首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The phase relationship between climate parameters during terminations gives insight into deglaciation mechanisms. By combining foraminiferal Mg/Ca and alkenone thermometers with planktonic and benthic foraminiferal δ18O, we determined the phase relationship between local sea surface temperature (SST) and global seawater δ18O changes in the Coral Sea in the Southwestern Pacific over the last 360 ka. The onset of the SST warming preceded the seawater δ18O change by several ka for Termination I, II and III. During Termination I, the SST warming started at 20 ka BP, earlier than atmospheric CO2 rise suggesting that the greenhouse effect was not the main trigger of this early warming. Compilation of 14C-dated SST records from the whole Pacific during Termination I reveals that the onset of the warming is generally earlier in the Southern and the tropical Pacific than in the North Pacific. This spatio-temporal warming pattern suggests linkage between the southern ocean and tropical Pacific. The early tropical warming could provide heat and moisture to the northern high latitudes, modifying radiative balance and precipitation over ice sheets at the onset of deglaciation.  相似文献   

2.
The palaeoceanographic evolution of the SW Svalbard shelf west of Hornsund over the last 14 000 years was reconstructed using benthic foraminiferal assemblages, stable oxygen and carbon isotopes, and grain‐size and ice‐rafted debris data. The results reveal the complexity of the feedbacks influencing the shelf environment: the inflow of Atlantic and Arctic waters (AW and ArW, respectively), and the influence of sea ice and tidewater glaciers. The inflow of subsurface AW onto the shelf gradually increased with the first major intrusion at the end of the Bølling‐Allerød. During the Younger Dryas, the shelf was affected by fresh water originating from sea ice and glacier discharge. Glaciomarine conditions prevailed until the earliest Holocene with the intense deliveries of icebergs and meltwater from retreating glaciers and the occasional penetration of AW onto the shelf. Other major intrusions of AW occurred before and after the Preboreal oscillation (early Holocene), which resulted in more dynamic and open‐water conditions. Between 10.5 and 9.7 cal. ka BP, the shelf environment transformed from glaciomarine to open marine conditions. Between c. 9.7 and 6.1 cal. ka BP the AW advection reached its maximum, resulting in a highly dynamic and productive environment. At c. 6.1 cal. ka BP, the inflow of AW onto the Svalbard shelf decreased due to the intensification of the Greenland Gyre and the subduction of AW under the sea‐ice‐bearing ArW. Bioproductivity decreased over the next c. 5500 years. During the Little Ice Age, bioproductivity increased due to favourable conditions in the marginal sea‐ice zone despite the effects of cooling. The renewed advection of AW after AD 1850 started the climate warming trend observed presently. Our findings show that δ18O can be used to reconstruct the dominances of different water‐masses and, with some caution, as a proxy for the presence of sea ice in frontal areas over the northwestern Eurasian shelves.  相似文献   

3.
The effect of seeping of methane on marine sediment records has been studied in four gravity cores from Vestnesa Ridge, Svalbard margin. The area shows acoustic signs in the form of flares indicating active methane gas seepage. For a better understanding of the timing and variability of the flux of methane in the past and the effects on potential proxies, a detailed study of the diagenetic processes that may affect the composition and structure of both sediments and foraminiferal shells is needed. Here we discuss deep‐sea records from methane‐influenced environments in three cores from an active and very heterogeneous seep‐area (pockmark) and one core from outside the pockmark for background. The results include the distribution and stable isotopes of authigenic carbonates and of benthic and planktonic foraminifera, magnetic susceptibility, AMS‐14C dates, sedimentary data and biostratigraphy. Extremely low δ13C values recorded in both benthic and planktonic foraminifera during the Bølling‐Allerød interstadials indicate possible increased methane flux beginning at late Heinrich event H1. The recorded low values are mainly a result of diagenetic overprint by methane‐derived authigenic carbonates. The δ18O signals of authigenic carbonates are close to those of foraminiferal calcite and thus the δ18O records remain a valid stratigraphical tool in methane seep sites, except in the case of severely encrusted samples. In addition, the records from the active pockmark show nearly constant values of low magnetic susceptibility in contrast to higher and more variable magnetic susceptibility values from the control station and other published records from normal sediments west of Svalbard. This phenomenon is probably caused by dissolution of magnetic minerals in the reducing environmental conditions of methane seep sediments, associated with anaerobic oxidation of methane and formation of paramagnetic minerals (pyrite). This process enables magnetic susceptibility to be used as a common diagnostic tool for identifying methane‐related palaeo‐reductive environments.  相似文献   

