaction pathway of the permanganate oxidation of As(III).  相似文献   

16.
The speciation of Mn has been determined in 15 rivers and streams representing a wide variety of physico-chemical conditions. Using the technique of anodic stripping voltammetry (asv), specific for reduced Mn(II) species, it is found that a major part of the <0.015 μm Mn size fraction is present in a reduced Mn(II), asv-labile, form. In some waters there is also a significant asv inactive Mn fraction considered to be present as a ‘small colloidal’ species. The soluble (<0.015 μm) Mn fraction represents 15–95% of total Mn and does not appear to be dependent upon pH, alkalinity, specific conductance or humic substance concentration in the water. It is argued that under the dynamic, short residence time, conditions that apply in most rivers the paniculate and soluble Mn fractions are decoupled, their respective presence being dependent principally upon the catchment hydrogeological conditions. This contrasts with a previously held view that the paniculate phase is coupled to the dissolved phase by the pH dependent oxidation of dissolved Mn(II) to highly insoluble Mn(IV) species (Graham et al., 1976). Consideration of manganese speciation in waters which were incubated for five months showed that pH becomes the controlling factor when equilibrium is approached.  相似文献   

17.
Neutrophilic iron oxidizing bacteria (FeOB) must actively compete with rapid abiotic processes governing Fe(II) oxidation and as a result have adapted to primarily inhabit low-O2 environments where they can more successfully compete with abiotic Fe(II) oxidation. The spatial distribution of these microorganisms can be observed through the chemical gradients they affect, as measured using in situ voltammetric analysis for dissolved Fe(II), Fe(III), O2, and FeS(aq). Field and laboratory determination of the chemical environments inhabited by the FeOB were coupled with detailed kinetic competition studies for abiotic and biotic oxidation processes using a pure culture of FeOB to quantify the geochemical niche these organisms inhabit. In gradient culture tubes, the maximum oxygen levels, which were associated with growth bands of Sideroxydans lithotrophicus (ES-1, a novel FeOB), were 15-50 μM. Kinetic measurements made on S. lithotrophicus compared biotic/abiotic (killed control) Fe oxidation rates. The biotic rate can be a significant and measurable fraction of the total Fe oxidation rate below O2 concentrations of approximately 50 μM, but biotic Fe(II) oxidation (via the biotic/abiotic rate comparison) becomes difficult to detect at higher O2 levels. These results are further supported by observations of conditions supporting FeOB communities in field settings. Variablity in cell densities and cellular activity as well as variations in hydrous ferrous oxide mineral quantities significantly affect the laboratory kinetic rates. The microbial habitat (or geochemical niche) where FeOB are active is thus largely controlled by the competition between abiotic and biotic kinetics, which are dependent on Fe(II) concentration, PO2, temperature and pH in addition to the surface area of hydrous ferric oxide minerals and the cell density/activity of FeOB. Additional field and lab culture observations suggest a potentially important role for the iron-sulfide aqueous molecular cluster, FeS(aq), in the overall cycling of iron associated with the environments these microorganisms inhabit.  相似文献   

18.
《Applied Geochemistry》2004,19(4):611-622
Subsurface aeration is the in situ oxidation of Fe from groundwater that is used to make drinking water potable. When subsurface aeration is applied to an anaerobic groundwater system with pH>7, Fe(II) is oxidised heterogeneously. The heterogeneous oxidation of Fe(II) can result in the in situ formation of Fe colloids. To study this, the effect of substances commonly found in groundwater (e.g. PO4, Mn, silicate and fulvic acid) on the heterogeneous oxidation process was measured. The heterogeneous oxidation of Fe(II) becomes retarded when PO4, Mn, silicate or fulvic acid is present in the groundwater in addition to Fe(II). Phosphate and fulvic acid retarded the oxidation process most. The heterogeneous oxidation was described using a model with a homogeneous (k1) and an autocatalytic oxidation rate constant (k2). From the modelling it followed that the homogeneous oxidation rate constant was not affected or even slightly elevated whereas the autocatalytic oxidation rate constant decreased remarkably by the addition of PO4, Mn, silicate or fulvic acid. From speciation calculations it followed that the decreased availability of the Fe(II) species can only explain a small part of the retarded autocatalytic oxidation process. Therefore exploratory calculations were performed to gain insight into whether the adsorption of PO4 or fulvic acid could explain the retarded autocatalytic oxidation. These calculations showed that the adsorption of fulvic acid could explain the retarded autocatalytic oxidation process. In contrast the adsorption of PO4 only partly explained the retarded autocatalytic oxidation process. In terms of colloid formation this study shows that the heterogeneous oxidation of Fe(II) in presence of PO4, Mn, silicate or fulvic acid leads to the formation of Fe colloids.  相似文献   

