首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
Very few studies have conducted long-term observations of methane (CH4) flux over forest canopies. In this study, we continuously measured CH4 fluxes over an evergreen coniferous (Japanese cypress) forest canopy throughout 1?year, using a micrometeorological relaxed eddy accumulation (REA) system with tuneable diode laser spectroscopy (TDLS) detection. The Japanese cypress forest, which is a common forest type in warm-temperate Asian monsoon regions with a wet summer, switched seasonally between a sink and source of CH4 probably because of competition by methanogens and methanotrophs, which are both influenced by soil conditions (e.g., soil temperature and soil moisture). At hourly to daily timescales, the CH4 fluxes were sensitive to rainfall, probably because CH4 emission increased and/or absorption decreased during and after rainfall. The observed canopy-scale fluxes showed complex behaviours beyond those expected from previous plot-scale measurements and the CH4 fluxes changed from sink to source and vice versa.  相似文献   

2.
Fisheries and aquaculture are important sources of food for hundreds of millions of people around the world. World fish production is projected to increase by 15% in the next 10 years, reaching around 200 million tonnes per year. The main driver of this increase will be based on fish farming management in developing countries. In Brazil, fish farming is increasing due to the climate conditions and large supply of water resources, with the production system based on Nile tilapia (Oreochromis niloticus) farming in reservoirs. Inland waters like reservoirs are a natural source of methane (CH4) to the atmosphere. However, knowledge of the impact from intensive fish production in net cages on CH4 fluxes is not well known. This paper presents in situ measurements of CH4 fluxes and dissolved CH4 (DM) in the Furnas Hydroelectric Reservoir in order to evaluate the impact of fish farming on methane emissions. Measurements were taken in a control area without fish production and three areas with fish farming. The overall mean of diffusive methane flux (DMF) (5.9?±?4.5 mg CH4 m?2 day?1) was significantly lower when compared to the overall mean of bubble methane flux (BMF) (552.9?±?1003.9 mg CH4 m?2 day?1). The DMF and DM were significantly higher in the two areas with fish farming, whereas the BMF was not significantly different. The DMF and DM were correlated to depth and chlorophyll-a. However, the low production of BMF did not allow the comparison with the limnological parameters measured. This case study shows that CH4 emissions are influenced more by reservoir characteristics than fish production. Further investigation is necessary to assess the impact of fish farming on the greenhouse gas emissions.  相似文献   

3.
We describe a fast response methane sensor based on the absorption of radiation generated with a near-infrared InGaAsP diode laser. The sensor uses an open path absorption region 0.5 m long; multiple pass optics provide an optical path of 50 m. High frequency wavelength modulation methods give stable signals with detection sensitivity (S/N=1, 1 Hz bandwidth) for methane of 65 ppb at atmospheric pressure and room temperature. Improvements in the optical stability are expected to lower the current detection limit. We used the new sensor to measure, by eddy correlation, the CH4 flux from a clay-capped sanitary landfill. Simultaneously we measured the flux of CO2 and H2O. From seven half-hourly periods of data collected after a rainstorm on November 23, 1991, the average flux of CH4 was 17 mmol m–2 hr–1 (6400 mg CH4 m–2 d–1) with a coefficient of variation of 25%. This measurement may underrepresent the flux by 15% due to roll-off of the sensor response at high frequency. The landfill was also a source of CO2 with an average flux of 8.1 mmol m–2 hr–1 (8550 mg CO2 m–2 d–1) and a coefficient of variation of 26%. A spectral analysis of the data collected from the CH4, CO2, and H2O sensors showed a strong similarity in the turbulent transfer mechanisms.  相似文献   

