首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the analysis of 18 large volume (500-1500 L) in situ filtered samples of particulate material from the largest hydrothermal plume on the Mid-Atlantic Ridge, overlying the ultramafic-hosted Rainbow hydrothermal field at 36° 14′N. Measured particulate iron concentrations reach 614 nM. High concentrations of particulate Fe oxyhydroxides result from the extremely high Fe concentration (∼24 mM) and Fe/H2S ratio (∼24) of the vent fluids, and persist to at least 10 km away from the vent site due to the advection of plume material with the ambient along-axis flow. Two of the nine pairs of pump deployments appear to have intercepted the buoyant or otherwise very young portion of the hydrothermal plume. These samples are characterized by anomalously (compared to neutrally buoyant plume samples) high concentrations of Mg, U, and chalcophile elements, and low concentrations of Mn, Ca, V, Y, and the rare earth elements (REE). Within the neutrally buoyant plume, elemental distributions are largely consistent with previously observed behaviors: preferential removal of chalcophile elements, conservative behavior of oxyanions (P, V, and U), and continuous scavenging of Y and the REE. This consistency is particularly significant in light of the underlying differences in fluid chemistry between Rainbow and other studied sites. Chalcophile elements are preferentially removed from the plume in the order Cd>Zn>Co>Cu. Phosphorus/iron and vanadium/iron ratios for the neutrally buoyant plume are consistent with global trends with respect to the concentration of dissolved phosphate in ambient seawater. Comparison of buoyant and neutrally buoyant plume ratios with data from hydrothermal sediments underlying the Rainbow plume (Cave et al., 2002) indicates, however, that while P/Fe ratios are indeed constant V/Fe ratios increase progressively from early stage plume particles to sediments. REE distributions in the buoyant and neutrally buoyant plume appear most consistent with a continuous scavenging process during dispersion through the water column.  相似文献   

2.
We present a new numerical tool developed in the Cast3M software framework to model hydrothermal circulation. Thermodynamic properties of one-phase pure water are calculated from the International Association for the Properties of Water and Steam formulation. This new numerical tool is validated on several test cases of convection in closed-top and open-top boxes. Simulations of hydrothermal circulation in a homogeneous-permeability porous medium also give results in good agreement with already published simulations. This new numerical tool is used to construct a geometric and physical conceptual model of the Rainbow vent site at 36°14N on the Mid-Atlantic Ridge. Several configurations are discussed, showing that high temperatures and high mass fluxes measured at the Rainbow site cannot be modeled with hydrothermal circulation in a homogeneous-permeability porous medium. These high values require the presence of a fault or a preferential pathway right below the venting site. We propose and discuss a two-dimensional single-pass model that allows us to simulate both high temperatures and high mass fluxes. This modeling of the hydrothermal circulation at the Rainbow site constitutes the first but necessary step to understand the origin of high concentrations of hydrogen issued from this ultramafic-hosted vent field.  相似文献   

3.
The bioaccumulation of trace metals in the carbonate shells of mussel and clams was investigated at seven hydrothermal vent fields of the Mid-Atlantic Ridge (Menez Gwen, Snake Pit, Rainbow, and Broken Spur) and the Eastern Pacific (9°N and 21°N at the East Pacific Rise and the southern trough of Guaymas Basin). Mineralogical analysis showed that the carbonate skeletons of the mytilid mussel Bathymodiolus sp. and the vesicomyid clam Calyptogena m. are composed mainly of calcite and aragonite, respectively. The first data were obtained for the content of a variety of elements in the bivalve carbonate shells from various hydrothermal vent sites. The analysis of the chemical compositions (including Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Cr, Co, As, Se, Sb, and Hg) of 35 shell samples and 14 water samples from the mollusk biotopes revealed the influences of environmental conditions and some biological parameters on the bioaccumulation of metals. Bivalve shells from hydrothermal fields with black smokers are enriched in Fe and Mn by a factor of 20–30 relative to the same species from the Menez Gwen low-temperature vent site. It was shown that the essential elements Fe, Mn, Ni, and Cu were more actively accumulated during the early ontogeny of the shells. The high concentration factors of most metals (n × 102n × 104) indicate an efficient accumulation function of bivalve carbonate shells. Passive metal accumulation owing to adsorption on the shell surface was estimated to be no higher than 50% of the total amount, varying from 14% for Fe to 46% for Mn.  相似文献   

