首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Along the mid- and north Atlantic coasts of the USA, over 90 % of salt marshes have been ditched. Ditching was largely abandoned by the mid-twentieth century; however, techniques that create permanent shallow water pools for mosquito control and bird habitat are increasingly being applied to marshes of the USA and elsewhere. Salt marshes in Plum Island Sound, Massachusetts, and Barnegat Bay, New Jersey, were used to examine differences between areas that have been ditched and those altered to increase the density of shallow pools in water table dynamics, salinity, soil and porewater chemistry, as well as short-term sedimentation, accretion, and elevation change rates. We found that the area with plugged ditches, berms, and pools in Plum Island had less drainage, higher salinity and porewater sulfide and ammonium concentrations, and higher soil organic matter than the adjacent ditched area. Despite averaging 8 cm lower in elevation, the Plum Island ditched area had less sediment deposition and was composed of higher elevation plant species than the area with plugged ditches, berms, and shallow pools. Elevation increased in the ditched area at a rate of 3.2 ± 0.5 mm/year, but elevation change was variable in the area with pools. In Barnegat Bay, the marsh area with pools and ditches had less sediment deposition and surface accretion than the ditch-only area, associated, in part, with the higher elevation. An average elevation difference of 4.5 cm was associated with a sixfold difference in mineral sediment deposition. Temporal sediment deposition and surface accretion was important in the ditch-only area but was absent or muted in the area with numerous pools. Elevation increased in both marsh areas at an average rate of 1.8 ± 0.8 mm/year, less than half the long-term average local rate of sea-level rise. Our results illustrate how physical manipulations including changes to tidal hydrology and surface topography interact with elevation to influence short-term biophysical feedbacks.  相似文献   

2.
Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.  相似文献   

3.
Pensacola Bay, Florida, was in the strong northeast quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, and the magnitude of the freshwater inflow pulse that followed the storm. We computed the magnitude of tidal flushing associated with the surge using a tidal prism model. We also evaluated hurricane effects on water quality using water quality surveys conducted 20 and 50 d after the storm, which we compared with a survey 14 d before landfall. We evaluated the scale of hurricane effects relative to normal variability using a 5-yr monthly record. Ivan's 3.5 m storm surge inundated 165 km2 of land, increasing the surface area of Pensacola Bay by 50% and its volume by 230%. The model suggests that 60% of the Bay's volume was flushed, initially increasing the average salinity of Bay waters from 23 to 30 and lowering nutrient and chlorophylla concentrations. Additional computations suggest that wind forcing was sufficient to completely mix the water column during the storm. Freshwater discharge from the largest river increased twentyfold during the subsequent 4 d, stimulating a modest phytoplankton bloom (chlorophyll up to 18 μg l−1) and maintaining hypoxia for several months. Although the immediate physical perturbation was extreme, the water quality effects that persisted beyond the first several days were within the normal range of variability for this system. In terms of water quality and phytoplankton productivity effects, this ecosystem appears to be quite resilient in the face of a severe hurricane effect.  相似文献   

4.
The distribution of mangrove biomass and forest structure along Shark River estuary in the Florida Coastal Everglades (FCE) has been correlated with elevated total phosphorus concentration in soils thought to be associated with storm events. The passage of Hurricane Wilma across Shark River estuary in 2005 allowed us to quantify sediment deposition and nutrient inputs in FCE mangrove forests associated with this storm event and to evaluate whether these pulsing events are sufficient to regulate nutrient biogeochemistry in mangrove forests of south Florida. We sampled the spatial pattern of sediment deposits and their chemical properties in mangrove forests along FCE sites in December 2005 and October 2006. The thickness (0.5 to 4.5 cm) of hurricane sediment deposits decreased with distance inland at each site. Bulk density, organic matter content, total nitrogen (N) and phosphorus (P) concentrations, and inorganic and organic P pools of hurricane sediment deposits differed from surface (0–10 cm) mangrove soils at each site. Vertical accretion resulting from this hurricane event was eight to 17 times greater than the annual accretion rate (0.30 ± 0.03 cm year−1) averaged over the last 50 years. Total P inputs from storm-derived sediments were equivalent to twice the average surface soil nutrient P density (0.19 mg cm−3). In contrast, total N inputs contributed 0.8 times the average soil nutrient N density (2.8 mg cm−3). Allochthonous mineral inputs from Hurricane Wilma represent a significant source of sediment to soil vertical accretion rates and nutrient resources in mangroves of southwestern Everglades. The gradient in total P deposition to mangrove soils from west to east direction across the FCE associated with this storm event is particularly significant to forest development due to the P-limited condition of this carbonate ecosystem. This source of P may be an important adaptation of mangrove forests in the Caribbean region to projected impacts of sea-level rise.  相似文献   

