首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
WHAM, incorporating Humic Ion Binding Model VI, was used to analyse published data describing the binding of Hg(II) and methylmercury (CH3Hg) by isolated humic substances. For Hg(II), the data covered wide ranges of pH and levels of metal binding, whereas for CH3Hg the range of metal binding was relatively narrow. Data were fitted by adjustment of a single model parameter, log KMA, the intrinsic equilibrium constant characterising, in the standard version of the model, the binding of metal ions and their first hydrolysis products to humic carboxylic acid groups. Other model parameters, including those characterising the tendency of metal ions to interact with “softer” ligand atoms (N and S), were held at their default values. The importance of the first hydrolysis products in binding was considered, and also the possible influence of competition by residual Fe(III), bound to the humic matter.  相似文献   

2.
Organic matter from an arable soil derived from base rich parent material was extracted by alkali and fractionated on the basis of solubility in 0.1 N HCl, hot water and hot 6 N HCl and by selective adsorption on charcoal. The distribution of associated metals was determined and Cu had the largest proportion, 15%, associated with the organic matter. Moderate proportions of the total Al, Co, Ni, and V (3–8%) but only small amounts (?1%) of the Mn, Fe, Ti, Cr, Ba and Sr were extracted from the soil by alkali. The Fe and Ti were concentrated mainly in the humic fraction whereas Mn and V were both found largely in the fulvic acid.Electron paramagnetic resonance spectra of the various fractions were examined and attempts made to relate the spectra to the forms of some of the metals present. In the humic acid fraction Cu was present partly as a copper porphyrin-type complex but in the fulvic acid it was in some other complexed form. VO2+ occurred in complexed forms in the fulvic acid which were more covalent than VO2+ humic acid complexes, whereas the Mn2+ components of the humic and fulvic acids all had a high degree of ionicity.  相似文献   

3.
River water (Water of Luce, Scotland) is used in laboratory experiments designed to investigate physical and chemical properties of Fe. Mn, Cu, Ni, Co, Cd and humic acids in riverine and estuarine systems. Using NaCl, MgCl2 and CaCl2 as coagulating agents, coagulation of dissolved (0.4 μm filtered) Fe, Cu, Ni, Cd and humic acids increases in a similar matter with increasing salt molarily: Ca2+ is the most dominant coagulating agent. Removal by coagulation with Ca2+ at seawater concentrations ranges from large (Fe-80%. HA-60%, Cu-40%) to small (Ni, Cd-15%) to essentially nothing (Cd, Mn-3%). Destabilization of colloids is the indicated mechanism. Solubility-pH measurements show that between a pH of 3 and 9, Fe, Cu, Ni, Mn, Co and Cd are being held in the dissolved phase by naturally occurring organic substances. Between pH of 2.2 and 1.2 a large proportion of dissolved Fe, Cu. Ni and Cd (72, 35,44 and 36% respectively) is precipitated along with the humic acids; in contrast, Mn and Co show little precipitation (3%). Adsorption-pH experiments, using unfiltered river water spiked with Cu, indicate that adsorption of Cu onto suspended particles is inhibited to a large extent by the formation of dissolved Cu-organic complexes.The experimental results demonstrate that solubilities and adsorption properties of certain trace metals in freshwaters can be opposite to those observed with artificial solutions or predicted with chemical models. Interaction with organic substances is a critical factor.  相似文献   