19.
The oxidation of Fe(II) with H2O2 at nanomolar levels in seawater have been studied using an UV-Vis spectrophotometric system equipped with a long liquid waveguide capillary flow cell. The effect of pH (6.5 to 8.2), H2O2 (7.2 × 10−8 M to 5.2 × 10−7 M), HCO3 (2.05 mM to 4.05 mM) and Fe(II) (5 nM to 500 nM) as a function of temperature (3 to 35 °C) on the oxidation of Fe(II) are presented. The oxidation rate is linearly related to the pH with a slope of 0.89 ± 0.01 independent of the concentration of HCO3. A kinetic model for the reaction has been developed to consider the interactions of Fe(II) with the major ions in seawater. The model has been used to examine the effect of pH, concentrations of Fe(II), H2O2 and HCO3 as a function of temperature. FeOH+ is the most important contributing species to the overall rate of oxidation from pH 6 to pH 8. At a pH higher than 8, the Fe(OH)2 and Fe(CO3)22− species contribute over 20% to the rates. Model results show that when the concentration of O2 is two orders of magnitude higher than the concentration of H2O2, the oxidation with O2 also needs to be considered. The rate constants for the five most kinetically active species (Fe2+, FeOH+, Fe(OH)2, FeCO3, Fe(CO3)22−) in seawater as a function of temperature have been determined. The kinetic model is also valid in pure water with different concentrations of HCO3 and the conditions found in fresh waters.  相似文献   

20.
Sediment and groundwater profiles were compared in two villages of Bangladesh to understand the geochemical and hydrogeological factors that regulate dissolved As concentrations in groundwater. In both villages, fine-grained sediment layers separate shallow aquifers (< 28 m) high in As from deeper aquifers (40-90 m) containing < 10 μg/L As. In one village (Dari), radiocarbon dating indicates deposition of the deeper aquifer sediments > 50 ka ago and a groundwater age of thousands of years. In the other village (Bay), the sediment is < 20 ka old down to 90 m and the deeper aquifer groundwater is younger, on the order of hundreds of years. The shallow aquifers in both villages that are high in As contain bomb-3H and bomb-14C, indicating recent recharge. The major and minor ion compositions of the shallow and deeper aquifers also differ significantly. Deeper aquifer water is of the Na+-HCO3- type, with relatively little dissolved NH4+ (76 ± 192 μmol/L), Fe (27 ± 43 μmol/L) and Mn (3 ± 2 μmol/L). In contrast, shallow aquifer water is of the Ca2+-Mg2+-HCO3- type, with elevated concentrations of dissolved NH4+ (306 ± 355 μmol/L), Fe (191 ± 73 μmol/L), and Mn (27 ± 43 μmol/L). In both villages, the quantity of As extractable from deeper aquifer sands with a 1 mol/L phosphate solution (0.2 ± 0.3 mg/kg, n = 12; 0.1 ± 0.1 mg/kg, n = 5) is 1 order of magnitude lower than P-extractable As from shallow deposits (1.7 ± 1.2 mg/kg, n = 9; 1.4 ± 2.0 mg/kg, n = 11). The differences suggest that the concentration of P-extractable As in the sediment is a factor controlling the concentration of As in groundwater. Low P-extractable As levels are observed in both deeper aquifers that are low in As, even though there is a large difference in the time of deposition of these aquifers in the two villages. The geochemical data and hydrographs presented in this study suggest that both Holocene and Pleistocene deeper aquifers that are low in As should be a viable source of drinking water as long as withdrawals do not exceed recharge rates of ∼1 cm/yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号