4.
A paleoceanographic reconstruction of the southern Panama Basin for the last 23.000 years, based on the benthic foraminiferal analysis from the deep sea core ME0005A-24JC (0.01°N, 86.28°W, water depth 2941) is presented. Cluster and SHEBI (SHE Analysis for Biozone Identification) analyses performed on the benthic foraminiferal assemblages, evidence a faunal turnover in the early Holocene at 14 ky BP. Between 23 and 14 ky BP, Fursenkoina rotundata, Hoeglundina elegans, Globobulimina affinis, Globobulimina pacifica, Cibicidoides wuellerstorfi and Uvigerina hispidocostata were common. Conversely, from 14 ky to the present, the assemblage is represented by Chilostomella oolina, Laticarinina pauperata, and Uvigerina proboscidea. This faunal turnover suggests significant fluctuations in oxygen content at the sea floor and the organic matter (OM) influx, which could reflect: (1) fluctuations in the surface productivity related to the equatorial divergence and, (2) OM advection caused by the dynamic of the deep sea currents.Paleoproductivity estimates and benthic foraminiferal rates depict a general trend towards lower values since the Last Glacial Maximum (LGM) with a conspicuous change at 14 ky BP. Therefore, the paleoceanographic reconstructions of the ME0005A-24JC core suggest a transition from La Niña-like conditions during the LGM to El Niño-like conditions in the recent, as previously proposed for the Eastern Equatorial Pacific. Estimates of the paleo-intensity of deep sea currents based on the relative percentage abundance of the epifaunal foraminifera Cibicidoides wuellerstorfi suggest stronger deep sea currents on the Carnegie Ridge before 14 ky BP.  相似文献   

5.
《Quaternary Science Reviews》2003,22(5-7):673-689
Evidence is presented demonstrating intermediate water (∼500 m) temperature variability at ODP Hole 893A in Santa Barbara Basin during submillennial climate change (11–60 ka). Benthic δ18O oscillations are considered to result primarily from shifts in intermediate water temperature at the site. Detailed comparison of both benthic and planktonic records from the basin provide crucial evidence for differing surface and intermediate water mass temporal responses to rapid climate change. Gradual warming of intermediate water compared to abrupt cooling suggests mechanistic differences between processes controlling North Pacific Intermediate Water expansion and contraction relative to ‘southern component’ intermediate waters. Comparisons suggest intermediate water warming preceded (by 60–200 years) the most rapid interval of surface warming inferred to be associated with North Pacific atmospheric reorganization. Tropical forcing of sea level anomalies in the eastern Pacific via trade wind strength may control California Undercurrent flow (300–500 m) and be the cause of early intermediate water warming in Santa Barbara Basin.  相似文献   

6.
The Global Stratotype Section and Point for the Palaeocene/Eocene (P/E) boundary was defined at Dababiya Quarry (Egypt) at the base of the carbon isotope excursion (CIE). We present the first detailed analysis of Palaeocene–Eocene benthic foraminifera from Dababiya, in order to infer the palaeoenvironmental turnover across the P/E boundary. At Dababiya, the CIE coincides with a major turnover in foraminiferal assemblages; the last occurrence of Angulogavelinella avnimelechi, at the base of the CIE, may be correlated to the main phase of extinction of deep-sea benthic foraminifera. Benthic foraminifera indicate that stressful conditions such as oxygen deficiency, carbonate dissolution, and changes in food supply, persisted at the sea floor over most of the CIE interval. The main phase of recovery of benthic foraminifera is recorded c. 250 cm above the P/E boundary, and it may be linked to increased productivity and oxygenation at the sea floor.  相似文献   

