首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zircon was grown from trace-element doped hydrous peralkaline rhyolite melts with buffered oxygen fugacities in cold-seal experiments at 0.1 and 0.2 GPa and 800 °C and piston-cylinder experiments at 1.5 GPa and 900-1300 °C. Zircon and glass were present in all run products, and small monazite crystals were present in eight of the 12 experiments. Average diameters of zircon crystals ranged from 5 to 20 μm at 800 °C to 30-50 μm at 1300 °C. Zircon crystals have thin rims, and adjacent glass has a narrow (∼1 μm thick) compositional boundary layer. Concentrations obtained through in-situ analysis of cores of run product zircon crystals and melt pools were used to calculate trace-element partition coefficients Dzircon/melt for P, Sc, Ti, V, Y, La, Ce, Pr, Nd, Eu, Gd, Ho, Yb, Lu, Hf, Th, and U. In most cases Lu was the most (D 12-105) and La the least (0.06-0.95) compatible elements. D values from this study fall within the range of previously measured values for Rare Earth Elements (REE). However, D values measured experimentally show less fractionation than those recently measured using natural phenocryst/matrix pairs. For example, DLu/DLa measured experimentally in this study range between 27 and 206 compared to a value of 706,522 for a natural zircon/dacite pair [Sano, Y., Terada, K., and Fukuoka, T. 2002 High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem. Geol.184, 217-230]. Although D values from this study show good agreement with the lattice strain model, D values from natural phenocryst/matrix pairs combined with measured zircon compositions better reproduce host-rock (magma) compositions of igneous rocks. They also yield more reasonable estimates of magma compositions when combined with compositions of ‘‘out-of-context” zircons. For example, compositions of the Hadean detrital zircons from Jack Hills, Australia yield LREE-enriched magmas when combined with D values from phenocryst/matrix pairs yields, but yield LREE-depleted magmas when experimentally determined D values are used. We infer that experimentally measured Dzircon/melt values represent disequilibrium partitioning resulting from rapid zircon growth during short laboratory timescales. Rapid growth causes development of observed diffusive boundary layers in the melt adjacent to zircon crystals. D values from phenocryst/matrix pairs are therefore recommended for petrogenetic modeling.  相似文献   

2.
3.
4.
Analyses of co-existing silicate melt and fluid inclusions, entrapped in quartz crystals in volatile saturated magmatic systems, allowed direct quantitative determination of fluid/melt partition coefficients. Investigations of various granitic systems (peralkaline to peraluminous in composition, log fO2 = NNO−1.7 to NNO+4.5) exsolving fluids with various chlorinities (1-14 mol/kg) allowed us to assess the effect of these variables on the fluid/melt partition coefficients (D). Partition coefficients for Pb, Zn, Ag and Fe show a nearly linear increase with the chlorinity of these fluid (DPb ∼ 6 ∗ mCl, DZn ∼ 8 ∗ mCl, DAg ∼ 4 ∗ mCl, DFe ∼ 1.4 ∗ mCl, where mCl is the molinity of Cl). This suggests that these metals are dissolved primarily as Cl-complexes and neither oxygen fugacity nor the composition of the melt affects significantly their fluid/melt partitioning. By contrast, partition coefficients for Mo, B, As, Sb and Bi are highest in low salinity (1-2 mol/kg Cl) fluids with maximum values of DMo ∼ 20, DB ∼ 15, DAs ∼ 13, DSb ∼ 8, DBi ∼ 15 indicating dissolution as non-chloride (e.g., hydroxy) complexes. Fluid/melt partition coefficients of copper are highly variable, but highest between vapor like fluids and silicate melt (DCu ? 2700), indicating an important role for ligands other than Cl. Partition coefficients for W generally increase with increasing chlorinity, but are exceptionally low in some of the studied brines which may indicate an effect of other parameters. Fluid/melt partition coefficients of Sn show a high variability but likely increase with the chlorinity of the fluid (DSn = 0.3-42, DW = 0.8-60), and decrease with decreasing oxygen fugacity or melt peraluminosity.  相似文献   