4.
Tidal inundation was restored to a severely degraded tropical acid sulfate soil landscape and subsequent changes in the abundance and fractionation of Al, Fe and selected trace metals were investigated. After 5 a of regular tidal inundation there were large decreases in water-soluble and exchangeable Al fractions within former sulfuric horizons. This was strongly associated with decreased soil acidity and increases in pH, suggesting pH-dependent immobilisation of Al via precipitation as poorly soluble phases. The water-soluble fractions of Fe, Zn, Ni and Mn also decreased. However, there was substantial enrichment (2–5×) of the reactive Fe fraction (FeR; 1 M HCl extractable) near the soil surface, plus a closely corresponding enrichment of 1 M HCl extractable Cr, Zn, Ni and Mn. Surficial accumulations of Fe(III) minerals in the inter-tidal zone were poorly crystalline (up to 38% FeR) and comprised mainly of schwertmannite (Fe8O8(OH)6SO4) with minor quantities of goethite (α-FeOOH) and lepidocrocite (γ-FeOOH). These Fe (III) mineral accumulations provide an effective substrate for the adsorption/co-precipitation and accumulation of trace metals. Arsenic displayed contrary behaviour to trace metals with peak concentrations (∼60 μg g−1) near the redox minima. Changes in the abundance and fractionation of the various metals can be primarily explained by the shift in the geochemical regime from oxic–acidic to reducing-circumneutral conditions, combined with the enrichment of reactive Fe near the soil surface. Whilst increasing sequestration of trace metals via sulfidisation is likely to occur over the long-term, the current abundance of reactive Fe near the sediment–water interface favours a dynamic environment with respect to metals in the tidally inundated areas.  相似文献   

5.
Sorption of metals on humic acid   总被引:1,自引:0,他引:1  
The sorption on humic acid (HA) of metals from an aqueous solution containing Hg(II). Fe(III), Pb, Cu, Al, Ni, Cr(III), Cd, Zn, Co and Mn, was investigated with special emphasis on effects of pH, metal concentration and HA concentration. The sorption efficiency tended to increase with rise in pH, decrease in metal concentration and increase in HA concentration of the equilibrating solution. At pH 2.4. the order of sorption was: Hg? Fe? Pb? CuAl ? Ni ? CrZnCdCoMn. At pH 3.7. the order was: Hg and Fe were always most readily removed, while Co and Mn were sorbed least readily. There were indications of competition for active sites (CO2H and phenolic OH groups) on the HA between the different metals. We were unable to find correlations between the affinities of the eleven metals to sorb on HA and their atomic weights, atomic numbers, valencies, and crystal and hydrated ionic radii. The sorption of the eleven metals on the HA could be described by the equation Y = 100[1 + exp ? (A + BX)], where Y = % metal removed by HA; X = mgHA; and A and B are empirical constants.  相似文献   

6.
A dialysis procedure was used to assess the distribution coefficients of ∼50 major and trace elements (TEs) between colloidal (1 kDa–0.22 μm) and truly dissolved (<1 kDa) phases in Fe- and organic-rich boreal surface waters. These measurements allowed quantification of both TE partitioning coefficients and the proportion of colloidal forms as a function of solution pH (from 3 to 8). Two groups of elements can be distinguished according to their behaviour during dialysis: (i) elements which are strongly associated with colloids and exhibit significant increases of relative proportion of colloidal forms with pH increase (Al, Ba, Cd, Co, Cr, Cu, Fe, Ga, Hf, Mn, Ni, Pb, rare earth elements (REEs), Sr, Th, U, Y, Zn, Zr and dissolved organic C) and (ii) elements that are weakly associated with colloids and whose distribution coefficients between colloidal and truly dissolved phases are not significantly affected by solution pH (As, B, Ca, Cs, Ge, K, Li, Mg, Mo, Na, Nb, Rb, Sb, Si, Sn, Ti, V). Element speciation was assessed using the Visual MINTEQ computer code with an implemented NICA-Donnan humic ion binding model and database. The model reproduces quantitatively the pH-dependence of colloidal form proportion for alkaline-earth (Ba, Ca, Mg, Sr) and most divalent metals (Co, Cd, Mn, Ni, Pb, Zn) implying that the complexation of these metals with low molecular weight organic matter (<1 kDa fraction) is negligible. In contrast, model prediction of colloidal proportion (fraction of 1 kDa–0.22 μm) of Cu2+ and all trivalent and tetravalent metals is much higher than that measured in the experiment. This difference may be explained by (i) the presence of strong metal-binding organic ligands in the <1 kDa fraction whose stability constants are several orders of magnitude higher than those of colloidal humic and fulvic acids and/or (ii) coprecipitation of TE with Fe(Al) oxy(hydr)oxides in the colloidal fraction, whose dissolution and aggregation controls the pH-dependent pattern of TE partitioning. Quantitative modeling of metal – organic ligand complexation and empirical distribution coefficients corroborate the existence of two colloidal pools, formerly reported in boreal surface waters: “classic” fulvic or humic acids binding divalent transition metals and alkaline-earth elements and large-size organo-ferric colloids transporting insoluble trivalent and tetravalent elements.  相似文献   

