首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
In-situ Rock Spalling Strength near Excavation Boundaries   总被引:2,自引:0,他引:2  
It is widely accepted that the in-situ strength of massive rocks is approximately 0.4 ± 0.1 UCS, where UCS is the uniaxial compressive strength obtained from unconfined tests using diamond drilling core samples with a diameter around 50 mm. In addition, it has been suggested that the in-situ rock spalling strength, i.e., the strength of the wall of an excavation when spalling initiates, can be set to the crack initiation stress determined from laboratory tests or field microseismic monitoring. These findings were supported by back-analysis of case histories where failure had been carefully documented, using either Kirsch’s solution (with approximated circular tunnel geometry and hence σ max =  1 3) or simplified numerical stress modeling (with a smooth tunnel wall boundary) to approximate the maximum tangential stress σ max at the excavation boundary. The ratio of σ max /UCS is related to the observed depth of failure and failure initiation occurs when σ max is roughly equal to 0.4 ± 0.1 UCS. In this article, it is suggested that these approaches ignore one of the most important factors, the irregularity of the excavation boundary, when interpreting the in-situ rock strength. It is demonstrated that the “actual” in-situ spalling strength of massive rocks is not equal to 0.4 ± 0.1 UCS, but can be as high as 0.8 ± 0.05 UCS when surface irregularities are considered. It is demonstrated using the Mine-by tunnel notch breakout example that when the realistic “as-built” excavation boundary condition is honored, the “actual” in-situ rock strength, given by 0.8 UCS, can be applied to simulate progressive brittle rock failure process satisfactorily. The interpreted, reduced in-situ rock strength of 0.4 ± 0.1 UCS without considering geometry irregularity is therefore only an “apparent” rock strength.  相似文献   

2.
3.
Accurate laboratory measurement of geo-engineering properties of intact rock including uniaxial compressive strength (UCS) and modulus of elasticity (E) involves high costs and a substantial amount of time. For this reason, it is of great necessity to develop some relationships and models for estimating these parameters in rock engineering. The present study was conducted to forecast UCS and E in the sedimentary rocks using artificial neural networks (ANNs) and multivariable regression analysis (MLR). For this purpose, a total of 196 rock samples from four rock types (i.e., sandstone, conglomerate, limestone, and marl) were cored and subjected to comprehensive laboratory tests. To develop the predictive models, physical properties of studied rocks such as P wave velocity (Vp), dry density (γd), porosity, and water absorption (Ab) were considered as model inputs, while UCS and E were the output parameters. We evaluated the performance of MLR and ANN models by calculating correlation coefficient (R), mean absolute error (MAE), and root-mean-square error (RMSE) indices. The comparison of the obtained results revealed that ANN outperforms MLR when predicting the UCS and E.  相似文献   

4.
Sized aggregates of glasses (47–84 wt% SiO2) were fused from igneous-derived cohesive fault rock and igneous rock, and step-heated from ~400 to >1,200 °C to obtain their 39Ar diffusion properties (average E=33,400 cal mol?1; D o=4.63×10?3 cm2 s?1). At T<~1,000 °C, glasses containing <~69 wt% SiO2 and abundant network-forming cations (Ca, Fe, Mg) reveal moderate to strong non-linear increases in D and E, reflecting structural modifications as the solid transitions to melt. Extrapolation of these Arrhenius properties down to typical geologic T-t conditions could result in a 1.5 log10 unit underestimation in the diffusion rate of Ar in similar materials. Numerical simulations based upon the diffusion results caution that some common geologic glasses will likely yield 40Ar/39Ar cooling ages rather than formation ages. However, if cooling rates are sufficiently high, ambient temperatures are sufficiently low (e.g., <65–175 °C), and coarse particles (e.g., radius (r) >~1 mm) are analyzed, glasses with compositions similar to ours may preserve their formation ages.  相似文献   

5.
Rock burst is a complex dynamic process can lead to casualties, to failure and deformation of the supporting structures, and to damage of the equipment on site; hence, its prediction is of great importance in underground construction. We present a novel empirical method to predict rock burst based on the theory of logistic regression classifiers. An extensive database collected from the literature, which includes observations about rock burst occurrence (or not) in underground excavations in projects from all over the world, is used to train and validate the model. The proposed approach allows us to compute new class separation lines (or planes) to estimate the probability of rock burst, using different combinations of five possible input parameters—tunnel depth, H; maximum tangential stress, MTS; elastic energy index, W et; uniaxial compressive strength of rock, UCS; uniaxial tensile strength of rock, UTS—among which it was found that the preferable model could be developed in HW et–UCS space. The proposed model is validated with goodness-of-fit tests and nine-fold cross-validation; results show that its predictive capability compares well with previously proposed empirical methods and confirm that, as expected, the probability of rock burst increases with excavation depth, and that both W et and UCS have a similarly significant influence on rock burst occurrence. Finally, expressions are proposed for identification of conditions associated with several reference values of rock burst probability, which can be employed in preliminary risk analyses.  相似文献   