5.
The paper presents comprehensive statistical analyses of winds and water levels in Mobile Bay, Alabama, based on long-term meteorological and tidal observations at several locations. A procedure has been developed to select the most probable parent distribution function from a list of candidate distributions. The theoretical functions that fit the data best enable us to predict the extreme values of winds and water levels at different return periods. We have demonstrated the importance of dividing the winds into hurricane and nonhurricane seasons and separating astronomical tides from weather-driven water level changes. The statistical analysis suggests that the wind speed averaged over 8 min at Dauphin Island, Alabama, at the 100-year return period would be 48.9 m/s, which is equivalent to a sustained 1-min wind of 205 km/h, a very strong category 3 hurricane on the Saffir-Simpson scale. The probability distribution models predict that the 100-year maximum water level would be 3.23 m above the mean lower low water (MLLW) level at the bay entrance and 3.41 m above the MLLW level near the head of the bay, respectively. Extremely low water levels important to navigation are also found. Application of the predicted extreme winds and surges is illustrated through the development of a storm wave atlas in the estuary. It is expected that the methodology and results presented in this paper will benefit the management and preservation of the ecosystems and habitats in Mobile Bay.  相似文献   

6.
Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2 marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.  相似文献   

7.
Offshore sediment characteristics of the 2004 tsunami were identified from a shallow core collected from the Chennai Coast, India. The depositional sequence clearly distinguishes four different processes: mixed facies (post-tsunami): 0–8 cm; tsunami return flow facies (TRFF): 8–20 cm; tsunami landward flow facies: 20–44 cm; and pre-tsunami facies: 44–64 cm, which all took place during and after the tsunami event. The coarse-grained nature and higher carbonate in the TRFF indicate that considerable sediment load was transported from the beach/land area to the offshore region during the return flow of tsunami waves. The relatively greater abundance of benthic foraminiferal species in the core sample suggests that the taxa were transported from deeper regions of the inner shelf regions of Bay of Bengal region. The depositional characteristics in this region can be utilized for future comparative studies from this region as well as in other offshore regions affected by tsunamis with sequence-based studies on local topography.  相似文献   

8.
Seagrasses provide a number of critical ecosystem services, including habitat for numerous species, sediment stabilization, and shoreline protection. Ariel photography is a useful tool to estimate the areal extent of seagrasses, but recent innovations in radiometrically calibrated sensors and algorithm development have allowed identification of benthic types and retrieval of absolute density. This study demonstrates the quantitative ability of a high spatial resolution (1 m) airborne hyperspectral sensor (3.2 nm bandwidth) in the complex coastal waters of Saint Joseph’s Bay (SJB). Several benthic types were distinguished, including submerged and floating aquatic vegetation, benthic red algae, bare sand, and optically deep water. A total of 23.6 km2 of benthic vegetation was detected, indicating no dramatic change in vegetation area over the past 30 years. SJB supported high seagrass density at depths shallower than 2 m with an average leaf area index of 2.0?±?0.6 m2 m?2. Annual seagrass production in the bay was 13,570 t C year?1 and represented 41 % of total marine primary production. The effects of coarser spatial resolution were investigated and found to reduce biomass retrievals, underestimate productivity, and alter patch size statistics. Although data requirements for this approach are considerable, water column optical modeling may reduce the in situ requirements and facilitate the transition of this technique to routine monitoring efforts. The ability to quantify not just areal extent but also productivity of a seagrass meadow in optically complex coastal waters can provide information on the capacity of these environments to support marine food webs.  相似文献   

9.
One hundred school districts were surveyed along the Atlantic and Gulf of Mexico coasts from North Carolina to Texas. Nearly all had recent experience with a tropical storm or hurricane and had hurricane plans in place. About half teach hurricane preparedness to students and 85 % train staff members in hurricane preparedness. Sources of information about cyclone threats were the National Hurricane Center (91 %), local television news (74 %), The Weather Channel (67 %), and the internet (67 %). Only 36 % would cancel classes for a hurricane warning but 89 % would cancel classes for a mandatory evacuation. Most districts (75 %) would use schools as storm shelters, and 92 % would use school busses to assist in community evacuations. Districts with a higher percentage of Hispanic population provided hurricane information in Spanish. Larger school districts were less likely to cancel classes in the middle of the day for a storm threat. Districts with higher home values were less likely to use school busses for evacuations, and smaller school districts were less likely to provide schools as storm shelters. There were no other significant associations between hurricane preparedness of the districts and district demographic variables of poverty, percent black, percent Hispanic, population, district size, or median home values.  相似文献   