7.
The interaction of Cr(III) with humus acids [fulvic (FA) and humic (HA) acids] was studied in the systems Cr(III)-FA, Cr(III)-HA, and Cr(III)-FA-HA. Chromium(III) reacts with FA extracted from the headwaters of the Moscow River and from the Krapivenka River (a tributary of Lake Seliger) to form a highly soluble high-molecular-weight Cr(III)-hydroxofulvate complexes with \(\bar \beta _{11} \) = 1.93 × 106 and 5.70 × 106, respectively. Humic acids extracted from peat in the Tver area and the sapropel of Lake Seliger behave as complexing sorbents with conditional affinity constants logβ = 3.78 and 3.23 for Cr(III) sorption at HA sites in the peat and sapropel, respectively. In the three-component system Cr(III)-FA-HA, the Cr(III) distribution coefficient between solution and precipitate is controlled by the pH value and FA content in the solution and decreases by 1–1.5 orders of magnitude with increasing fulvic acid content.  相似文献   

8.
The Chemical Speciation of Fe(III) in Freshwaters   总被引:1,自引:0,他引:1  
Dialysis and chemical speciation modelling have been used to calculate activities of Fe3+ for a range of UK surface waters of varying chemistry (pH 4.3–8.0; dissolved organic carbon 1.7–40.3 mg l−1) at 283 K. The resulting activities were regressed against pH to give the empirical model: . Predicted Fe3+ activities are consistent with a solid–solution equilibrium with hydrous ferric oxide, consistent with some previous studies on Fe(III) solubility in the laboratory. However, as has also sometimes been observed in the laboratory, the slope of the solubility equation is lower than the theoretical value of 3. The empirical model was used to predict concentrations of Fe in dialysates and ultrafiltrates of globally distributed surface and soil/groundwaters. The predictions were improved greatly by the incorporation of a temperature correction for , consistent with the temperature dependence of previously reported hydrous ferric oxide solubility. The empirical model, incorporating temperature effects, may be used to make generic predictions of the ratio of free and complexed Fe(III) to dissolved organic matter in freshwaters. Comparison of such ratios with observed Fe:dissolved organic matter ratios allows an assessment to be made of the amounts of Fe present as Fe(II) or colloidal Fe(III), where no separate measurements have been made. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Phosphorus is one of the nutrients most commonly limiting net primary production in soils of humid tropical forests, mainly because insoluble Al and Fe phosphates and strong sorption to Fe(III) (hydr)oxides remove P from the bioavailable pool. Recent field studies have suggested, however, that this loss may be balanced by organic P accumulation under a wet moisture regime (>3350 mm annual precipitation). It has been hypothesized that, as the moisture regime changes from dry to mesic to wet, periods of anoxic soil conditions increase in intensity and duration, depleting Fe(III) (hydr)oxides and releasing sorbed P, but also slowing organic matter turnover, thus shifting the repository of soil P from minerals to humus. Almost no quantitative information is available concerning the coupled biogeochemical behavior of Fe and P in highly weathered forest soils that would allow examination of this hypothesis. In this paper, we report a laboratory incubation study of the effects of biotic Fe(III) (hydr)oxide reduction on P solubilization in a humid tropical forest soil (Ultisol) under a wet moisture regime (3000-4000 mm annual rainfall). The objectives of our study were: (1) to quantify Fe(III) reduction and P solubilization processes in a highly weathered forest soil expected to typify the hypothesized mineral dissolution-organic matter accumulation balance; (2) to examine the influence of electron shuttling on these processes using anthraquinone-2,6-disulfonate (AQDS), a well-known surrogate