6.
The uniaxial compressive strength (UCS) of rocks is a critical parameter required for most geotechnical projects. However, it is not always possible for direct determination of the parameter. Since determination of such a parameter in the lab is not always cost and time effective, the aim of this study is to assess and estimate the general correlation trend between the UCS and indirect tests or indexes used to estimate the value of UCS for some granitoid rocks in KwaZulu-Natal. These tests include the point load index test, Schmidt hammer rebound, P-wave velocity (Vp) and Brazilian tensile strength (σt). Furthermore, it aims to assess the reliability of empirical equations developed towards estimating the value of UCS and propose useful empirical equations to estimate the value of UCS for granitoid rocks. According to the current study, the variations in mineralogy, as well as the textural characteristics of granitoid rocks play an important role in influencing the strength of the rock. Simple regression analyses exhibit good results, with all regression coefficients R2 being greater than 0.80, the highest R2 of 0.92 being obtained from UCS versus σt. Comparison of equations produced in the current study as well as empirical equations derived by several researchers serves as a validation. Also illustrate that the reliability of such empirical equations are dependent on the rock type as well as the type of index tests employed, where variation in rock type and index tests produces different values of UCS. These equations provide a practical tool for estimating the value of UCS, and also gives further insight into the controlling factors of the strength of the granitoid rocks, where the strength of a rock is a multidimensional parameter.  相似文献   

7.
One of the most important quality and design parameters of natural rock materials is uniaxial compressive strength (UCS). UCS value of a building stone determines its application area such as cladding, roofing, facing, and coverings. In rock mechanics and engineering practice determination of UCS values of rock materials is suggested on core specimens whereas in construction and building stone sector, cubic specimens are suggested. In this experimental study, the effect of cubic specimen size on UCS values of some carbonate rocks which are being used as dimension stones are investigated. A total of 299 cubic specimens at five different edge sizes (3, 5, 7, 9, and 11 cm) from limestone, marble, and travertine are prepared. Chemical, petrographic analyses and physical properties of specimens are determined and after that UCS tests are carried out. It is observed that as the specimen sizes increase from 3 to 11 cm, average UCS values decrease about 7% for the tested carbonate rocks. In the light of this finding, results of UCS tests could be interpreted considering cubic specimen sizes for the same rock types in various fields.  相似文献   

8.
Many surface and underground structures are constructed in heterogeneous rock formations. These formations have a combination of weak and strong rock layers. Due to the alternation of the weak and strong layers, selecting the equivalent and appropriate geomechanical parameters for these formations is challenging. One of these problems is choosing the equivalent strength (i.e., uniaxial compressive strength) of intact rock for a group of rocks. Based on the volume of weak and strong parts and their strength, the equivalent strength of heterogeneous rocks changes. Marinos and Hoek (Bull Eng Geol Environ 60(2):85–92, 2001) presented the “weighted average method” for defining the uniaxial compressive strength (UCS) of heterogeneous rock masses based on the volume of weak and strong parts. Laubscher (1977) used the volume ratio of the strength of a weak part to a strong part (UCS weak/UCS strong) to determine the equivalent strength. In this study, the two methods are compared and their validity is evaluated by experimental data and numerical analyses. The geomechanical parameters of two heterogeneous formations (Aghajari and Lahbari) in the west of Iran were estimated using these methods. The results of the present study obtained through numerical analyses using particle flow code are compared with those of previous studies and discussed. Laboratory and numerical results show UCS decrease and approach to weak strength with an increasing in volume of weak part. When strength ratio of strong to weak rock increase, equivalent strength decrease more severely. The findings show that Laubscher’s method gives more appropriate results than the weighted average method.  相似文献   

9.
Marine bacteria, Vibrio alginolyticus and Vibrio parahemolyticus isolated from sediments were evaluated for their ability as a consortia, to degrade polyvinyl alcohol-low linear density polyethylene (PVA-LLDPE)-blended plastic films in shake flask conditions at 120 rpm at 37 °C over 15 weeks. Results indicated that relatively 20 % decrease in tensile strength of the film could be achieved with 25 and 30 % blend of PVA in the PVA-LLDPE plastic film compared to other ratios. Micrographs obtained with scanning electron microscope showed visible cracks and grooves on the surface of the PVA-LLDPE blend film after 15 weeks of incubation with bacterial consortium. The decrease in tensile strength of the PVA-blended plastic films after treatment and the results of the scanning electron microscopic analysis evidence that the consortium could cause degradation of PVA-LLDPE plastic blends compared to suitable controls. This is the first report on polyvinyl alcohol degrading Vibrio sp. from marine sediments and its application in microbial degradation of polyvinyl alcohol-low linear density polyethylene plastic blends. The study indicated potential of marine benthic vibrios that have novel enzymes and unique characteristics for application in bioremediation and solid waste management particularly in handling synthetic polymers such as PVA-blended plastic films.  相似文献   