4.
We present first data on the geochemistry, mineralogy and morphology of near-vent sediments (35 and 200 m from active vent) and ridge flank sediments (approximately 3 km from the vent field) as well as oxyhydroxide deposits from the Endeavour segment, Juan de Fuca Ridge. The purpose of the study was to understand better the origin and characteristic features of metalliferous sediments associated with base and precious metal massive sulfides in volcanic terrains. Hydrothermal components in sediments are Fe-Si ± S-rich and Mn-Fe-Si-rich phases, sulfides and barite, which were exclusively derived from plume fallout. Sulfides are only a minor constituent of near-vent sediments (2-4 wt%) and were not detected in ridge flank sediments. The study suggests that the distribution of hydrothermal phases and associated elements in near-vent and ridge flank sediments is affected mainly by processes of agglomeration, dissolution, absorption and settling that take place within a plume and to a lesser extent post-depositional processes. Rapid deposition of sulfides in the vicinity of the vents is reflected in a sharp drop of the Cu concentrations in sediments with increasing distance from the vents. Besides sulfides, important carriers of Pb, Cu, Zn and Co in near-vent sediments are Fe-Mn oxyhydroxides that occur together with silica as aggregates of gel-like material and flaky particles and as coatings on filaments. Away from the vents, trace metals are mostly in Fe-Mn oxyhydroxides and authigenic Fe-rich montmorillonite. Oxyhydroxides at the Main Endeavour field are interpreted to have originated from oxidation of mound sulfides accompanied by precipitation of primary Fe-oxyhydroxide + silica from low-temperature fluids. At the Mothra field, seafloor deposits and chimney crusts composed of Fe-oxyhydroxide ± Mn + silica are considered to be direct precipitates from hydrothermal fluids that have been less diluted with seawater. Oxyhydroxide deposits exhibit unique microtextures that resemble mineralized microorganisms and may indicate existence of diverse microbial communities.  相似文献   

5.
The lipid components in hydrothermal sulfide deposits from the Rainbow vent field (Mid-Atlantic Ridge at 36°N) were studied by gas chromatography/mass spectrometry. The Rainbow vent field is one of two known active hydrothermal systems related to abyssal circulation, where high-temperature fluids are formed during serpentinization of ultrabasic crustal rocks. The major amount of the extractable organic matter from the sulfides consists of normal and branched alkanes, UCM, PAHs, terpenoids, and fatty acids. The branched alkanes are comprised of unique gem-diethylalkane series, possibly from sulfide oxidizing bacteria, and biphytanes from archaea. The characteristic lipid and biomarker compounds found in the hydrothermal samples support a predominantly biological origin of the bitumens from the thermal transformation of the biomass of microorganisms (bacteria and archea) and minor macrofauna of this vent field. A search for molecular evidence for abiogenic thermocatalytic synthesis of organic compounds was negative. However, methane in the hydrothermal fluids and possibly a minor amount of the alkanes in the sulfides may be of an abiogenic origin in the Rainbow vent field.  相似文献   

6.
The Rainbow hydrothermal field is located at 36°13.8′N-33°54.15′W at 2300 m depth on the western flank of a non-volcanic ridge between the South AMAR and AMAR segments of the Mid-Atlantic Ridge. The hydrothermal field consists of 10-15 active chimneys that emit high-temperature (∼365 °C) fluid. In July 2008, vent fluids were sampled during cruise KNOX18RR, providing a rich dataset that extends in time information on subseafloor chemical and physical processes controlling vent fluid chemistry at Rainbow. Data suggest that the Mg concentration of the hydrothermal end-member is not zero, but rather 1.5-2 mmol/kg. This surprising result may be caused by a combination of factors including moderately low dissolved silica, low pH, and elevated chloride of the hydrothermal fluid. Combining end-member Mg data with analogous data for dissolved Fe, Si, Al, Ca, and H2, permits calculation of mineral saturation states for minerals thought appropriate for ultramafic-hosted hydrothermal systems at temperatures and pressures in keeping with constraints imposed by field observations. These data indicate that chlorite solid solution, talc, and magnetite achieve saturation in Rainbow vent fluid at a similar pH(T,P) (400 °C, 500 bar) of approximately 4.95, while higher pH values are indicated for serpentine, suggesting that serpentine may not coexist with the former assemblage at depth at Rainbow. The high Fe/Mg ratio of the Rainbow vent fluid notwithstanding, the mole fraction of clinochlore and chamosite components of chlorite solid solution at depth are predicted to be 0.78 and 0.22, respectively. In situ pH measurements made at Rainbow vents are in good agreement with pH(T,P) values estimated from mineral solubility calculations, when the in situ pH data are adjusted for temperature and pressure. Calculations further indicate that pH(T,P) and dissolved H2 are extremely sensitive to changes in dissolved silica owing to constraints imposed by chlorite solid solution-fluid equilibria. Indeed, the predicted correlation between dissolved silica and H2 defines a trend that is in good agreement with vent fluid data from Rainbow and other high-temperature ultramafic-hosted hydrothermal systems. We speculate that the moderate concentrations of dissolved silica in vent fluids from these systems result from hydrothermal alteration of plagioclase and olivine in the form of subsurface gabbroic intrusions, which, in turn are variably replaced by chlorite + magnetite + talc ± tremolite, with important implications for pH lowering, dissolved sulfide concentrations, and metal mobility.  相似文献   