for the semiquinone electron shuttles in humic substances, as an experimental probe; and (3) to characterize the chemical forms of Fe(II) and P produced under anoxic conditions, both with and without AQDS. Two series of short-term incubation experiments were carried out, one without AQDS and another with an initial AQDS concentration of 150 μM. We measured pH, pE, and the production of Fe(II), total Fe [Fe(II) + Fe(III)], inorganic P, total P (inorganic P + organic P), and biogenic gases (CO2, H2 and CH4). The same positive correlation was found between soluble P release and soluble Fe(II) production throughout incubation, implying that reduction of Fe(III) solubilized P. The Fe(II) produced was mainly particulate, evidently due to the formation of Fe(II) solid phases. Thermodynamic calculations indicated that precipitation of siderite and, in the presence of AQDS, vivianite was favored under the anoxic conditions that developed rapidly in the soil suspensions. Inorganic soluble P released during incubation was very small, indicating that the soluble P produced was mainly in organic form, which is consistent with the hypothesis that P accumulates in soil humus. Our net CO2 production, H2 consumption, and Fe(II) production data all suggested that reductive dissolution of Fe(III) (hydr)oxides was a terminal electron-accepting process coupled both to H2 consumption and organic C oxidation by the native population of microorganisms in the soil. Addition of AQDS accelerated the production of Fe(II) and the release of soluble P, while hastening the decline in H2 gas levels and suppressing CH4 production. However, throughout incubation, the same quantitative relationships between soluble Fe(II) and P, and between pE and pH, were found, irrespective of AQDS addition. Thus we conclude that, in our soil incubation experiments, added AQDS functioned with the native microbial population solely as an electron shuttle catalyzing Fe(III) reduction. Whether humic substances in the soil also can act as electron shuttles in this way is a matter for future investigation.  相似文献   

10.
The possible roles of siderophores (high affinity chelators of iron(III)) in the biogeochemistry of manganese remain unknown. Here we investigate the interaction of Mn(III) with a pyoverdine-type siderophore (PVDMnB1) produced by the model Mn(II)-oxidizing bacterium Pseudomonas putida strain MnB1. PVDMnB1 confirmed typical pyoverdine behavior with respect to: (a) its absorption spectrum at 350-600 nm, both in the absence and presence of Fe(III), (b) the quenching of its fluorescence by Fe(III), (c) the formation of a 1:1 complex with Fe(III), and (d) the thermodynamic stability constant of its Fe(III) complex. The Mn(III) complex of PVDMnB1 had a 1:1 Mn:pvd molar ratio, showed fluorescence quenching, and exhibited a light absorption spectrum (Amax = 408-410 nm) different from that of either PVDMnB1-Fe(III) or uncomplexed PVDMnB1. Mn(III) competed strongly with Fe(III) for binding by PVDMnB1 in culture filtrates (pH 8, 4°C). Equilibration with citrate, a metal-binding ligand, did not detectably release Mn from its PVDMnB1 complex at a citrate/PVDMnB1 molar ratio of 830 (pH 8, 4°C), whereas pyrophosphate under the same conditions removed 55% of the Mn from its PVDMnB1 complex. Most of the PVDMnB1-complexed Mn was released by reaction with ascorbate, a reducing agent, or with EDTA, a ligand that is also oxidized by Mn(III). Data on the competition for binding to PVDMnB1 by Fe(III) vs. Mn(III) were used to determine a thermodynamic stability constant (nominally at 4°C) for the neutral species MnHPVDMnB1 (log K = 47.5 ± 0.5, infinite dilution reference state). This value was larger than that determined for FeHPVDMnB1 (log K = 44.6 ± 0.5). This result has important implications for the metabolism, solubility, speciation, and redox cycling of manganese, as well as for the biologic uptake of iron.  相似文献   