10.
An investigation was carried out to compare the ability of two bacteria Pseudomonas aeruginosa PSA5 and Rhodococcus sp. NJ2 isolated from petroleum sludge for degradation of benzo(a)pyrene [B(a)P], a HMW PAH compound in MSM. During 25 days of incubation, 50 ppm B(a)P was degraded by 88 and 47 % by P. aeruginosa PSA5 and Rhodococcus sp. NJ2, respectively. Besides, involvement of different catabolic enzymes, that is, salicylate hydroxylase, 2-carboxybenzaldehyde dehydrogenase, catechol 1,2-dioxygenase and catechol 2,3-dioxygenase, was also examined to identify their differential role in B(a)P degradation. Among these enzymes, the highest induction of 2-carboxybenzaldehyde dehydrogenase (773.5 nmol mg?1 protein) was recorded in P. aeruginosa PSA5, while salicylate hydroxylase was highly expressed (839.6 nmol mg?1 protein) in Rhodococcus sp. NJ2. Both the bacteria were found biosurfactant (glycolipid) producing, and role of biosurfactant in PAH degradation was also ascertained by reduced surface tension, higher emulsification index and increased cell surface hydrophobicity.  相似文献   

11.
Crystal field stabilization (CFS) plays a significant role in determining equilibrium phase boundaries in olivine→spinel transformations involving transition-metal cations, including Fe2+ which is a major constituent of the upper mantle. Previous calculations for Fe2SiO4 ignored pressure and temperature dependencies of crystal field stabilization enthalpies (CFSE) and the electronic configurational entropy (S CFS). We have calculated free energy changes (ΔG CFS) due to differences of crystal field splittings between Fe2SiO4 spinel and fayalite from: ΔG CFS=?ΔCFSE?TΔS CFS, as functions of P and T, for different energy splittings of t 2g orbital levels of Fe2+ in spinel. The results indicate that ΔG CFS is always negative, suggesting that CFS always promotes the olivine→spinel transition in Fe2SiO4, and expands the stability field of spinel at the expense of olivine. Because of crystal field effects, transition pressures for olivine→spinel transformations in compositions (Mg1?x Fe x )2SiO4 are lowered by approximately 50x kbar, which is equivalent to having raised the olivine→spinel boundary in the upper mantle by about 15 km.  相似文献   

12.
The loss of permethrin from impregnated uniforms due to repeated washings was studied by chromatographic estimation of the residues. The mean (± SEmean) percentage losses of permethrin after one to five washings were 16.7 ± 2.3, 22.5 ± 3, 29.6 ± 2.9, 40.2 ± 2 and 52.2 ± 2.4, respectively. The reduction in contact toxicity against mosquitoes after each washing was studied by World Health Organization tube and cone bioassays against Aedes albopictus mosquitoes. The median knockdown time for 5-min exposure to the treated uniforms increased from 5.9 to 71.8 min after five washings. Mosquito mortality 24 h post-exposure in cone bioassays was <80 % after the fifth washing, indicating the loss of efficacy. The uniforms need to be retreated after five washings so as to ensure adequate protection against disease vectors. The washing water should be properly disposed off to prevent environmental contamination and toxicity to aquatic organisms. Methods for treatment of military uniforms, which ensure high resistance to washing, need to be adopted so as to avoid frequent re-impregnations with permethrin.  相似文献   

13.
The Wulanhada pluton is among the rare suite of Devonian alkaline plutons occurring along the northern margin of the North China Craton(NCC).The intrusion is mainly composed of quartz-monzonite.Here we report zircon SHRIMP U-Pb data from this intrusion which shows emplacement age of ca.381.5 Ma.The rock is metaluminous with high(Na_2O + K_2O) values ranging from 8.46 to 9.66 wt.%.The REE patterns of the rocks do not show any Eu anomaly whereas the primitive-mantle-normalized spider diagram shows strong positive Sr and Ba anomalies.The Wulanhada rocks exhibit high initial values of(~(87)Sr/~(86)Sr)_t = 0.70762-0.70809,low ε_(Nd)(t) =-12.76 to-12.15 values and negative values of ε_(Hf)(t) =-23.49 to-17.02 with small variations in(~(176)Hf/~(177)Hf),(0.281873-0.282049).These geochemical features and quantitative isotopic modeling results suggest that the rocks might have been formed through the partial melting of Neoarchean basic rocks in the lower crust of the NCC.The Wulanhada rocks,together with the Devonian alkaline rocks and mafic-ultramafic complex from neighboring regions,constitute a post-collisional magmatic belt along the northern NCC.  相似文献   