7.
The paper presents newly obtained data on the fluxes of hydrothermal-sedimentary material collected with sedimentation traps within 3 m from the bottoms of black smokers at the TAG and Broken Spur hydrothermal fields and reports the results of comparative analysis of the mineralogical and chemical compositions of this material. The sedimentary material deposited near the vent was determined to account to approximately 3% of the overall mass of the orebody. The results demonstrate that, in both cases, the trap material is characterized by high contents of ore components and ore-forming chemical elements (Fe, Cu, Zn, and Co), and Se, As, Sb, Ba, and P compared to tholeiitic basalts from which these elements are leached. However, the material of a more “mature” (having an age of 40–50 ka) hydrothermal spring at the TAG field contains 40% Fe hydroxides, in contrast to the material of a spring at the Broken Spur field (age <1000 yr) whose material is dominated by sulfides (72%) and contains much pyrrhotite. These springs also show principal differences between the enrichment coefficients for Se (by a factor of 4.8), As (3), Ca (4.1), and Si (5.2). These differences are thought to reflect various evolutionary stages of the circulating hydrothermal systems.  相似文献   

8.
Samples of Fe-oxide-rich hydrothermal sediments were collected from active and inactive portions of the TransAtlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Clays separated from TAG metalliferous sediments in this study all consist of Al-poor nontronite. Oxygen isotope thermometry of the clays yields formation temperatures of 54-67°C for samples from the inactive Alvin mound compared with 81-96°C for samples from the active TAG site. The latter are the highest recorded temperatures for authigenic hydrothermal clays. Sr isotope analysis of the clays from the active mound suggests that they precipitated from seawater-dominated fluids, containing less than 15% hydrothermal end-member fluid. In contrast, nontronite from the inactive Alvin mound has 87Sr/86Sr values that closely resemble that of detrital North Atlantic clays, suggesting a dominantly continental source for the Sr. Rare earth element data are consistent with a significant detrital input to the inactive site but also demonstrate the extent of hydrothermal input to the low temperature fluid. Crystallographic fractionation of the trivalent REE is apparent in the heavy REE enrichments for all nontronite samples. The inferred formation-mechanism for nontronite-rich Fe-oxyhydroxide deposits at the surface of the active mound is by direct precipitation from low temperature fluids. At the inactive Alvin site, in contrast, the deposits form during alteration of pelagic sediments by diffuse fluids and replacement of biogenic carbonate with nontronite and Fe-oxyhydroxide. These two modes of formation are both important in seafloor hydrothermal settings where clay minerals are a significant component of the hydrothermal deposit.  相似文献   