5.
The partitioning of rare earth elements (REE) between zircon, garnet and silicate melt was determined using synthetic compositions designed to represent partial melts formed in the lower crust during anatexis. The experiments, performed using internally heated gas pressure vessels at 7 kbar and 900–1000 °C, represent equilibrium partitioning of the middle to heavy REE between zircon and garnet during high‐grade metamorphism in the mid to lower crust. The DREE (zircon/garnet) values show a clear partitioning signature close to unity from Gd to Lu. Because the light REE have low concentrations in both minerals, values are calculated from strain modelling of the middle to heavy REE experimental data; these results show that zircon is favoured over garnet by up to two orders of magnitude. The resulting general concave‐up shape to the partitioning pattern across the REE reflects the preferential incorporation of middle REE into garnet, with DGd (zircon/garnet) ranging from 0.7 to 1.1, DHo (zircon/garnet) from 0.4 to 0.7 and DLu (zircon/garnet) from 0.6 to 1.3. There is no significant temperature dependence in the zircon–garnet REE partitioning at 7 kbar and 900–1000 °C, suggesting that these values can be applied to the interpretation of zircon–garnet equilibrium and timing relationships in the ultrahigh‐T metamorphism of low‐Ca pelitic and aluminous granulites.  相似文献   

6.
Partition coefficients (zircon/meltDM) for rare earth elements (REE) (La, Ce, Nd, Sm, Dy, Er and Yb) and other trace elements (Ba, Rb, B, Sr, Ti, Y and Nb) between zircon and melt have been calculated from secondary ion mass spectrometric (SIMS) analyses of zircon/melt inclusion pairs. The melt inclusion-mineral (MIM) technique shows that DREE increase in compatibility with increasing atomic number, similar to results of previous studies. However, DREE determined using the MIM technique are, in general, lower than previously reported values. Calculated DREE indicate that light REE with atomic numbers less than Sm are incompatible in zircon and become more incompatible with decreasing atomic number. This behavior is in contrast to most previously published results which indicate D > 1 and define a flat partitioning pattern for elements from La through Sm. The partition coefficients for the heavy REE determined using the MIM technique are lower than previously published results by factors of ≈15 to 20 but follow a similar trend. These differences are thought to reflect the effects of mineral and/or glass contaminants in samples from earlier studies which employed bulk analysis techniques.DREE determined using the MIM technique agree well with values predicted using the equations of Brice (1975), which are based on the size and elasticity of crystallographic sites. The presence of Ce4+ in the melt results in elevated DCe compared to neighboring REE due to the similar valence and size of Ce4+ and Zr4+. Predicted zircon/meltD values for Ce4+ and Ce3+ indicate that the Ce4+/Ce3+ ratios of the melt ranged from about 10−3 to 10−2. Partition coefficients for other trace elements determined in this study increase in compatibility in the order Ba < Rb < B < Sr < Ti < Y < Nb, with Ba, Rb, B and Sr showing incompatible behavior (DM < 1.0), and Ti, Y and Nb showing compatible behavior (DM > 1.0).The effect of partition coefficients on melt evolution during petrogenetic modeling was examined using partition coefficients determined in this study and compared to trends obtained using published partition coefficients. The lower DREE determined in this study result in smaller REE bulk distribution coefficients, for a given mineral assemblage, compared to those calculated using previously reported values. As an example, fractional crystallization of an assemblage composed of 35% hornblende, 64.5% plagioclase and 0.5% zircon produces a melt that becomes increasingly more enriched in Yb using the DYb from this study. Using DYb from Fujimaki (1986) results in a melt that becomes progressively depleted in Yb during crystallization.  相似文献   

7.
Partitioning of Rb, Sr and Ba between alkali feldspar and a synthetic granitic melt has been determined at 8 kb and 720 to 780°C for a single quaternary granite composition. The results suggest that Henry's law is obeyed by Rb up to ~0.8 wt.% Rb2O in both the liquid and in the alkali feldspar. The measured D values for Rb range from 0.77 to 1.1. For Ba, Henry's Law is obeyed up to ~0.6 wt.% BaO in the liquid and ~5 wt.% BaO in the alkali feldspar. D values for Ba range from 6.4 to 14. For Sr there is only a crude relationship between concentration in the liquid and concentration in the alkali feldspar at concentrations greater than ~0.6 wt.% SrO in the liquid and ~0.4 wt.% SrO in the alkali feldspar. D values for Sr range from 1.2 to 5.0. Partitioning of Sr is apparently sensitive to the concentration of Ba in the system and this partly explains the failure of Sr to obey Henry's Law.Linear least-squares fits to the partitioning data as a function of temperature suggest inverse correlation between temperature and D values. Rb shows only a slight temperature effect whereas Ba and Sr appear to be rather strongly affected by temperature, but the temperature range examined here is small compared to the scatter in the data making these trends relatively uncertain. Other factors that appear to affect partitioning, especially of Sr, are growth rate, development of sector zoning and Or content of the alkali feldspar. These factors severely limit the use of partitioning of these elements in alkali feldspar as geothermometers.The technique for measuring growth rates utilized here combined with measurement of trace element depletion in diffusion boundary layers adjacent to the alkali feldspar crystals makes it possible to estimate diffusivities for Ba and Sr. These estimates suggest a difference of 2 orders of magnitude between diffusivities for Ba and Sr in a vapor-saturated melt and those measured by HOFMANN and MAGARITZ (1976) for a dry obsidian glass.  相似文献   