4.
CO2 fluxes were measured continuously for three years (2003?C2005) using the eddy covariance technique for the canopy layer with a height of 27 m above the ground in a dominant subtropical evergreen forest in Dinghushan, South China. By applying gapfilling methods, we quantified the different components of the carbon fluxes (net ecosystem exchange (NEE)), gross primary production (GPP) and ecosystem respiration (Reco) in order to assess the effects of meteorological variables on these fluxes and the atmospherecanopy interactions on the forest carbon cycle. Our results showed that monthly average daily maximum net CO2 exchange of the whole ecosystem varied from ?3.79 to ?14.24 ??mol m?2 s?1 and was linearly related to photosynthetic active radiation. The Dinghushan forest acted as a net carbon sink of ?488 g C m?2 y?1, with a GPP of 1448 g Cm?2 y?1, and a Reco of 961 g C m?2 y?1. Using a carboxylase-based model, we compared the predicted fluxes of CO2 with measurements. GPP was modelled as 1443 g C m?2 y?1, and the model inversion results helped to explain ca. 90% of temporal variability of the measured ecosystem fluxes. Contribution of CO2 fluxes in the subtropical forest in the dry season (October-March) was 62.2% of the annual total from the whole forest ecosystem. On average, 43.3% of the net annual carbon sink occurred between October and December, indicating that this time period is an important stage for uptake of CO2 by the forest ecosystem from the atmosphere. Carbon uptake in the evergreen forest ecosystem is an indicator of the interaction of between the atmosphere and the canopy, especially in terms of driving climate factors such as temperature and rainfall events. We found that the Dinghushan evergreen forest is acting as a carbon sink almost year-round. The study can improve the evaluation of the net carbon uptake of tropical monsoon evergreen forest ecosystem in south China region under climate change conditions.  相似文献   

5.
The main goal of this work is to describe the anthropogenic energy flux (Q F) in the city of S?o Paulo, Brazil. The hourly, monthly, and annual values of the anthropogenic energy flux are estimated using the inventory method, and the contributions of vehicular, stationary, and human metabolism sources from 2004 to 2007 are considered. The vehicular and stationary sources are evaluated using the primary consumption of energy based on fossil fuel, bio fuel, and electricity usage by the population. The diurnal evolution of the anthropogenic energy flux shows three relative maxima, with the largest maxima occurring early in the morning (??19.9 Wm?2) and in the late afternoon (??20.3 Wm?2). The relative maximum that occurs around noontime (??19.6 Wm?2) reflects the diurnal pattern of vehicle traffic that seems to be specific to S?o Paulo. With respect to diurnal evolution, the energy flux released by vehicular sources (Q FV) contributes approximately 50% of the total anthropogenic energy flux. Stationary sources (Q FS) and human metabolism (Q FM) represent about 41% and 9% of the anthropogenic energy flux, respectively. For 2007, the monthly values of Q FV, Q FS, Q FM, and Q F are, respectively, 16.8?±?0.25, 14.3?±?0.16, 3.5?±?0.03, and 34.6?±?0.41?MJ?m?2?month?1. The seasonal evolution monthly values of Q FV, Q FS, Q FM, and Q F show a relative minimum during the summer and winter vacations and a systematic and progressive increase associated with the seasonal evolution of the economic activity in S?o Paulo. The annual evolution of Q F indicates that the city of S?o Paulo released 355.2?MJ?m?2?year?1 in 2004 and 415.5?MJ?m?2?year?1 in 2007 in association with an annual rate of increase of 19.6?MJ?m?2?year?1 (from 2004 to 2006) and 30.5?MJ?m?2?year?1 (from 2006 to 2007). The anthropogenic energy flux corresponds to about 9% of the net radiation at the surface in the summer and 15% in the winter. The amplitude of seasonal variation of the maximum hourly value of the diurnal variation increases exponentially with latitude.  相似文献   

6.
Wetland ecosystems are the most important natural methane (CH4) sources, whose fluxes periodically fluctuate. Methanogens (methane producers) and methanotrophs (methane consumers) are considered key factors affecting CH4 fluxes in wetlands. However, the symbiotic relationship between methanogens and methanotrophs remains unclear. To help close this research gap, we collected and analyzed samples from four soil depths in the Dajiuhu subalpine peatland in January, April, July, and October 2019 and acquired seasonal methane flux data from an eddy covariance (EC) system, and investigated relationships. A phylogenetic molecular ecological networks (pMENs) analysis was used to identify keystone species and the seasonal variations of the co-occurrence patterns of methanogenic and methanotrophic communities. The results indicate that the seasonal variations of the interactions between methanogenic and methanotrophic communities contributed to CH4 emissions in wetlands. The keystone species discerned by the network analysis also showed their importance in mediating CH4 fluxes. Methane (CH4) emissions in wetlands were lowest in spring; during this period, the most complex interactions between microbes were observed, with intense competition among methanogens while methanotrophs demonstrated better cooperation. Reverse patterns manifested themselves in summer when the highest CH4 flux was observed. Methanoregula formicica was negatively correlated with CH4 fluxes and occupied the largest ecological niches in the spring network. In contrast, both Methanocella arvoryzae and Methylocystaceae demonstrated positive correlations with CH4 fluxes and were better adapted to the microbial community in the summer. In addition, soil temperature and nitrogen were regarded as significant environmental factors to CH4 fluxes. This study was successful in explaining the seasonal patterns and microbial driving mechanisms of CH4 emissions in wetlands.  相似文献   