11.
Particulate matter plays an important role in the removal of metal ions from water in natural aquifers. Some of the most important of these materials consist of associations of inorganic particles (clay minerals, oxides) with humic substances, associations that can form readily in such an environment due to the strong affinity between inorganic particles and humic substances. These associations are referred to in this paper as organic-inorganic hybrids. However, it is not clear whether the sorbed species of metal ions in such organic-inorganic hybrids are organic or inorganic species because of the complexity of such hybrids and the lack of appropriate methods for characterizing the trace metal ions incorporated in them. In this study, laser-induced fluorescence spectroscopy (LIF) was used successfully to characterize the Cm(III) species on an FA(fulvic acid)-montmorillonite hybrid, an example of such organic-inorganic hybrids. The LIF clearly showed that Cm(III) can be sorbed as Cm(III)-fulvate complex in the FA-montmorillonite hybrid. These results were consistent with those of experiments of solid-water partitioning of Cm(III) (or Eu(III) used as an analogue) and speciation calculations based on the stability constants of Cm(III)-fulvate complexes determined in this study. The results of LIF and the partitioning experiments showed that the solid-water distribution of humic substances governed that of Cm(III) under our experimental conditions. The Cm(III) preference for forming Cm(III)-fulvate complexes was also evident under a condition that would be found in a natural aquifer with a fairly low concentration of organic matter in freshwater (dissolved organic carbon: 2 mg/dm3), as determined by our speciation calculations. These findings on the importance of humic substances in the migration of Cm(III) indicate that the clarification of the environmental behavior of humic substances is necessary to understand fully the behavior of Cm(III), or actinide(III) and lanthanide(III) ions, in natural aquifers.  相似文献   

12.
Equilibrium dialysis was used to measure Co- and Cu-binding by an isolated peat humic acid (PHA) in controlled laboratory experiments under simulated estuarine conditions: ionic strengths of 0.005 to 0.7 M in NaCl and mixed Na-Mg-Ca chloride solutions, with trace metal concentrations of ∼5 × 10−7 M, a PHA concentration of 10 mg/L, and at constant pH values of ∼7.8 (Co and Cu) and ∼4.6 (Cu only). Generally, Co- and Cu-humic binding decreased substantially with increasing ionic strength and, in the case of Cu, with decreasing pH. The presence of seawater concentrations of Ca and Mg had a relatively small effect on Co-humic binding and no measurable effect on that of Cu under the experimental conditions. The binding data were well-described by an equilibrium speciation code (the Windermere Humic Aqueous Model, WHAM) after optimising the fits by varying the metal-proton exchange constants for humic acid within justifiable limits (i.e., within 1 standard deviation of the mean exchange constants used in the WHAM database). The main factor producing the observed variations in metal-humic binding at constant pH was the electrostatic effect on the humic molecule. WHAM was used to predict Co- and Cu-humic binding in simulations of real estuaries. Co-humic binding is predicted to be relatively unimportant (generally <5% of total Co), whereas the Cu-humic complex is likely to be the dominant species throughout an estuary. The main factors producing changes in Co- and Cu-humic binding in the real-estuary simulations are the electrostatic effect on the humic molecule, ligand competition (mainly from carbonate species) for metals, and to a lesser extent Ca and Mg competition for humic binding sites. Variations in pH are significant only at the freshwater end of an estuary. WHAM simulations also indicated that competition effects between metals are more likely to occur in freshwaters than in seawater, due to enhanced electrostatic binding at low ionic strength.  相似文献   