8.
Olivine/melt and orthopyroxene/melt rare-earth element (REE) partition coefficients consistent with clinopyroxene/melt partition coefficients were determined indirectly from subsolidus partitioning between olivine, orthopyroxene, and clinopyroxene after suitable correction for temperature. Heavy- and middle-REE ratios for olivine/clinopyroxene and orthopyroxene/clinopyroxene pairs correlate negatively with effective cationic radius, whereas those for the light REEs correlate positively with cationic radius, generating a U-shaped pattern in apparent mineral/clinopyroxene partition coefficients versus cationic radius. Lattice strain models of partitioning modified for subsolidus conditions yield negative correlations of olivine/clinopyroxene and orthopyroxene/clinopyroxene with respect to cationic radii, predicting well the measured partitioning behaviors of the heavy and middle REEs but not that of the light REEs. The light-REE systematics cannot be explained with lattice strain theory and, instead, can be explained by disequilibrium enrichment of the light REEs in melt inclusions or on the rims of olivine and orthopyroxene. Realistic light-REE partition coefficients were thus extrapolated from the measured heavy- and middle-REE partition coefficients using the lattice strain model. Light REE olivine/melt and orthopyroxene/melt partition coefficients calculated in this manner are lower than most published values, but agree reasonably well with partitioning experiments using the most recent in situ analytical techniques (secondary-ionization mass spectrometry and laser ablation inductively coupled plasma mass spectrometry). These new olivine/melt and orthopyroxene/melt partition coefficients are useful for accurate modeling of the REE contents of clinopyroxene-poor to -free lithologies, such as harzburgitic residues of melting. Finally, the application of the lattice strain theory to subsolidus conditions represents a framework for assessing the degree of REE disequilibrium in a rock.  相似文献   

9.
This study investigates partitioning of elements between immiscible aluminosilicate and borosilicate liquids using three synthetic mixtures doped with 32 trace elements. In order to get a good spatial separation of immiscible liquids, we employed a high-temperature centrifuge. Experiments were performed at 1,050–1,150°C, 1 atm, in sealed Fe and Pt containers. Quenched products were analysed by electron microprobe and LA ICP-MS. Nernst partition coefficients (D’s) between the Fe-rich and Si-rich aluminosilicate immiscible liquids are the highest for Zn (3.3) and Fe (2.6) and the lowest for Rb and K (0.4–0.5). The plots of D values against ionic potential Z/r in all the compositions show a convex upward trend, which is typical also for element partitioning between immiscible silicate and salt melts. The results bear upon the speciation and structural position of elements in multicomponent silicate liquids. The ferrobasalt–rhyolite liquid immiscibility is observed in evolved basaltic magmas, and may play an important role in large gabbroic intrusions, such as Skaergaard, and during the generation of unusual lavas, such as ferropicrites.  相似文献   

10.
We present a new approach to determine the composition of silicate melt inclusions (SMI) using LA-ICPMS. In this study, we take advantage of the occurrence of SMI in co-precipitated mineral phases to quantify their composition without depending on additional sources of information. Quantitative SMI analyses are obtained by assuming that the ratio of selected elements in SMI trapped in different phases are identical. In addition Fe/Mg exchange equilibrium between olivine and melt was successfully used to quantify LA-ICPMS analyses of SMI in olivine. Results show that compositions of SMI from the different host minerals are identical within their uncertainty. Thus (1) the quantification approach is valid; (2) analyses are not affected by the composition of the host phase; (3) the derived melt compositions are representative of the original melt, excluding significant syn- or postentrapment modification such as boundary layer effects or diffusive reequilibration with the host mineral. With this data we established a large dataset of mineral/melt partition coefficients for the investigated mineral phases in hydrous calc-alkaline basaltic-andesitic melts. The clinopyroxene/melt and plagioclase/melt partition coefficients are consistent with the lattice strain model of Blundy and Wood [Blundy, J., Wood B., 1994. Prediction of crystal-melt partition-coefficients from elastic-moduli. Nature372, 452-454].  相似文献   