10.
Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and ?191 ± 45 mmol m?2 day?1 for the Gulf sites and 130 ± 57 and ?152 ± 64 mmol m?2 day?1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.  相似文献   

11.
The effects of fish farm activities on sediment biogeochemistry were investigated in Loch Creran (Western Scotland) from March to October 2006. Sediment oxygen uptake rates (SOU) were estimated along an organic matter gradient generated from an Atlantic salmon farm using a combination of in situ techniques: microelectrodes, planar optode and benthic chamber incubations. Sulphide (H2S) and pH distributions in sediment porewater were also measured using in situ microelectrodes, and dissolved inorganic carbon (DIC) fluxes were measured in situ using benthic chambers. Relationships between benthic fluxes, vertical distribution of oxidants and reduced compounds in the sediment were examined as well as bacterial abundance and biomass. Seasonal variations in SOU were relatively low and mainly driven by seasonal temperature variations. The effect of the fish farm on sediment oxygen uptake rate was clearly identified by higher total and diffusive oxygen uptake rates (TOU and DOU, respectively) on impacted stations (TOU: 70 ± 25 mmol O2 m?2 day?1; DOU: 70 ± 32 mmol O2 m?2 day?1 recalculated at the summer temperature), compared with the reference station (TOU: 28.3 ± 5.5 mmol O2 m?2 day?1; DOU: 21.5 ± 4.5 mmol O2 m?2 day?1). At the impacted stations, planar optode images displayed high centimetre scale heterogeneity in oxygen distribution underlining the control of oxygen dynamics by small-scale processes. The organic carbon enrichment led to enhanced sulphate reduction as demonstrated by large vertical H2S concentration gradients in the porewater (from 0 to 1,000 μM in the top 3 cm) at the most impacted site. The impact on ecosystem functions such as bioirrigation was evidenced by a decreasing TOU/DOU ratio, from 1.7 in the non-impacted sediments to 1 in the impacted zone. This trend was related to a shift in the macrofaunal assemblage and an increase in sediment bacterial population. The turnover time of the organic load of the sediment was estimated to be over 6 years.  相似文献   

12.
Sediment grain size and organic carbon (OC) data collected over the past 50 years, together with δ13C values of OC in recently collected samples, were analyzed to improve understanding of sediment OC distribution and abundance in Todos Santos Bay. Sediments in the submarine canyon at the mouth of the bay and in quiet-water locations along the shore are fine grained, high in OC, and have generally low δ13C values; sediments in high-energy environments are low in OC and have high δ13C values. A bivariate isotopic mixing model indicates that none of the sediments contain >50% terrigenous OC (average ~30%), and that the terrigenous OC content of the sediments is a small proportion of the OC content of local soils. Sediment OC composition is apparently controlled by energy-related sorting and deposition, oxidation of much of the original terrigenous OC, and replacement of some terrigenous OC by marine OC.  相似文献   

13.
Being sensitive to environmental changes, foraminifera have been extensively used to monitor pollution level in the marine environment, including the effect of mining in coastal areas. In the Goa state of India, the rejects from opencast mining on land largely find their way to the estuaries, as washout during monsoon. Additionally, the Mormugao Port at the mouth of the Zuari estuary is the hub of activities due to the transport of ore from hinterland areas by barges and its subsequent loading for export. On the directive of the Supreme Court of India, all the mining-related activities abruptly stopped throughout India, including that in Goa in 2012, and got reinstated in 2015. Therefore, it provided a fit case to test the effectiveness of benthic foraminifera as an indicator of environmental impact due to mining activities. A total of ten surface sediment samples from five locations in Zuari estuary were collected from a depth range of 4.5–8.5 m in the years of 2013 and 2016 and were analyzed for both the living (stained) and dead benthic foraminifera. The year 2013 represents a time interval immediately after the closure of extensive mining activity, and the sampling during 2016 represents minimal mining. The living benthic foraminiferal abundance was higher (19–54/g sediment) during 2013 and decreased substantially during 2016 (3–22/g sediment), suggesting an adverse effect of activities associated with mine closure on benthic foraminifera. Additionally, the relative abundance of Ammonia was also significantly low during the year 2016. The temporal variation in dead foraminifera was, however, different than that of the living foraminifera. The differential response was attributed to the terrigenous dilution as a result of change in sedimentation rate. Therefore, we conclude that living foraminifera correctly incorporate the changes in mining pattern and may be used as an effective tool to monitor the impact of mining. We further suggest that the potential counter effect of terrigenous dilution on total and living benthic foraminiferal population should be considered while interpreting temporal variations in foraminiferal abundance in marginal marine settings.  相似文献   