9.
The Flores diving cruise was part of the MAST III-AMORES (1995-1998) program funded by the European Union. One of the major achievements of the Flores cruise was the discovery of the Rainbow hydrothermal field hosted in ultramafic rocks south of the Amar segment on the Mid-Atlantic ridge (MAR). The Rainbow hydrothermal fluids exhibit temperatures of 365 °C, pH of 2.8, high chlorinity (750 mmol/kg), and low silica (6.9 mmol/kg). The uniformity in endmember major, minor, trace element concentrations and gas contents suggests that all Rainbow fluids originate from the same deep source. Although H2S content is relatively low (1.20 mmol/kg), all vent fluids show extraordinary high H2 (16 mmol/kg), CH4 (2.5 mmol/kg) and CO (5 μmol/kg) endmember concentrations compared to fluids collected from other vent sites along the MAR. Hydrogen represents more than 40% of the total gas volume extracted from the fluids. At Rainbow, H2 production is likely associated with alteration of olivine and orthopyroxene minerals during serpentinization. Given that exposures of ultramafic rock may be common, particularly along slow-spreading ridges, the production of H2 may have important implications for microbial activity at and beneath the seafloor.  相似文献   

10.
Abiogenic methane may be produced in submarine hydrothermal systems by degassing of basalts or serpentinization of ultramafic outcrops. The latter process presumably releases little primordial helium and is therefore implicated by high CH4/3He ratios in vent fluids from the ultramafic-hosted Rainbow field and in methane plumes near ultramafic outcrops. In two segments of the Mid-Atlantic Ridge, at 5.4°N and 51°N, we have observed depth-separated CH4 and 3He plumes. In both cases, the helium plume was deeper, near the valley floor. It may be that the plumes issue from separate vents, where the helium is discharged near the volcanic axis and the methane is generated by serpentinization on the valley wall. However, at the present time the locations of the vents that produce these plumes are not known. Using a one-pass model, we investigated whether separate venting could arise from heat conduction from a primary, helium-carrying, hydrothermal circulation to a second, shallower fracture loop intersecting ultramafic rock. The model results indicate that the flow rate through the secondary loop would have to be relatively low in order for it to stay warm enough for serpentinization to proceed. In this case, some of the exothermic heat production is lost by conduction, and the temperature increase in the circulating fluid is only a fraction of that expected from a water/rock ratio of 1:1.  相似文献   

11.
Fe isotopes are a potential tool for tracing the biogeochemical redox cycle of Fe in the ocean. Specifically, it is hypothesized that Fe isotopes could enable estimation of the contributions from multiple Fe sources to the dissolved Fe budget, an issue that has received much attention in recent years. The first priority however, is to understand any Fe isotope fractionation processes that may occur as Fe enters the ocean, resulting in modification of original source compositions. In this study, we have investigated the Fe inputs from a basalt-hosted, deep-sea hydrothermal system and the fractionation processes that occur as the hot, chemically reduced and acidic vent fluids mix with cold, oxygen-rich seawater.The samples collected were both end-member vent fluids taken from hydrothermal chimneys, and rising buoyant plume samples collected directly above the same vents at 5°S, Mid-Atlantic Ridge. Our analyzes of these samples reveal that, for the particulate Fe species within the buoyant plume, 25% of the Fe is precipitated as Fe-sulfides. The isotope fractionation caused by the formation of these Fe-sulfides is δFe(II)–FeS = +0.60 ± 0.12‰.The source isotope composition for the buoyant plume samples collected above the Red Lion vents is calculated to be −0.29 ± 0.05‰. This is identical to the value measured in end-member vent fluids collected from the underlying “Tannenbaum” chimney. The resulting isotope compositions of the Fe-sulfide and Fe-oxyhydroxide species in this buoyant plume are −0.89 ± 0.11‰ and −0.19 ± 0.09‰, respectively. From mass balance calculations, we have been able to calculate the isotope composition of the dissolved Fe fraction, and hypothesize that the isotope composition of any stabilised dissolved Fe species exported to the surrounding ocean may be heavier than the original vent fluid. Such species would be expected to travel some distance from areas of hydrothermal venting and, hence, contribute to not only the dissolved Fe budget of the deep-ocean but also it’s dissolved Fe isotope signature.  相似文献   