7.
Western tropical Pacific sea surface temperatures and Pacific Deep Water temperatures during Marine Isotope Stage 3 have been reconstructed from the δ18O and Mg/Ca of planktonic and benthic foraminifera from Marion Dufresne core MD98-2181. This 36 m marine core was collected at 6.3°N from a water depth of 2114 m. With sediment accumulation rates of up to 80 cm/ky, it provides a decadally resolved history of ocean variability during the Last Glacial period. Surface temperatures and salinities at this site varied in close association with millennial-scale atmospheric temperature swings at high northern latitudes as reflected in the GISP2 ice core. At times of colder atmospheric temperatures over Greenland, the western Pacific was more saline and summer season SSTs were ~2 °C colder. These millennial-scale changes within the tropics are attributed to a southward displacement of the summer season ITCZ in response to steeper meridional temperature gradients within the Pacific. The benthic δ18O record from MD98-2181 documents upper Pacific Deep Water temperature and salinity variability. Benthic δ18O variations of 0.3–0.5‰ during MIS 3 indicate deep waters within the Pacific were varying by ~1–1.5 °C, with the possibility that some of the variability was due to changing salinity and minor glacial–eustatic changes. The observed deep-water variability correlates to changes in Antarctic surface temperatures and thus reflects changes in Southern Ocean temperatures at the site of Pacific Deep Water formation. The combined planktonic and benthic records from MD98-2181 thus provide a northern and southern hemispheric climate record of anti-phased variability during MIS 3 as has been inferred previously from ice core records. Furthermore, the deep sea temperature excursions appear to have led millennial variations in atmospheric CO2 as recorded in the EDML ice core by ~1 kyr.  相似文献   

8.
A high‐resolution record, covering 9.3–0.2 ka BP, from the sub‐arctic Stjernsund (70°N) was studied for benthic foraminiferal faunas and stable isotopes, revealing three informally named main phases during the Holocene. The Early‐ to Mid‐Holocene (9.3–5.0 ka BP) was characterized by the strong influence of the North Atlantic Current (NAC), which prevented the reflection of the Holocene Climatic Optimum (HCO) in the bottom‐water temperature. During the Mid‐Holocene Transition (5.0–2.5 ka BP), a turnover of benthic foraminiferal faunas occurred, Atlantic Water species decreased while Arctic‐Polar species increased, and the oxygen isotope record showed larger fluctuations. Those variations correspond to a period of global climate change, to spatially more heterogeneous benthic foraminiferal faunas in the Nordic Seas region, and to regionally diverging terrestrial temperatures. The Cool Late Holocene (2.5–0.2 ka BP) was characterized by increased abundances of Arctic‐Polar species and a steady cooling trend reflected in the oxygen isotopes. In this period, our record differs considerably from those on the SW Barents Sea shelf and locations farther south. Therefore, we argue that regional atmospheric cooling triggered the late Holocene cooling trend. Several cold episodes centred at 8.3, 7.8, 6.5, 4.9, 3.9 and 3.3 ka BP were identified from the benthic foraminiferal faunas and the δ18O record, which correlated with marine and atmospherically driven proxy records. This suggests that short‐term cold events may result from reduced heat advection via the NAC or from colder air temperatures.  相似文献   