14.
Estuarine nursery areas are critical for successful recruitment of tautog (Tautoga onitis), yet they have not been studied over most of this species' range. Distribution, abundance and habitat characteristics of young-of-the-year (YOY, age 0) and age 1+juvenile tautog were evaluated during 1988–1992 in the Narragansett Bay estuary, Rhode Island, using a 16-station, beach-seine survey. Estuary-wide abundance was similar among years. Greatest numbers of juveniles were collected at northern Narragansett Bay stations between July and September. Juvenile abundances varied with density of macroalgal and eelgrass cover; abundances ranged from 0.03 fish per 100 m2 to 8.1 fish per 100 m2. Although juveniles use eelgrass, macroalgae is the dominant vegetative cover in Narragansett Bay. Macroalgal habitats play a previously unrealized, important role and contribute to successful recruitment of juvenile tautog in Narragansett Bay. Juvenile abundances did not vary with sediment type or salinity, but were correlated with surface water temperature. Fish collected in June were age 1+ juveniles from the previous year-class (50–167 mm TL) and these declined in number after July or August. The appearance of YOY (25–30 mm TL) in July and August was coincident with the period of their greatest abundances. A precipitous decline in abundance occurred by October because of the individual or combined effects of mortality and movement to alternative habitats. Based on juvenile abundance, a previously unidentified spawning area was noted in Mount Hope Bay, a smaller embayment attached to the northeastern portion of Narragansett Bay. In August 1991, Hurricane Bob disrupted juvenile sise distribution and abundance, resulting in reduced numbers of YOY collected after the storm and few 1+ juveniles in 1992.  相似文献   

15.
16.
To determine radioactivity and trace metal levels, surface sediments were collected from two important areas (?zmir Bay and Didim) in the Aegean Sea region of Turkey, and were analyzed for concentrations of 210Po, 210Pb and trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn). The average 210Po and 210Pb massic activities in sediments varied in the range of 24 ± 5 to 126 ± 6 Bq kg?1 dry wt. and 18 ± 3 to 59 ± 4 Bq kg?1 dry wt., respectively. Izmir Bay exhibited the highest polonium activities in sediments, likely due to specific sedimentation processes and other sediment characteristics. The trace metal results showed that the Izmir Bay is facing trace metal pollution. The metal concentrations in sediment samples are low compared to those from the other neighboring marine environments.  相似文献   

17.
Three sequential hurricanes made landfall over the South Florida peninsula in August and September 2004. The storm systems passed north of the Everglades wetlands and northeastern Florida Bay, but indirect storm effects associated with changes in freshwater discharge during an otherwise drought year occurred across the wetland–estuary transition area. To assess the impacts of the 2004 hurricane series on hydrology, nutrients, and microbial communities in the Everglades wetlands to Florida Bay transition area, results are presented in the context of a seasonal cycle without hurricane activity (2003). Tropical activity in 2004 increased rainfall over South Florida and the study area, thereby temporarily relieving drought conditions. Not so much actual rainfall levels at the study site but more so water management practices in preparation of the hurricane threats, which include draining of an extensive freshwater canal system into the coastal ocean to mitigate inland flooding, rapidly reversed hypersalinity in the wetlands-estuary study area. Although annual discharge was comparable in both years, freshwater discharge in 2004 occurred predominantly during the late wet season, whereas discharge was distributed evenly over the 2003 wet season. Total organic carbon (TOC), ammonium ( \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} ), and soluble reactive phosphorus (SRP) concentrations increased during the hurricane series to concentrations two to five times higher than long-term median concentrations in eastern Florida Bay. Spatiotemporal patterns in these resource enrichments suggest that TOC and SRP originated from the Everglades mangrove ecotone, while \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} originated from the bay. Phytoplankton biomass in the bay increased significantly during storm-related freshwater discharge, but declined at the same time in the wetland mangrove ecotone from bloom conditions during the preceding drought. In the bay, these changes were associated with increased nanophytoplankton and decreased picophytoplankton biomass. Heterotrophic bacterial production increased in response to freshwater discharge, whereas bacterial abundance decreased. Hydrochemical and microbial changes were short-lived, and the wetland–bay transition area reverted to more typical oligotrophic conditions within 3 months after the hurricanes. These results suggest that changes in freshwater discharge after drought conditions and during the hurricane series forced the productivity and P-enriched characteristics of the wetland’s mangrove ecotone, although only briefly, to the south into Florida Bay.  相似文献   