12.
Petrological, geochemical, and Nd isotopic analyses have been carried out on rock samples from the Rainbow vent field to assess the evolution of the hydrothermal system. The Rainbow vent field is an ultramafic-hosted hydrothermal system located on the Mid-Atlantic Ridge characterized by vigorous high-temperature venting (∼365°C) and unique chemical composition of fluids: high chlorinity, low pH and very high Fe, and rare earth element (REE) contents (Douville et al., Chemical Geology 184:37–48, 2002). Serpentinization has occurred under a low-temperature (<270°C) retrograde regime, later overprinted by a higher temperature sulfide mineralization event. Retrograde serpentinization reactions alone cannot reproduce the reported heat and specific chemical features of Rainbow hydrothermal fluids. The following units were identified within the deposit: (1) nonmineralized serpentinite, (2) mineralized serpentinite—stockwork, (3) steatite, (4) semimassive sulfides, and (5) massive sulfides, which include Cu-rich massive sulfides (up to 28wt% Cu) and Zn-rich massive sulfide chimneys (up to 5wt% Zn). Sulfide mineralization has produced significant changes in the sulfide-bearing rocks including enrichment in transition metals (Cu, Zn, Fe, and Co) and light REE, increase in the Co/Ni ratios comparable to those of mafic Cu-rich volcanic-hosted massive sulfide deposits and different 143Nd/144Nd isotope ratios. Vent fluid chemistry data are indicative of acidic, reducing, and high temperature conditions at the subseafloor reaction zone where fluids undergo phase separation most likely under subcritical conditions (boiling). An explanation for the high chlorinity is not straightforward unless mixing with high salinity brine or direct contribution from a magmatic Cl-rich aqueous fluid is considered. This study adds new data, which, combined with the current knowledge of the Rainbow vent field, brings compelling evidence for the presence, at depth, of a magmatic body, most likely gabbroic, which provides heat and metals to the system. Co/Ni ratios proved to be good tools used to discriminate between rock units, degree of sulfide mineralization, and positioning within the hydrothermal system. Deeper units have Co/Ni <1 and subsurface and surface units have Co/Ni >1.  相似文献   

13.
This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was collected, from 2006 to 2007, in five rain gauges, at various altitudes around the summit craters. Analytical results for volcanic aerosols showed that the dominant anions were S, Cl, and F, and that the most abundant metals were K, Ca, Mg, Al, Fe, and Ti (1.5-50 μg m−3). Minor and trace element concentrations ranged from about 0.001 to 1 μg m−3. From such analysis, we derived an aerosol mass flux ranging from 3000 to 8000 t a−1. Most analysed elements had higher concentrations close to the emission vent, confirming the prevailing volcanic contribution to bulk deposition. Calculated deposition rates were integrated over the whole Etna area, to provide a first estimate of the total deposition fluxes for several major and trace elements. These calculated deposition fluxes ranged from 20 to 80 t a−1 (Al, Fe, Si) to 0.01-0.1 t a−1 (Bi, Cs, Sc, Th, Tl, and U). Comparison between volcanic emissions and atmospheric deposition showed that the amount of trace elements scavenged from the plume in the surrounding of the volcano ranged from 0.1% to 1% for volatile elements such as As, Bi, Cd, Cs, Cu, Tl, and from 1% to 5% for refractory elements such as Al, Ba, Co, Fe, Ti, Th, U, and V. Consequently, more than 90% of volcanogenic trace elements were dispersed further away, and may cause a regional scale impact. Such a large difference between deposition and emission fluxes at Mt. Etna pointed to relatively high stability and long residence time of aerosols in the plume.  相似文献   

14.
The flow of lava into the ocean at the shoreline of Kilauea Volcano during the ongoing Pu’u O’o eruption has allowed a detailed study of the geochemical interaction between lava and seawater. This paper focuses on the chemistry of the major and minor elements in the fluids that resulted from this interaction. The elemental enrichments in these fluids are dominated by three processes: (1) evaporation of water from seawater, which creates solutions enriched in the major elements found in seawater, (2) congruent dissolution of the basalt glass matrix, which is limited by the solubility of some of the elements in seawater, and (3) removal of volatile phases from the lava on contact with seawater.Using a simple model of volatile emanation (using published emanation coefficients) and congruent dissolution, we are able to explain the concentrations observed for the majority of elements in precipitation from the steam plume at the shoreline lava entry and in water allowed to interact with molten lava in controlled experiments. Fe, Al, Ti, and some of the rare earth elements (REEs) in precipitation samples from the steam plume at the lava entry were > 10,000-times enriched over their ambient seawater concentrations, suggesting that these elements may be useful for identifying submarine eruptions. The flux of elements from the Kilauea ocean lava entry is greater than that from a typical midocean ridge hydrothermal vent field for Al, Cd, Co, and the REEs, whereas the opposite is true for the remainder of the elements studied.  相似文献   