7.
Methane fluxes from municipal solid waste landfills in Surgut and Khanty-Mansiysk are assessed in August 2015 by the inverse modeling method. It is revealed that the methane flux values vary from 0.3 to 5.8 g CH4/(m2 hour). The highest value of the methane flux is typical of a landfill that is currently used for the waste disposal and is not covered with the soil layer, whereas the lowest value was obtained for a closed small-capacity landfill covered with soil and vegetation.  相似文献   

8.
Abstract

Methane emissions measured at three subarctic fen sites by dynamic and static chambers were compared; in the dynamic chambers, the air was circulated at a wind speed of 1.9 m s?1. Emissions ranged from 7 to 214 mg CH4 m?2 d?1 and measurements from the two types of chamber were strongly correlated (r2 = 0.72), with no overall difference between the means (paired t‐test, p = 0.34) and with only 4 of the 14 comparisons showing statistically different means (t‐test, p < 0.25). The overall ratio of dynamic: static chamber fluxes was 1.24, but was highest (1.68) at the wettest, central site and lowest (0.74) at the driest, edge site. The coefficients of variation of chamber flux measurements at each site ranged from 0.13 to 1.77, with an overall average of 0.53; sampling with over 30 static chambers revealed approximately normal distributions at the edge and middle sites and a positively skewed distribution at the central site. Within both static and dynamic chambers, methane concentrations increased linearly through 24 h. These inexpensive, portable static chambers can be used to replicate methane emission measurements within a wide range of wetland sites.  相似文献   

9.
A high resolution tunable diode laser absorption spectrometer (TDLAS) was used to measure the broadening effect of water vapor and other gases (dry air, nitrogen, oxygen, hydrogen and helium) on three methane lines in the v4 fundamental. The effects on methane eddy correlation flux measurements amount to a few percent for the least broadened line for expected H2O fluxes, to 10% for the most broadened line for higher H2O and lower CH4 fluxes likely to be encountered. The broadening coefficients of methane measured for air, N2, O2, and He are in good agreement with recently published values.  相似文献   

10.
Emissions of biogenic volatile organic compounds (BVOC) were measured using a relaxed eddy accumulation (REA) technique on an above-canopy tower in a temperate forest (Changbai Mountain, Jilin province, China) during the 2010 and 2011 summer seasons. Solar global radiation and photosynthetically active radiation (PAR) were also measured. Based on PAR energy dynamic balance, an empirical BVOC emission and PAR transfer model was developed that includes the processes of BVOC emissions and PAR transfer above the canopy level, including PAR absorption and consumption, and scattering by gases, liquids, and particles (GLPs). Simulated emissions of isoprene and monoterpenes were in agreement with observations. The averages of the relative estimator biases for the flux were 39.3 % for isoprene, and 27.1 % for monoterpenes in the 2010 and 2011 growing seasons, with NMSE (normalized mean square error) values of 0.133 and 0.101, respectively. The observed and simulated mean diurnal variations of isoprene and monoterpenes in the 2010 and 2011 growing seasons were evaluated for the validation of the empirical model. Under observed atmospheric conditions, the sensitivity analysis showed that emissions of isoprene and monoterpenes were more sensitive to changes in PAR than to water vapor content or to the magnitude of the scattering factor. The emissions of isoprene and monoterpenes in the 2010 and 2011 growing seasons (from June to September) were estimated using this empirical model along with hourly observational data, with mean hourly emissions of 1.71 and 1.55 mg m?2 h?1 for isoprene, and 0.48 and 0.47 mg m?2 h?1 for monoterpenes in 2010 and 2011, respectively. As formaldehyde (HCHO) is considered as the main oxidation product of isoprene and monoterpenes, it is necessary to investigate the link between HCHO and BVOC emissions. GOME-2 HCHO vertical column densities (VCDs) can be used to estimate BVOC emission fluxes in the Changbai Mountain temperate forest.  相似文献   