9.
The Baltic Sea (~393 000 km2) is the largest brackish sea in the world and its hydrographic and environmental conditions are strongly dependent on the frequency of saline water inflows from the North Sea. To improve our understanding of the natural variability of the Baltic Sea ecosystem detailed reconstructions of past saline water inflow changes based on palaeoecological archives are needed. Here we present a high‐resolution study of benthic foraminiferal assemblages accompanied by sediment geochemistry (loss on ignition, total organic carbon) and other microfossil data (ostracods and cladocerans) from a well‐dated 8‐m‐long gravity core taken in the Bornholm Basin. The foraminiferal diversity in the core is low and dominated by species of Elphidium. The benthic foraminiferal faunas in the central Baltic require oxic bottom water conditions and salinities >11–12 PSU. Consequently, shell abundance peaks in the record reflect frequent saline water inflow phases. The first appearance of foraminiferal tests and ostracods in the investigated sediment core is dated to c. 6.9 cal. ka BP and attributed to the first inflows of saline and oxygenated bottom waters into the Bornholm Basin during the Littorina Sea transgression. The transgression terminated the Ancylus Lake phase, reflected in the studied record by abundant cladocerans. High absolute foraminiferal abundances are found within two time intervals: (i) c. 5.5–4.0 cal. ka BP (Holocene Thermal Maximum) and (ii) c. 1.3–0.75 cal. ka BP (Medieval Climate Anomaly). Our data also show three intervals of absent or low saline water inflows: (i) c. 6.5–6.0 cal. ka BP, (ii) c. 3.0–2.3 cal. ka BP and (iii) c. 0.5–0.1 cal. ka BP (Little Ice Age). Our study demonstrates a strong effect of saline and well‐oxygenated water inflows from the Atlantic Ocean on the Baltic Sea ecosystem over millennial time scales, which is linked to the major climate transitions over the last 7 ka.  相似文献   

10.
The structure of the glacial ocean was significantly different to that of the present day with intermediate to mid-depth waters being notably more δ13C enriched than deep waters. This contrast was especially pronounced in the South Atlantic suggesting the development of a sharp chemical divide, or ‘chemocline’, at around 2500 m water depth between upper and lower layers, with implications for deep-ocean carbon storage [Hodell et al., 2003. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochemistry, Geophysics, Geosystems, 4(1): doi: 1004 10.1029/2002GC000367.]. We evaluate existing benthic foraminiferal δ13C, Cd/Ca and derived carbon isotope air–sea exchange signature (δ13Cas) data sets for the Atlantic during the Last Glacial Maximum (LGM), and Marine Isotope Stages (MIS) 6 and 8 in order to examine the regional extent of the chemocline in the South Atlantic. Benthic δ13C data north of the approximate latitude of the LGM Subantarctic Front (LGM-SAF, 43°S) linearly decrease with water depth, indicative of mixing between upper ‘well’ and lower ‘poorly’ ventilated water masses, with little evidence of the sharp chemical divide. Conversely, benthic δ13C data south of the LGM-SAF below 2500 m water depth are uniformly around ?0.8‰. The apparent δ13C gradient across the LGM-SAF suggests enhanced mid-depth ventilation north of the SAF and reduced ventilation to the south. From this pattern we conclude that the regional chemocline in the South Atlantic constituted a dominantly meridional, rather than a vertical gradient, and was developed during at least the past three glacial periods. Benthic Cd/Ca data indicate that the gradient was not nutrient related, although further data from the South Atlantic are needed for a better assessment of this suggestion. The combined benthic δ13C and Cd/Ca data indicate the source of well-ventilated upper waters in the South Atlantic changed from Northern Component Water (NCW) during early glacial phases to Upper Southern Component Water (USCW) during mid-to-late glacial phases when the Southern Ocean may have become isolated. USCW maintained a positive δ13C and δ13Cas signature simulating a North Atlantic origin that has been implicated in previous studies. The data demonstrate that secular imprints on δ13C must be taken into consideration when assessing the implications of the vertical δ13C gradient. This data also supports a variable water column architecture and modes of water mass formation as primary means to draw down atmospheric CO2 and storage in the abyssal ocean by involving processes occurring on either side of the SAF in the glacial Southern Ocean.  相似文献   