18.
The contamination level of total petroleum hydrocarbons (TPH) in wastewater and surface sediment samples from the Petrochemical Special Economic Zone (PETZONE) and adjacent coastal area in Musa Bay (in Northwest of Persian Gulf) was examined. Concentrations of TPH in the Musa Bay sediments ranged from 16.48 to 97.15 µg/g dry weight (dw) with average value of 48.98 ± 30.36 µg/g dw. The highest concentrations were estimated in stations close to the coastline, locations affected by intensive petrochemical discharges and shipping activities. The average TPH concentration in the PETZONE wastewater effluent samples was 5.22 mg/L, with a range of 0.06–35.33 mg/L. Regarding environmental impact assessment, the concentration of TPH was lower than the wastewater effluent discharge standard at most of the monitoring stations inside PETZONE companies, with the exception of stations 15, 16 (Imam Khomeini petrochemical company 1, 2) and 17 (Razi petrochemical company). These stations were considered as moderate environmental aspects, suggesting that concentration of TPH in the wastewater effluents of these petrochemical companies could be considered as contaminants of concern in the PETZONE area.  相似文献   

19.
A large-scale survey of sediment quality in Biscayne Bay, Florida, was conducted in 1995–1996 to characterize the relative degree, geographic patterns, and spatial extent of degraded sediment quality. Chemical analyses and multiple toxicity tests were performed on 226 surficial sediment samples collected over an area of 484 km2 in greater Biscayne Bay, including saltwater reaches of several tributaries. Benthic samples were collected and analyzed at one-third of the locations. One or more chemical concentrations exceeded effects range median (ERM) values in 35 samples, representing an area of 5.4 km2 (1.1% of the survey area). Highly toxic conditions in amphipod survival tests occurred in 24 of the samples, representing 62 km2 (13% of the area). Highly significant results were more frequently observed in three sub-lethal tests: sea urchin fertilization (affecting 47% of the area), sea urchin embryological development (84% of the area), and microbial bioluminescence (51% of the area). The highest levels of chemical contamination (range in mean ERM quotients of 0.2 to 2.0, average 0.76) were observed in samples from the lower Miami River. The high degree of contamination in the river contrasted sharply with conditions in the bay, where chemical concentrations generally were much lower (range in mean ERM quotients of 0.005 to 0.21, average 0.04). Amphipod survival tests showed a very high degree of correspondence with a gradient in chemical contamination in the river and adjoining reaches of the bay. Correlation analyses, scatter plots, and principal component analyses indicated that both amphipod survival in the laboratory tests and the abundance and diversity of the benthos decreased sharply with increasing concentrations of mixtures of organic compounds and trace metals in the sediments. The triad of analyses provided a strong weight of evidence of pollution-induced degradation of sediment quality in the riverine locations.  相似文献   

20.
The goal of this study was to use an ecosystem-based approach to consider the effect of environmental conditions on the distribution and abundance of juvenile bay whiff and southern flounder within the Aransas Bay Complex, TX, USA. Species habitat models for both species were developed using boosted regression trees. Juvenile bay whiff were associated with low temperatures (<15 °C, 20–23 °C), moderate percent dry weight of sediments (25–60 %), salinity >10, and moderate to high dissolved oxygen (6–9 mg O2/l, 10–14 mg/l). Juvenile southern flounder were associated with low temperatures (<15 °C), low percent dry weight of sediment (<25 %), seagrass habitat, shallow depths (<1.2 m), and high dissolved oxygen (>8 mg O2/l). Our results indicate that conservation measures should focus along the eastern side of Aransas Bay and the north corner of Copano Bay to protect essential fish habitat. These findings provide a valuable new tool for fisheries managers to aid in the sustainable management of bay whiff and southern flounder and provide crucial information needed to prioritize areas for habitat conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号