13.
The speciation of iron (Fe) in soils, sediments and surface waters is highly dependent on chemical interactions with natural organic matter (NOM). However, the molecular structure and hydrolysis of the Fe species formed in association with NOM is still poorly described. In this study extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the coordination chemistry and hydrolysis of Fe(III) in solution of a peat humic acid (5010-49,200 μg Fe g−1 dry weight, pH 3.0-7.2). Data were analyzed by both conventional EXAFS data fitting and by wavelet transforms in order to facilitate the identification of the nature of backscattering atoms. Our results show that Fe occurs predominantly in the oxidized form as ferric ions and that the speciation varies with pH and Fe concentration. At low Fe concentrations (5010-9920 μg g−1; pH 3.0-7.2) mononuclear Fe(III)-NOM complexes completely dominates the speciation. The determined bond distances for the Fe(III)-NOM complexes are similar to distances obtained for Fe(III) complexed by desferrioxamine B and oxalate indicating the formation of a five-membered chelate ring structure. At higher Fe concentrations (49,200 μg g−1; pH 4.2-6.9) we detect a mixture of mononuclear Fe(III)-NOM complexes and polymeric Fe(III) (hydr)oxides with an increasing amount of Fe(III) (hydr)oxides at higher pH. However, even at pH 6.9 and a Fe concentration of 49,200 μg g−1 our data indicates that a substantial amount of the total Fe (>50%) is in the form of organic complexes. Thus, in environments with significant amounts of organic matter organic Fe complexes will be of great importance for the geochemistry of Fe. Furthermore, the formation of five-membered chelate ring structures is in line with the strong complexation and limited hydrolytic polymerization of Fe(III) in our samples and also agrees with EXAFS derived structures of Fe(III) in organic soils.  相似文献   

14.
A <2.0-mm fraction of a mineralogically complex subsurface sediment containing goethite and Fe(II)/Fe(III) phyllosilicates was incubated with Shewanella putrefaciens (strain CN32) and lactate at circumneutral pH under anoxic conditions to investigate electron acceptor preference and the nature of the resulting biogenic Fe(II) fraction. Anthraquinone-2,6-disulfonate (AQDS), an electron shuttle, was included in select treatments to enhance bioreduction and subsequent biomineralization. The sediment was highly aggregated and contained two distinct clast populations: (i) a highly weathered one with “sponge-like” internal porosity, large mineral crystallites, and Fe-containing micas, and (ii) a dense, compact one with fine-textured Fe-containing illite and nano-sized goethite, as revealed by various forms of electron microscopic analyses. Approximately 10-15% of the Fe(III)TOT was bioreduced by CN32 over 60 d in media without AQDS, whereas 24% and 35% of the Fe(III)TOT was bioreduced by CN32 after 40 and 95 d in media with AQDS. Little or no Fe2+, Mn, Si, Al, and Mg were evident in aqueous filtrates after reductive incubation. Mössbauer measurements on the bioreduced sediments indicated that both goethite and phyllosilicate Fe(III) were partly reduced without bacterial preference. Goethite was more extensively reduced in the presence of AQDS whereas phyllosilicate Fe(III) reduction was not influenced by AQDS. Biogenic Fe(II) resulting from phyllosilicate Fe(III) reduction remained in a layer-silicate environment that displayed enhanced solubility in weak acid. The mineralogic nature of the goethite biotransformation product was not determined. Chemical and cryogenic Mössbauer measurements, however, indicated that the transformation product was not siderite, green rust, magnetite, Fe(OH)2, or Fe(II) adsorbed on phyllosilicate or bacterial surfaces. Several lines of evidence suggested that biogenic Fe(II) existed as surface associated phase on the residual goethite, and/or as a Fe(II)-Al coprecipitate. Sediment aggregation and mineral physical and/or chemical factors were demonstrated to play a major role on the nature and location of the biotransformation reaction and its products.  相似文献   