11.
We discuss water oxygen isotopes (δ18Ow) and carbon isotopes of dissolved inorganic carbon (δ13CDIC) of brine‐enriched shelf water (BSW) from Storfjorden (southern Svalbard) in comparison to Recent benthic foraminiferal δ18Oc and δ13Cc calcified in the same water. We determined relatively high δ18Ow values of 0.15±0.03‰ VSMOW in BSW below sill depth at temperatures below ?1.8 °C, and high δ18Oc values of 3.90±0.18‰ VPDB. Such high BSW δ18Ow cannot significantly deplete 18Ow contents of Arctic Ocean deep water; furthermore, such high δ18Oc cannot be distinguished from δ18Oc values of 3.82±0.12‰, calcified in warmer Arctic and Nordic seas intermediate and deeper waters. Today, in Storfjorden low benthic δ13Cc and high δ18Oc reflect the low δ13CDIC and relatively high δ18Ow of BSW. High benthic δ18Oc is in contrast to expected low δ18Oc as brine rejection is widely thought to predominantly take place in surface water diluted by meteoric water with very low δ18Ow. Low epibenthic δ13Cc values of 0.50±0.12‰ partly reflect low δ13CDIC caused by enhanced uptake of atmospheric low δ13CCO2 decreased by anthropogenic activities. An adjustment for preindustrial higher values would increase δ13Cc by about 0.6‰. Therefore, in Storfjorden brine formed before the industrial era would be characterized by both high δ13Cc as well as high δ18Oc values of benthic foraminiferal calcite. Our data may cast doubt on scenarios that explain negative excursions in benthic foraminiferal stable isotope records from the Atlantic Ocean during cold stadials in the last glacial period by enhanced brine formation in Nordic seas analogously to modern processes in Storfjorden.  相似文献   

12.
The mid to outer neritic carbonates of the Gambier Limestone (Upper Eocene to lower Middle Miocene) can be divided into seven units by using criteria of sequence stratigraphy and foraminiferal biofacies. The boundaries fall mainly on erosional surfaces, even though the temporal duration of these surfaces appears to be largely beyond the resolution of foraminiferal biostratigraphy. The Eocene/Oligocene contact is distinctively unconformable in several sections, with at least part of the Upper Eocene sediments missing. Chert nodules, common to abundant in most sections, are associated with deep‐ or cool‐water benthic assemblages (> 100–200 m and <15°C), indicating cool, nutrient‐rich bottom conditions probably influenced by the Antarctic Circumpolar Current beginning during the Early Oligocene. The mid‐Oligocene fall in sea‐level was probably coupled with a major local uplift that removed at least part of the Lower Oligocene, an event widely recorded in the Australian‐New Zealand region. In areas weakly affected, this glacioeustatic lowstand is represented by chert‐free limestone and grey to pink dolomites in some sections, with a poorly preserved assemblage comprising few planktonic and deep‐water benthic species. Local unconformities separate regional unconformity‐bounded or allostratigraphic packages of strata to represent third‐order sequences. Although variations in local subsidence might have influenced accumulation space and sediment thickness, glacioeustatic influence on the packaging of the sequences and units of the Gambier Limestone was easily the more effective and concordant with the global patterns.  相似文献   

13.
Expansion of fresh and sea‐ice loaded surface waters from the Arctic Ocean into the sub‐polar North Atlantic is suggested to modulate the northward heat transport within the North Atlantic Current (NAC). The Reykjanes Ridge south of Iceland is a suitable area to reconstruct changes in the mid‐ to late Holocene fresh and sea‐ice loaded surface water expansion, which is marked by the Subarctic Front (SAF). Here, shifts in the location of the SAF result from the interaction of freshwater expansion and inflow of warmer and saline (NAC) waters to the Ridge. Using planktic foraminiferal assemblage and concentration data from a marine sediment core on the eastern Reykjanes Ridge elucidates SAF location changes and thus, changes in the water‐mass composition (upper ˜200 m) during the last c. 5.8 ka BP. Our foraminifer data highlight a late Holocene shift (at c. 3.0 ka BP) in water‐mass composition at the Reykjanes Ridge, which reflects the occurrence of cooler and fresher surface waters when compared to the mid‐Holocene. We document two phases of SAF presence at the study site: from (i) c. 5.5 to 5.0 ka BP and (ii) c. 2.7 to 1.5 ka BP. Both phases are characterized by marked increases in the planktic foraminiferal concentration, which coincides with freshwater expansions and warm subsurface water conditions within the sub‐polar North Atlantic. We link the SAF changes, from c. 2.7 to 1.5 ka BP, to a strengthening of the East Greenland Current and a warming in the NAC, as identified by various studies underlying these two currents. From c. 1.5 ka BP onwards, we record a prominent subsurface cooling and continued occurrence of fresh and sea‐ice loaded surface waters at the study site. This implies that the SAF migrated to the southeast of our core site during the last millennium.  相似文献   