11.
Twenty six whole rocks, seven matrix and fifty three mineral separates from the compositionally zoned late Quaternary Laacher See tephra sequence (East Eifel, W Germany) were analyzed by instrumental neutron activation. These data document the chemical variation within the Laacher See magma chamber prior to eruption with a highly fractionated phonolite at the top and a more mafic phonolite at its base as derived from other data. Incompatible elements such as Zn, Zr, Nb, Hf, U, light and heavy rare earths are extremely enriched towards the top whereas compatible elements (e.g. Sr, Sc, Co, Eu) are strongly depleted. Semicompatible elements (Ta and some middle REE) are depleted at intermediate levels. This chemical variation is shown by whole rock and matrix data indicating the phonolite liquid was compositionally zoned regardless of phenocryst content. Hybrid rocks (phonolite-basanite) show the largest concentrations for compatible elements. All elements (except Rb) display continuous compositional variations with regard to the stratigraphic position of pumice samples. From these data we are able to distinguish three main units: An early erupted highly fractionated magma, the main volume of evolved phonolite and a mafic phonolite as the final products. The extreme variation of trace element distribution coef ficients (K) for 9 mineral phases with respect to stratigraphic position (resp. matrix composition) cannot be explained by conventional mechanisms. We postulate a significant modification of the trace element content of the phonolite melt by liquid-liquid controlled differentiation processes subsequent to and/or contemporaneous with (fractional) crystallization which caused disequilibrium between phenocrysts and host matrix. Therefore, our “distribution coefficients” deviate from equilibrium partition coefficients equivalent to the amount of this post crystallization modification of the matrix composition. The relationship between varying K and matrix composition is demonstrated by a ΔK-ΔM-diagram (variation of K versus variation of matrix, M). Different parts of this diagram relate to different parameters (T, P, polymerization, complex-building, equilibrium crystallization in a zoned magma column and post crystallization disequilibrium effects) which are responsible for the variation of distribution coefficients in general. The ΔK-ΔM-diagram may allow to distinguish between different processes affecting the distribution coefficients measured in natural volcanic rocks from a differentiating magma system.  相似文献   

12.
Clinopyroxene/melt and garnet/melt partition coefficients have been determined for Ti, Sr, Y, Zr, Nb, Hf, and rare earth elements from 19 doped experiments on 1921 Kilauea basalt. The experiments were carried out from 2.0 to 3.0 GPa and 1310° to 1470 °C. The purpose was to derive a set of partition coefficients for high-field-strength elements (HFSE) and rare earth elements (REE) in a systematic, linked set of experiments at P and T conditions relevant to basalt petrogenesis. These data are used in melting models to understand the development of negative HFSE anomalies observed in many abyssal peridotite clinopyroxenes. It is shown that melting can account for the observed trace element patterns in some residual peridotites, but that other processes may also be needed to account for most residual mantle compositions in mid-ocean ridge systems. It is also shown that REE are more strongly fractionated by garnet at these P-T conditions than previously thought. Received: 1 July 1997 / Accepted: 11 May 1998  相似文献   

13.
The Nernst partition coefficient of nickel (DNi) between Cr-spinel and silicate melt in natural systems has been investigated using mid-ocean ridge basalts (MORB) and other volcanic rocks. The Cr-spinel/olivine DNi values in volcanic rocks are between 1.2 and 0.3, indicating that the Cr-spinel/liquid DNi values vary from slightly higher to significantly lower than the olivine/liquid DNi values in natural systems. The Cr-spinel/liquid DNi values from the MORB samples vary between 6 and 11, slightly higher than those from the S-bearing experiments of Satari et al. [Satari P., Brenan J. M., Horn I. and McDonough W. F. (2002) Experimental constraints on the sulfide- and chromite-silicate melt partitioning behavior of rhenium and platinum-group elements. Economic Geology97, 385-398]. The results of the MORB samples and the experiments of Satari et al. (2002) indicate a negative correlation between the Cr-spinel/liquid DNi and the XCr values in Cr-spinels (Cr cation number on the basis of 3 total cations in the spinel structure). Variations of Cr-spinel/liquid DNi values with Cr-spinel compositions can be estimated from an empirical equation based on the results of the MORB samples and the experiments by Satari et al. (2002). The choice of Cr-spinel/liquid DNi = 10 for numerical modeling by Righter et al. [Righter K., Leeman W. P. and Hervig R. L. (2006) Partitioning of Ni, Co, and V between spinel-structured oxides and silicate melts: importance of spinel composition. Chemical Geology227, 1-25] is reasonable for basaltic systems. For picritic and komatiitic systems a lower value of ∼5 is more appropriate.  相似文献   