15.
The discovery of ultramafic hosted hydrothermal systems at Rainbow (36°N MAR) and Lost City, a vent site approximately 15 km west of the MAR at 30°N, provides unique perspectives on chemical and heat-generating processes associated with serpentinization at a range of chemical and physical conditions. Heat balance calculations together with constraints imposed by geochemical modeling indicate that significant changes in temperature are not likely to occur at either vent system as a result of the exothermic nature of olivine hydrolysis. At Rainbow, the relatively high temperatures in subseafloor reaction zones (in excess of 400°C), which must be linked to magmatic processes, inhibit olivine hydrolysis, effectively precluding mineralization-induced heating effects. Geochemical modeling of the Lost City vent fluids indicates temperatures in excess of those measured (40-75°C). The relatively high subseafloor temperatures (∼ 200 ± 50°C) requires conductive cooling of the fluids on ascent to the seafloor—a scenario in keeping with the mineralization of chimney structures actually observed. Although the intermediate temperatures predicted for subseafloor reaction zones at Lost City could be expected to enhance olivine to serpentine conversion, dissolved Cl, K/Cl and Na/Cl ratios of the Lost City vent fluids are virtually unchanged from seawater values and indicate little hydration of olivine, which is a necessary condition for exothermic heat generation by serpentinization. Apparently the fluid/rock mass ratio is too high or fluid residence times too low for this to occur to any significant extent. Thus, in spite of the off-axis location of the Lost City vents and apparent lack of a localized heat source, mineralization reactions likely play an insignificant role in accounting for hydrothermal circulation. It is more likely that tectonic processes associated with the slow spreading MAR, permit access of seawater to relatively deep and still hot lithospheric units and/or near axis magmatic heat sources, before venting. Additional chemical and physical (temperature, flow rate) data for Lost City and similar hydrothermal systems are needed to test key elements of the proposed model.  相似文献   

16.
 The accumulation of heavy metals and trace elements has been investigated in a well laminated sequence of Holocene and late Pleistocene lake sediments composed of diatomaceous gyttja, tuff and silt and clay sediments. Varve chronology of the annually deposited gyttja yielded a continuous high-resolution time sequence and allowed the absolute age dating of the sediment. Fluxes of elements remained largely uniform from the late Pleistocene into the Holocene (12 867–2 364 VT years ago; VT: varve time, years before 1950). Higher trace element and heavy metal fluxes occur from 2 322 to 862 VT years ago and reached their maxima in the uppermost sediments (<845 VT years ago). These increasing element fluxes correlate with increasing inputs of clastic material. The changing accumulation rates are the result of elevated soil erosion in the lake catchment caused by human settlement, deforestation and agricultural activities. Thus disturbances of the natural geochemical cycles of the Holzmaar region have occurred since the beginning of the Iron Age and especially since the beginning of the Middle Ages. Received: 29 May 1996 · Accepted: 19 August 1996  相似文献   

17.
Surface sediment samples from near-shore shallow water as well as deeper water locations N and NE of the island of Methana were investigated geochemically. Shallow water samples from Thiafi Bay reveal up to 38-fold enrichment of As, associated with elevated contents of Sb, Fe and Zn. Deeper water samples NE of Methana show moderate Mn enrichment accompanied with elevated trace metal concentrations of As and, in some samples, Cd and Cu. In an area, where small mounds of possible hydrothermal origin were observed on the sea floor, fine-grained Fe-rich sediment was sampled with enrichment of typical hydrothermal trace elements As, P and Sb. Element enrichment in the investigated areas off Methana corresponds in terms of absolute concentrations and element suite to comparable hydrothermally influenced sediments from other locations of the Hellenic volcanic arc. The region between Methana peninsula and Aegina Island is not marked by vigorous hydrothermal activity, but localised enrichments of Fe and/or Mn, As, Sb as well as associated trace elements typically found in hydrothermally influenced sediments were identified.  相似文献   