14.
《Cretaceous Research》2012,33(6):705-722
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

15.
The 13C/12C ratios of Upper Holocene benthic foraminiferal tests (genera Cibicides and Uvigerina) of deep sea cores from the various world ocean basins have been compared with those of the modern total carbon dioxide (TCO2) measured during the GEOSECS program. The δ13C difference between benthic foraminifera and TCO2 is 0.07 ± 0.04‰ for Cibicides and ?0.83 ± 0.07‰ for Uvigerina at the 95% confidence level. δ13C analyses of the benthic foraminifera that lived during the last interglaciation (isotopic substage 5e, about 120,000 yr ago) show that the bulk of the TCO2 in the world ocean had a δ13C value 0.15 ± 0.12‰ lower than the modern one at the 95% confidence level, reflecting a depletion, compared to the present value, of the global organic carbon reservoir. Regional differences in δ13C between the various oceanic basins are explained by a pattern of deep water circulation different from the modern one: the Antarctic Bottom Water production was higher than today during the last interglaciation, but the eastward transport in the Circumpolar Deep Water was lower.  相似文献   

16.
The low-latitude hydrological cycle is a key climate parameter on different timescales, as it contributes to various feedback processes. Modelling studies suggest that the interhemispheric insolation contrast is the major factor controlling the cycle, although the influence of glacial conditions and the phase relationships relative to insolation forcing remain undetermined. In this work, we studied precipitation variability over Papua New Guinea (PNG, 3°S) for the past 400 ka using terrigenous fractions transported by the Sepik River to the Western Pacific Warm Pool (WPWP). A multi-decadal to centennial resolution of the elemental content was obtained using X-ray fluorescence scanning of a marine sediment core using an age model based on 14C dates and benthic foraminiferal δ18O. Indicators of the coarse river particulate fraction (bulk and CaCO3-free basis Ti concentrations, the log intensity ratios of Ti/K and Ti/Ca) displayed a dominant 23 ka periodicity without a clear glacial–interglacial trend. Our precipitation records showed a tight relationship with local summer insolation (3°S, January) with time-dependent lag of 0 to 4 ka. They were generally in anti-phase for U–Th dated Chinese speleothem δ18O records. Based on an analogy to modern climate, we propose that precipitation over PNG was primarily determined by interhemispheric insolation contrast, and the contribution of austral fall/winter precipitation added second-order variability that formed the lags. For the last four climate cycles, the WPWP hydrological cycle was closely associated with the eastern Asian monsoon, and the influence of glacial conditions on the low-latitude hydrological cycle was estimated to be limited.  相似文献   