15.
The linkage between the iron and the carbon cycles is of paramount importance to understand and quantify the effect of increased CO2 concentrations in natural waters on the mobility of iron and associated trace elements. In this context, we have quantified the thermodynamic stability of mixed Fe(III) hydroxo-carbonate complexes and their effect on the solubility of Fe(III) oxihydroxides. We present the results of carefully performed solubility measurements of 2-line ferrihydrite in the slightly acidic to neutral–alkaline pH ranges (3.8–8.7) under constant pCO2 varying between (0.982–98.154 kPa) at 25 °C.The outcome of the work indicates the predominance of two Fe(III) hydroxo carbonate complexes FeOHCO3 and Fe(CO3)33−, with formation constants log*β°1,1,1 = 10.76 ± 0.38 and log β°1,0,3 = 24.24 ± 0.42, respectively.The solubility constant for the ferrihydrite used in this study was determined in acid conditions (pH: 1.8–3.2) in the absence of CO2 and at T = (25 ± 1) °C, as log*Ks,0 = 1.19 ± 0.41.The relative stability of the Fe(III)-carbonate complexes in alkaline pH conditions has implications for the solubility of Fe(III) in CO2-rich environments and the subsequent mobilisation of associated trace metals that will be explored in subsequent papers.  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(19-20):3171-3182
The oxidation rate of pyrite at pH 7, 25°C and at constant partial pressure of oxygen (0.21 and 0.177 atm) was measured in the presence of the Fe(III)-chelators NTA, oxalate, leucine, EDTA, citrate, IDA and the Fe(III)-reductant ascorbic acid. With the exception of leucine and EDTA, non-reducing Fe(III)-chelators increased the oxidation rate relative to the reference state of formation of the Fe(OH)2+ complex at pH 7. The rate increase was proportional to the logarithm of the conditional stability constant of the ligands for the complexation of Fe3+. No effect on the oxidation rate was observed in the presence of EDTA, which shifted the redox potential of the redox couple Fe2+/Fe3+ to a value below that in the absence of any ligand at pH 7. Ascorbic acid decreased the pyrite oxidation rate by a factor of 5 at ascorbic acid concentrations between 10−4 and 10−2 mol L−1. Comparison of the rate constants for the oxidation of ascorbic acid by surface bound Fe(III) in the absence and presence of pyrite shows that the pyrite surface accelerates this reaction by a factor of 10. The oxidation of both pyrite and ascorbic acid is of fractional order with respect to ascorbic acid (HAsc): rpy=0.55 c(HAsc)−0.35 rHAsc=3.6 c(HAsc)0.59. Both the results from experiments with Fe(III)-chelating ligands and the Fe(III)-reductant, suggest a very efficient interference in the electron cycling between Fe(II) and Fe(III) at the pyrite surface. The interference seems to be mainly related to the reductive side of the iron cycling. It is therefore concluded that the electron transfer between ferric iron and pyritic sulfur limits the pyrite oxidation rate at pH 7.  相似文献   

17.
18.
《Applied Geochemistry》2005,20(6):1209-1217
Mobilization of actinides by interaction with humic colloids in aquifers is essentially determined by the geochemical conditions. In this study, the pH dependence of the influence of humic acid on metal adsorption on a variety of geological solids (kaolinite, phyllite, diabase, granite, sand) was investigated for Tb(III) as an analogue of trivalent actinides, using 160Tb as a radiotracer. Humic material was radiolabelled with 131I to allow experiments at low DOC concentrations, as encountered in subsurface systems in the far-field of a nuclear waste repository. For all solids, a changeover from mobilization to demobilization is observed on acidification. Except for phyllite, the reversal occurs at slightly acidic pH values, and is thus relevant in respect of risk assessments. A composite distribution model was employed to reproduce the changeover on the basis of the underlying constituent processes. For this purpose, humate complexation of Tb(III) and adsorption of humic acid as a function of pH were investigated as well. Although the ternary systems cannot be constructed quantitatively by combining the binary subsystems, the relevant interdependences are adequately described by the composite approach. For a more general discussion in view of the diversity of natural organic colloids, adsorption isotherms of various humic and fulvic acids on sand were compared.  相似文献   