14.
Olivine/melt partitioning of ΣFe, Fe2+, Mg2+, Ca2+, Mn2+, Co2+, and Ni2+ has been determined in the systems CaO-MgO-FeO-Fe2O3-SiO2 (FD) and CaO-MgO-FeO-Fe2O3-Al2O3-SiO2 (FDA3) as a function of oxygen fugacity (fO2) at 0.1 MPa pressure. Total iron oxide content of the starting materials was ∼20 wt%. The fO2 was to used to control the Fe3+/ΣFe (ΣFe: total iron) of the melts. The Fe3+/ΣFe and structural roles of Fe2+ and Fe3+ were determined with 57Fe resonant absorption Mössbauer spectroscopy. Changes in melt polymerization, NBO/T, as a function of fO2 was estimated from the Mössbauer data and existing melt structure information. It varies by ∼100% in melts coexisting with olivine in the FDA3 system and by about 300% in the FD system in the Fe3+/ΣFe range of the experiments (0.805-0.092). The partition coefficients ( in olivine/wt% in melt) are systematic functions of fO2 and, therefore, NBO/T of the melt. There is a -minimum in the FDA3 system at NBO/T-values corresponding to intermediate Fe3+/ΣFe (0.34-0.44). In the Al-free system, FD, where the NBO/T values of melts range between ∼1 and ∼2.9, the partition coefficients are positively correlated with NBO/T (decreasing Fe3+/ΣFe). These relationships are explained by consideration of solution behavior in the melts governed by Qn-unit distribution and structural changes of the divalent cations in the melts (coordination number, complexing with Fe3+, and distortion of the polyhedra).  相似文献   

15.
Two experiments were carried out at 20 kb pressure for the measurement of partition coefficients of ten lanthanides and barium between diopside clinopyroxene and liquid in the synthetic system diopside-enstatite-silica-H2O. Starting materials are glass of two different compositions CaMgSi2O6 56, MgSiO3 14, SiO2 30 weight % and CaMgSi2O6 80, MgSiO3 20 weight %.In the experiment on the former composition, the partition coefficient increases regularly with decrease of ionic radii from La to Dy and decreases also regularly from Dy to Lu. In the experiment on the latter composition, stepwise shift of partition coefficient was observed between Dy and Er.The results suggest that the lanthanide cations occupy the site of 8-fold coordination in the clinopyroxene and that the partition coefficients depend on the ionic radii of lanthanide elements and also on the chemical composition of the starting material or heating process during the run.  相似文献   

16.
The rates of volatilization of Na from liquid spheres of chondrule compositions have been determined as functions of time, temperature, partial pressure of oxygen, and sizes of the spheres. The Na2O content in the sphere is uniform in each run. but it decreases with time of the run, indicating that the rate of diffusion of Na in the liquid is greater than that of volatilization, and that the latter is the rate-controlling process. The rate of sodium volatilization becomes greater with increasing temperature and with decreasing PO2 and size of the spheres. The relation of the Na2O content in the liquid sphere with time and its size indicate that the amount of Na2O volatilized from the liquid spheres within unit time is proportional to the surface area of the spheres and the concentration of Na2O in the liquid. From these relations, the rate of volatilization of sodium can be obtained at constant temperature and Po2. The rate of volatilization of sodium satisfies the Arrhenius relation within the temperature range from about 1450–1600 C at 10?9,2 atm pO2; the activation energy for the sodium volatilization is approximately 100 kcal-mole?1. The rate is also approximately proportional to pO2?14 within the range of pO2 from 10?10.2 to 10?5.0 atm at about 1500° C. Based on the present results and the Na2O contents in chondrules. it is suggested that they experienced an instant heating with maximum temperature of 1400–2200° C followed by an immediate cooling.  相似文献   