17.
Tertiary sequences in the Elazig and Malatya Basins, eastern part of Taurus Orogenic Belt, are investigated with the aim of defining the benthic foraminiferal biozones. Tertiary geological units from bottom to top are as follows: Basement rocks, Zorban Formation, Yildiztepe Formation, Suludere Formation, Gedik Formation (Malatya Basin); Elazig Magmatics, Keban Metamorphics, Harami Formation, Kuscular Formation, Seske Formation, Kirkgecit Formation (Elazig Basin). Middle-Upper Eocene Yildiztepe, Suludere and Gedik Formations; Upper Paleocene-Lower Eocene Seske Formation and Middle-Upper Eocene Kirkgecit Formation are all characterized by interbedded clastics and carbonate rocks. Six stratigraphic sections are studied in detail for foraminiferal biostratigraphy. Eight benthic foraminiferal biozones are reported. These are; Coskinolina rajkae biozone in the Late Paleocene (Thanetian), Assilina yvettae, Idalina sinjarica biozones in the Late Paleocene; Asterocyclina alticostata gallica biozone in the Early Eocene (Late Cuisian), Nummulites millecaput biozone in the Middle Eocene (Middle Lutetian), Nummulites aturicus biozone in the Middle Eocene (Late Lutetian), Nummulites perforatus biozone in the Middle Eocene (Bartonian), Nummulites fabianii biozone in the Late Eocene (Priabonian). Some key taxa are illustrated.  相似文献   

18.
In situ analysis of a garnet porphyroblast from a granulite facies gneiss from Sør Rondane Mountains, East Antarctica, reveals discontinuous step‐wise zoning in phosphorus and large δ18O variations from the phosphorus‐rich core to the phosphorus‐poor rim. The gradually decreasing profile of oxygen isotope from the core (δ18O = ~15‰) to the rim (δ18O = ~11‰) suggests that the 18O/16O zoning was originally step‐wise, and modified by diffusion after the garnet rim formation at ~800°C and 0.8 GPa. Fitting of the 18O/16O data to the diffusion equation constrains a duration of the high‐T event (~800°C) to c. 0.5–40 Ma after the garnet rim formation. The low δ18O value of the garnet rim, together with the previously reported low δ18O values in metacarbonates, indicates regional infiltration, probably along a detachment fault, of low δ18O fluid/melt possibly derived from meta‐mafic to ultramafic rocks.  相似文献   

19.
We have compared detailed planktonic and benthonic foraminiferal carbon and oxygen isotope records from the Palaeocene and early Eocene successions at DSDP Site 577 (Shatsky Rise, North Pacific), a composite section derived from DSDP Leg 74 sites (Walvis Ridge, South Atlantic) and a composite section from ODP Leg 113 sites (Maud Rise, Weddell Sea). The δ13C records of Palaeocene and early Eocene Foraminifera at Site 577 and the Leg 74 sites show that an increase in δ13C values in surface waters at 64 Ma (end of Zone P1) resulted in increased vertical carbon isotope gradients (δ13C) between surface and deeper dwelling planktonic foraminifera, and between surface-dwelling planktonics and benthonic foraminifera which became progressively steeper until the iniddle Late Palaeocene (Zone P4). This steepening also occurs in the latest Palaeocene of the composite Leg 113 section and can be explained by an increase in surface ocean productivity. This increase in productivity probably resulted in an expansion of the oxygen minimum zone (OMZ). Benthonic δ13C values increased during the late Palaeocene in Site 577 and the composite Leg 74 section, suggesting that the Palaeocene carbon isotope maximum was composed of both within-ocean reservoir (increased surface water productivity) and between-reservoir (organic carbon burial) ftactionation effects. The benthonic δ13C increase lags the surface ocean δ13C increase in the early Palaeocene (63–64 Ma) suggesting that surface water productivity increase probably led an increase in the burial rate of organic carbon relative to carbonate sedimentation. Moreover, inter-site δ13C comparisons suggest that the locus of deep to intermediate water formation for the majority of the Palaeocene and the earliest Eocene was more likely to have been in the high southern latitudes than in the lower latitudes. Oxygen isotope data show a decline in deeper water temperatures in the early and early late Palaeocene, followed by a temperature increase in the late Palaeocene and across the PalaeoceneEocene boundary. We speculate that these changes in deeper water temperatures were related to the flux of CO2 between the oceans and the atmosphere through a mechanism operating at the high southern latitudes.  相似文献   

20.
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号