11.
The most direct method for flux estimation uses eddy covariance, which is also the most commonly used method for land-based measurements of surface fluxes. Moving platforms are frequently used to make measurements over the sea, in which case motion can disturb the measurements. An alternative method for flux estimation should be considered if the effects of platform motion cannot be properly corrected for. Three methods for estimating CO2 fluxes are studied here: the eddy-covariance, the inertial-dissipation, and the cospectral-peak methods. High-frequency measurements made at the land-based Östergarnsholm marine station in the Baltic Sea and measurements made from a ship during the Galathea 3 expedition are used. The Kolmogorov constant for CO2, used in the inertial-dissipation method, is estimated to be 0.68 and is determined using direct flux measurements made at the Östergarnsholm site. The cospectral-peak method, originally developed for neutral stratification, is modified to be applicable in all stratifications. With these modifications, the CO2 fluxes estimated using the three methods agree well. Using data from the Östergarnsholm site, the mean absolute error between the eddy-covariance and inertial-dissipation methods is 0.25 μmol  m?2 s?1. The corresponding mean absolute error between the eddy-covariance and cospectral-peak methods is 0.26 μmol m?2 s?1, while between the inertial-dissipation and cospectral-peak methods it is 0.14 μmol m?2 s?1.  相似文献   

12.
A pilot study to measure methane flux using eddy correlation sensors was conducted in a peatland ecosystem in north central Minnesota. A prototype tunable diode laser spectrometer system was employed to measure the fluctuations in methane concentration.The logarithmic cospectrum of methane concentration and vertical wind velocity fluctuations under moderately unstable conditions had a peak nearf = 0.10 (wheref is the nondimensional frequency) and was quite similar to the cospectra of water vapor and sensible heat. Daytime methane flux during the first two weeks of August ranged from 120 to 270 mg m-2 day-1. The temporal variation in methane fluxes was consistent with changes in peat temperature and water table elevation. Our results compared well with the range of values obtained in previous studies in Minnesota peatlands.These field observations demonstrate the utility of the micrometeorological eddy correlation technique for measuring surface fluxes of methane. The current state-of-the-art in tunable diode laser spectroscopy makes this approach practical for use in key ecosystems.Published as Paper No. 9556, Journal Series, Nebraska Agricultural Research Division.  相似文献   

13.
The Validity of Similarity Theory in the Roughness Sublayer Above Forests   总被引:1,自引:0,他引:1  
Flux-gradient relationships based upon similarity theory have been reported to severely underestimate scalar fluxes in the roughness sublayer above forests, as compared to independent flux estimates (for example, eddy covariance or energy balance measurements). This paper presents the results of a unique three-month investigation into the validity of similarity theory in the roughness sublayer above forests. Eddy covariance and flux-gradient measurements of carbon dioxide (CO2) exchange were compared above a mixed deciduous forest at Camp Borden, Ontario, both before and after leaf senescence. The eddy covariance measurements used a Li-Cor infrared gas analyzer, and the flux-gradient (similarity theory) measurements featured a tunable diode laser Trace Gas Analysis System (TGAS). The TGAS resolved the CO2 concentration difference to 300 parts per trillion by volume (ppt) based upon a half-hour sampling period. The measured enhancement factor (the ratio of independent flux estimates, in this case eddy covariance, to similarity theory fluxes) was smaller and occurred closer to the canopy than in most previous investigations of similarity theory. Very good agreement between the eddy covariance and similarity theory fluxes was found between 1.9 and 2.2 canopy heights (hc), and the mean enhancement factors measured before and after leaf senescence were 1.10 plusmn; 0.06 and 1.24 ± 0.07, respectively. Larger discrepancies were measured closer to the canopy (1.2 to 1.4 hc), and mean enhancement factors of 1.60 ± 0.10 and 1.82 ± 0.11 were measured before and after leaf senescence, respectively. Overall, the Borden results suggest that similarity theory can be used within the roughness sublayer with a greater confidence than previously has been believed.  相似文献   