17.
Partition coefficients for La, Sm, Ho and Lu (REE) between synthetic zircon and felsic, peralkaline liquid were determined at 800°C and 2 kbar water pressure by adding small amounts of REE to experimental charges and analyzing zircons in the quenched runs with an electron microprobe. The preferred zircon/liquid partition coefficients obtained by this method are: La, 1.4–2.1; Sm, 26–40; Ho, 340+; Lu, 72–126. These results confirm the strong heavy rare earth enrichment discovered by Nagasawa (1970) in zircon separates from dacites and granites, but they also introduce a modification to the supposed zircon/liquid partition coefficient pattern. The heavy REE end of the pattern is concave downward, in qualitative resemblance to some garnet/liquid and hornblende/liquid REE partitioning patterns.  相似文献   

18.
Amphibole/liquid partition coefficients for the REE(Damph/liqREE) obtained from natural rocks increase systematically with bulk rock compositional change from basalt to rhyolite and are higher for the middle to heavy REE. Five new experimentally determined sets of DREE (La, Sm, “Eu2+”, Ho, Lu)and 4 published sets are similar to these data and provide values for use in geochemical modelling of magmatic processes involving amphibole, over a range of temperature, pressure and oxygen fugacity. The partition coefficients increase significantly with decreasing temperature, and increase slightly with increasing oxygen fugacity. Pressure does not appear to have a major effect, although one data set suggests increased pressure lowers Damph/liqREE in a basaltic composition.  相似文献   

19.
Beryl crystals from the stockscheider pegmatite in the apical portion of the Li-F granite of the Orlovka Massif in the Khangilay complex, a tantalum deposit, contain an assemblage of melt and fluid inclusions containing two different and mutually immiscible silicate melts, plus an aqueous CO2-rich supercritical fluid. Pure H2O and CO2 inclusions are subordinate. Using the terminology of Thomas R, Webster JD, Heinrich W. Contrib Mineral Petrol 139:394–401 (2000) the melt inclusions can be classified as (i) water-poor type-A and (ii) water-rich type-B inclusions. Generally the primary trapped melt droplets have crystallized to several different mineral phases plus a vapor bubble. However, type-B melt inclusions which are not crystallized also occur, and at room temperature they contain four different phases: a silicate glass, a water-rich solution, and liquid and gaseous CO2. The primary fluid inclusions represent an aqueous CO2-rich supercritical fluid which contained elemental sulfur. Such fluids are extremely corrosive and reactive and were supersaturated with respect to Ta and Zn. From the phase compositions and relations we can show that the primary mineral-forming, volatile-rich melt had an extremely low density and viscosity and that melt-melt-fluid immiscibility was characteristic during the crystallization of beryl. The coexistence of different primary inclusion types in single growth zones underlines the existence of at least three mutually immiscible phases in the melt in which the large beryl crystals formed. Moreover, we show that the inclusions do not represent an anomalous boundary layer.  相似文献   

20.
The influence on olivine/melt transition metal (Mn, Co, Ni) partitioning of substitution in the tetrahedral network of silicate melt structure has been examined at ambient pressure in the 1450-1550 °C temperature range. Experiments were conducted in the systems NaAlSiO4-Mg2SiO4- SiO2 and CaAl2Si2O8-Mg2SiO4-SiO2 with about 1 wt% each of MnO, CoO, and NiO added. These compositions were used to evaluate how, in silicate melts, substitution and ionization potential of charge-balancing cations affect activity-composition relations in silicate melts and mineral/melt partitioning.The exchange equilibrium coefficient, , is a positive and linear function of melt Al/(Al + Si) at constant degree of melt polymerization, NBO/T. The is negatively correlated with the ionic radius, r, of the M-cation and also with the ionization potential (Z/r2, Z = electrical charge) of the cation that serves to charge-balance Al3+ in tetrahedral coordination in the melts. The activity coefficient ratio, (γM/γMg)melt, is therefore similarly correlated.These melt composition relationships are governed by the distribution of Al3+ among coexisting Q-species in the peralkaline (depolymerized) melts coexisting with olivine. This distribution controls Q-speciation abundance, which, in turn, controls (γM/γMg)melt and . The relations between melt structure and olivine/melt partitioning behavior lead to the suggestion that in natural magmatic systems mineral/melt partition coefficients are more dependent on melt composition and, therefore, melt structure the more alkali-rich and the more felsic the melt. Moreover, mineral/melt partition coefficients are more sensitive to melt composition the more highly charged or the smaller the ionic radius of the cation of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号