18.
Hydrothermal sediment mineralogy and geochemistry can provide insights into seafloor mineralization processes and changes through time. We report a geochemical investigation of a short (22 cm) near-vent hydrothermal metalliferous sediment core from the Lucky Strike site (LS), on the Mid-Atlantic Ridge (MAR). The sediment was collected from the base of an active white smoker vent and comprises pure hydrothermal precipitates, mainly chalcopyrite, sphalerite, pyrite and barite, with negligible detrital and biogenic inputs. Geochemically, the core is enriched in elements derived from high-temperature hydrothermalism (Fe, Cu, Zn and Ba) and depleted in elements derived from low-temperature hydrothermalism (Mn), and metasomatism (Mg). The U/Fe content ratio is elevated, particularly in the deeper parts of the core, consistent with uptake from seawater associated with sulphide alteration. Rare earth elements (REE) concentrations are low and chondrite-normalized patterns are characteristic of high-temperature vent fluids with an enrichment in light REE and a pronounced positive Eu anomaly. A stronger positive Eu anomaly associated with higher Lan/Smn at the core top is controlled by barite precipitation. The hydrothermal influence on the REE decreases downcore with some evidence for a stronger seawater influence at depth. Nd isotopes also exhibit an increased detrital/seawater influence downcore. Pb isotope ratios are uniform and plot on the Northern Hemisphere Reference Line in a small domain defined by LS basalts and exhibit no detrital or seawater influence. Lucky Strike sediments are derived from high-temperature mineralization and are overprinted by a weak seawater–sediment interaction when compared with other Atlantic hydrothermal sites such as TAG. The larger seawater input and/or a larger detrital contribution in deeper layers can be explained by variable hydrothermal activity during sediment formation, suggesting different pulses in activity of the LS hydrothermal system.  相似文献   

19.
Asynchronous Holocene climatic change across China   总被引:1,自引:0,他引:1  
A review of Holocene climatic variations in different parts of China shows that they were asynchronous. Proxy data from ice cores, pollen, loess, lacustrine sediments, and changes of sea and lake levels demonstrate that many warm and cold oscillations have occurred in China during the Holocene, including a most important climatic event known as the “Holocene optimum,” a milder and wetter period, and that the duration and amplitude of the optimum period, as well as its start and end times, differed in different parts of China. Uplift of the Tibetan plateau over the past millions of years led to the development of the monsoon climate and to complex atmospheric circulation over continental China during the Holocene. As a result, the Holocene optimum began and terminated earlier in high-altitude regions of western China than at lower elevations in eastern China, and the amplitude of the variations was lower in the east. This suggests that the western higher-altitude areas were more sensitive to climatic change than were the eastern lower-altitude areas. Holocene climatic records in the Dunde and Guliya ice cores do not correspond. Inverse δ18O variations between the two cores indicate that the effects of climate and atmospheric processes on the stable isotopes at the two sites differed. The correlation between the isotopic composition of carbonates in lake deposits in western China and climatic variations is similar to that in the ice cores. The climatic resolution in ice cores and lake sediments is higher than that in other media. The lack of precise correspondence of climatic records constructed on the basis of proxy data from different parts of China is a result of the different locations and elevations of the sampling sites, the different resolutions of the source material, and the varied climatic conditions within China. Further work is needed to confirm both the conclusions and the inferences presented here.  相似文献   

20.
Three submarine hydrothermal sites (Snail, Y and Pika sites) in the southern Mariana area were investigated to clarify the geochemical difference between off-axis and on-axis submarine hydrothermal activities and volcanic rocks. The Snail and Y sites are located on the axis of the spreading ridge, and the Pika site is located on the off-axis region. Low-temperature venting of submarine hydrothermal fluids was observed at the Snail and Y sites. High-temperature black smoker activities were found at the Pika site. For further geochemical study, sulfide chimneys and mounds were collected from each site by manned submersible Shinkai 6500 . Basement short drill cores of volcanic rocks and sulfides were also obtained from the Snail and Pika sites using a multi-coring system. All drilled pillow lavas were tholeiitic andesite with a narrow range of chemical variation. Significant enrichments of Rb, Ba and Th were absent in both on-axis (Y and Snail sites) and off-axis (Pika site) samples, suggesting the least incorporation of subducting sediments to the magmatic system. Concentrations of Au and Ag in the sulfide chimney were within the range of massive sulfides at the mid-ocean ridge rather than typical arc-type massive sulfides. It is found that sulfur isotope compositions of sulfides were different between the on-axis and off-axis samples: on-axis samples had heavy δ34S (+2.9–+8.7‰) and off-axis samples (–0.3 to +3.8‰) were similar to the local magmatic value. Such a regional difference probably results from changes of deep hydrothermal processes during the water–rock interaction rather than differences in tectonic settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号