14.
Vertical turbulent fluxes of water vapour, carbon dioxide, and sensible heat were measured from 16 August to the 28 September 2006 near the city centre of Münster in north-west Germany. In comparison to results of measurements above homogeneous ecosystem sites, the CO2 fluxes above the urban investigation area showed more peaks and higher variances during the course of a day, probably caused by traffic and other varying, anthropogenic sources. The main goal of this study is the introduction and establishment of a new gap filling procedure using radial basis function (RBF) neural networks, which is also applicable under complex environmental conditions. We applied adapted RBF neural networks within a combined modular expert system of neural networks as an innovative approach to fill data gaps in micrometeorological flux time series. We found that RBF networks are superior to multi-layer perceptron (MLP) neural networks in the reproduction of the highly variable turbulent fluxes. In addition, we enhanced the methodology in the field of quality assessment for eddy covariance data. An RBF neural network mapping system was used to identify conditions of a turbulence regime that allows reliable quantification of turbulent fluxes through finding an acceptable minimum of the friction velocity. For the data analysed in this study, the minimum acceptable friction velocity was found to be 0.15 m s−1. The obtained CO2 fluxes, measured on a tower at 65 m a.g.l., reached average values of 12 μmol m−2 s−1 and fell to nighttime minimum values of 3 μmol m −2 s−1. Mean daily CO2 emissions of 21 g CO2 m−2d −1 were obtained during our 6-week experiment. Hence, the city centre of Münster appeared to be a significant source of CO2. The half-hourly average values of water vapour fluxes ranged between 0.062 and 0.989 mmol m−2 s−1and showed lower variances than the simultaneously measured fluxes of CO2.  相似文献   

15.
Two almost identical eddy covariance measurement setups were used to measure the fogwater fluxes to a forest ecosystem in the “Fichtelgebirge” mountains (Waldstein research site, 786 m a.s.l.) in Germany. During the first experiment, an intercomparison was carried out with both setups running simultaneously at the same measuring height on a meteorological tower, 12.5 m above the forest canopy. The results confirmed a close agreement of the turbulent fluxes between the two setups, and allowed to intercalibrate liquid water content (LWC) and gravitational fluxes. During the second experiment, the setups were mounted at a height of 12.5 and 3 m above the canopy, respectively. For the 22 fog events, a persistent negative flux divergence was observed with a greater downward flux at the upper level. To extrapolate the turbulent liquid water fluxes measured at height z to the canopy of height hc, a conversion factor 1/[1+0.116(zhc)] was determined. For the fluxes of nonvolatile ions, no such correction is necessary since the net evaporation of the fog droplets appears to be the primary cause of the vertical flux divergence. Although the net evaporation reduces the liquid water flux reaching the canopy, it is not expected to change the absolute amount of ions dissolved in fogwater.  相似文献   

16.
A system capable of measuring the fluxes of trace gases was developed. It is based on a simpler version of the eddy-accumulation technique (EA), known as the relaxed eddy-accumulation technique (REA). It accumulates air samples associated with updrafts and downdrafts at a constant flow rate in two containers for later analysis of the trace gas mean concentration. The flux integration is based on the durations of updraft and downdraft events, rather than on the vertical wind velocity (W) as is the case for EA and eddy-correlation (EC) techniques. The flux, calculated by the REA technique, is equal to the difference in the mean concentration of the trace gas of interest between the upward and downward moving eddies, multiplied by the standard deviation of the vertical wind velocity and an empirical coefficient. CO2 fluxes measured for 162 half-hour periods over a soybean field by both EC and REA techniques showed excellent agreement (coefficient of determination,R 2=0.92). The slope (0.985) and the intercept (–0.042 mg m–2 s–1) were not significantly different from 1 and 0, respectively, at the 5% level; and the standard error of estimate was 0.074 mg m–2 s–1. It is also shown that the empirical coefficient can be calculated from either latent or sensible heat fluxes. A model describing the effect on this empirical coefficient of not sampling aroundW equal to zero is proposed.Centre for Land and Biological Resources Research Contribution No. 92-212.  相似文献   

17.
An experimental micrometeorological set-up was established at the CARBOEURO-FLUX site in Tharandt, Germany, to measure all relevant variables for the calculation of the vertical and horizontal advective fluxes of carbon dioxide. The set-up includes two auxiliary towers to measure horizontal and vertical CO2 and H2O gradients through the canopy, and to make ultrasonic wind measurements in the trunk space. In combination with the long-term flux tower an approximately even-sided prism with a typical side-length of 50 m was established. It is shown that under stable (nighttime) conditions the mean advective fluxes have magnitudes on the same order as the daily eddy covariance (EC) flux, which implies that they play a significant, but not yet fully understood, role in the carbon budget equation. The two advective fluxes are opposite and seem to cancel each other at night (at least for these measurements). During the day, vertical advection tends to zero, while horizontal advection is still present implying a flow of CO2 out of the control volume. From our measurements, a mean daily gain of 2.2 gC m–2 d–1 for the horizontal advection and a mean daily loss of 2.5 gC m–2d–1 for the vertical advection is calculated for a period of 20 days. However the large scatter of the advective fluxes has to be further investigated. It is not clear yet whether the large variability is natural or due to measurement errors and conceptual deficiencies of the experiment. Similar results are found in the few comparable studies.  相似文献   