19.
This study investigated possible geochemical reactions during titration of a contaminated groundwater with a low pH but high concentrations of aluminum, calcium, magnesium, manganese, and trace contaminant metals/radionuclides such as uranium, technetium, nickel, and cobalt. Both Na-carbonate and hydroxide were used as titrants, and a geochemical equilibrium reaction path model was employed to predict aqueous species and mineral precipitation during titration. Although the model appeared to be adequate to describe the concentration profiles of some metal cations, solution pH, and mineral precipitates, it failed to describe the concentrations of U during titration and its precipitation. Most U (as uranyl, UO22+) as well as Tc (as pertechnetate, TcO4) were found to be sorbed and coprecipitated with amorphous Al and Fe oxyhydroxides at pH below ∼5.5, but slow desorption or dissolution of U and Tc occurred at higher pH values when Na2CO3 was used as the titrant. In general, the precipitation of major cationic species followed the order of Fe(OH)3 and/or FeCo0.1(OH)3.2, Al4(OH)10SO4, MnCO3, CaCO3, conversion of Al4(OH)10SO4 to Al(OH)3,am, Mn(OH)2, Mg(OH)2, MgCO3, and Ca(OH)2. The formation of mixed or double hydroxide phases of Ni and Co with Al and Fe oxyhydroxides was thought to be responsible for the removal of Ni and Co in solution. Results of this study indicate that, although the hydrolysis and precipitation of a single cation are known, complex reactions such as sorption/desorption, coprecipitation of mixed mineral phases, and their dissolution could occur simultaneously. These processes as well as the kinetic constraints must be considered in the design of the remediation strategies and modeling to better predict the activities of various metal species and solid precipitates during pre- and post-groundwater treatment practices.  相似文献   

20.
Sorption of Cm(III) and Eu(III) at trace concentrations onto Ca-montmorillonite (SWy-1) and Na-illite (Illite du Puy) has been studied under anaerobic conditions by batch sorption experiments and time-resolved laser fluorescence spectroscopy (TRLFS). Comparison of the results from spectroscopic and batch sorption experiments with Cm and Eu indicates the existence of outer-sphere complexes at pH <4 in the experiments with Na-illite (0.25 g/L solid; 2.5 × 10−7 mol/L Cm; 0.1 mol/L NaClO4). In the case of Ca-montmorillonite, (0.25 g/L solid, 2.5 × 10−7 mol/L Cm or 10−6 mol/L Eu, 0.066 mol/L Ca(ClO4)2), Cm/Eu outer-sphere complexes do not form at significant levels due to the Ca2+ competition for the clay mineral cation-exchange sites. TRLFS spectra indicate the formation of inner-sphere surface complexes at pH >5 for both clay minerals. Five H2O/OH molecules remain in the first metal ion coordination sphere of the sorbed Eu/Cm. Measured fluorescence lifetimes of sorbed Eu/Cm and peak deconvolution of Cm-spectra are consistent with the formation of surface complexes of the form ≡S-O-Eu/Cm(OH)x(2−x)(H2O)5−x. At pH ≥ 12 Cm becomes incorporated into a surface precipitate at the Ca-montmorillonite surface presumably composed of Ca(OH)2 or calcium silicate hydrate. A dramatic shift of the fluorescence emission band by more than 20 nm and a clear increase in the fluorescence lifetime suggests the almost complete displacement of coordinated H2O and OH. The pH dependent Eu sorption data obtained in batch experiments are consistent with spectroscopic data on Eu and Cm within experimental uncertainties thus demonstrating the validity of Eu as a homologue for trivalent actinides. Parameterization of a two-site protolysis nonelectrostatic surface complexation and cation exchange model using the batch sorption data and spectroscopic results is discussed in Part 2 of this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号