18.
Methane emission from West Siberian forest-steppe and subtaiga reed fens (that is, fens dominated by Phragmites australis) observed in summer 2013, is considered using the static chamber method. The obtained medians of CH4 fluxes varied from -0.08 to 2.7 mg CH4/m2 per hour. Eenvironmental factors affecting methane emission are analyzed. It was found that CH4 emissions from the reed fens correlate only with the concentration of salt ions in the wetland water and with the plant community structure. The latter probably also depends on water salinity. It was revealed that in fens the ratio between fluxes of CH4 and CO2 does not depend on the water table level that contradicts the general pattern simulated by mathematical models of CH4 emission. It was found that Phragmites australis fens and similar ecosystems should be considered as a separate wetland class from the point of view of methane emission study.  相似文献   

19.
Eddy correlation equipment was used to measure mass and energy fluxes over a soybean crop. A rapid response CO2 sensor, a drag anemometer, a Lyman-alpha hygrometer and a fine wire thermocouple were used to sense the fluctuating quantities.Diurnal fluxes of sensible heat, latent heat and CO2 were calculated from these data. Energy budget closure was obtained by summing the sensible and latent heat fluxes determined by eddy correlation which balanced the sum of net radiation and soil heat flux. Peak daytime CO2 fluxes were near 1.0 mg m–2 (ground area) s–1.The eddy correlation technique was also employed in this study to measure nocturnal CO2 fluxes caused by respiration from plants, soil, and roots. These CO2 fluxes ranged from - 0.1 to - 0.25 mg m–2s–1.From the data collected over mature soybeans, a relationship between CO2 flux and photosynthetically active radiation (PAR) was developed. The crop did not appear to be light-saturated at PAR flux densities < 1800 Ei m–2 s–1. The light compensation point was found to be about 160 Ei m–2 s–1.Published as Paper No. 7402, Journal Series, Nebraska Agricultural Experiment Station. The work reported here was conducted under Nebraska Agricultural Experiment Station Project 27-003 and Regional Research Project 11–33.Post-doctoral Research Associate, Professor and Professor, respectively. Center for Agricultural Meteorology and Climatology, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, NE 68583-0728.  相似文献   

20.
The eddy covariance technique was used to measure the CO2 flux over four differently grazed Leymus chinensis steppe ecosystems (ungrazed since 1979 (UG79), winter grazed (WG), continuously grazed (CG), and heavily grazed (HG) sites) during four growing seasons (May to September) from 2005 to 2008, to investigate the response of the net ecosystem exchange (NEE) over grassland ecosystems to meteorological factors and grazing intensity. At UG79, the optimal air temperature for the half-hourly NEE occurred between 17 and 20 °C, which was relatively low for semi-arid grasslands. The saturated NEE (NEEsat) and temperature sensitivity coefficient (Q 10) of ecosystem respiration (RE) exhibited clear seasonal and interannual variations, which increased with canopy development and the soil water content (SWC, at 5 cm). The total NEE values for the growing seasons from 2005 to 2008 were ?32.0, ?41.5, ?66.1, and ?89.8 g C m?2, respectively. Both the amounts and distribution of precipitation during the growing season affected the NEE. The effects of grazing on the CO2 flux increased with the grazing intensity. During the peak growth stage, heavy grazing and winter grazing decreased NEEsat and gross primary production (45 % for HG and 34 % for WG) due to leaf area removal. Both RE and Q 10 were clearly reduced by heavy grazing. Heavy grazing changed the ecosystem from a CO2 sink into a CO2 source, and winter grazing reduced the total CO2 uptake by 79 %. In the early growing season, there was no difference in the NEE between CG and UG79. In addition to the grazing intensity, the effects of grazing on the CO2 flux also varied with the vegetation growth stages and SWC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号