14.
The objective of this study was to evaluate the effect of mine tailings composition on shear behavior and shear strength of co-mixed mine waste rock and tailings (WR&T). Crushed gravel was used as a synthetic waste rock and mixed with four types of tailings: (1) fine-grained garnet, (2) coarse-grained garnet, (3) copper, and (4) soda ash. Co-mixed WR&T specimens were prepared to target mixture ratios of mass of waste rock to mass of tailings (R) such that tailings “just filled” interparticle void space of the waste rock (i.e., optimum mixture ratio, R opt). Triaxial compression tests were conducted on waste rock, tailings, and mixed waste at effective confining stresses (\(\sigma_{\text{c}}^{{\prime }}\)) ranging from 5 to 40 kPa to represent stresses anticipated in final earthen covers for waste containment facilities. Waste rock and co-mixed WR&T specimens were 150 mm in diameter by 300 mm tall, whereas tailings specimens were 38 mm in diameter by 76 mm tall. Shear strength was quantified using effective stress friction angles (?′) from undrained tests: ?′ for waste rock was 37°, ?′ for tailings ranged from 34° to 41°, and ?′ for WR&T mixtures ranged from 38° to 40°. Thus, shear strength of co-mixed WR&T was comparable to waste rock regardless of tailings composition. Shear behavior of WR&T mixtures was a function of R and tailings composition. Tailings influenced shear behavior for R < R opt and when tailings predominantly were silt. Shear behavior was influenced by waste rock for R ≥ R opt and when tailings predominantly were sand or included clay particles.  相似文献   

15.
Indole is a highly recalcitrant aromatic heterocyclic organic compound consisting of a five-membered nitrogen-containing pyrrole ring fused to a six-membered benzene ring. This study presents the results of the electro-chemical mineralization of indole in an aqueous solution using platinum-coated titanium (Pt/Ti) electrode. A central composite design was used to investigate the effect of four parameters namely initial pH (pHo), current density (j), conductivity (k) and treatment time (t) at 5 levels. Multiple responses namely chemical oxygen demand (COD) removal (Y 1) and specific energy consumption (Y 2) were simultaneously maximized and minimized, respectively, by optimizing the parameters affecting the mineralization of indole by using the desirability function approach. At the operating conditions of pH 8.6, j = 161 A/m2, k = 6.7 mS/cm and t = 150 min, 83.8% COD removal with specific energy consumption of 36.3 kWh/kg of COD removed was observed. Ultra performance liquid chromatography, UV–visible spectroscopy, Fourier transform infrared spectroscopy and cyclic voltammetry of the indole solution were performed at the optimum condition of the treatment so as to report a plausible mechanism of indole degradation. Field emission scanning electron microscopy analysis of electrodes before and after treatment was performed for determining the changes on anode surface during the treatment. Thermal analysis of the solid residue (scum) obtained was also performed for exploring its disposal prospects. Present study shows that electro-chemical oxidation can be used for mineralization of nitrogenous heterocyclic compounds such as indole.  相似文献   

16.
The biosorption characteristics of Cd(II) and Cu(II) ions from aqueous solutions obtained using submerged aquatic plant (Myriophyllum spicatum) biomass were investigated in terms of equilibrium, kinetics, thermodynamics, and cation competition. Langmuir and Freundlich models were applied to describe the biosorption isotherm of metal ions by M. spicatum biomass and isotherm constants considering the most important parameter, pH. The variation of sorption isotherm constants showed pH dependence. The Langmuir and Freundlich models fitted the equilibrium data well. The maximum biosorption capacity (q m) of M. spicatum biomass was determined to be 29.07 mg/g for the Cd(II) ion at pH 5.0 and 12.12 mg/g for the Cu(II) ion at pH 6.0. Chi square analysis showed that the Freundlich model fitted the equilibrium data better than the Langmuir isotherm. Competition of Cd(II) and Cu(II) in a binary solution showed that the Langmuir monolayer capacity of Cd(II) decreased from 29.07 mg/g with only Cd(II) in solution to 12.02 mg/g in the presence of Cu(II). Kinetics results showed that the biosorption processes of both metal ions followed the pseudo-second-order kinetics well. The calculated thermodynamic parameters (?G 0, ?H 0, and ?S 0) showed that biosorption of Cd(II) and Cu(II) ions onto M. spicatum biomass was feasible, spontaneous, and endothermic in nature. Fourier transform infrared spectroscopy spectrum analysis revealed that Cd(II) and Cu(II) sorption was mainly ascribed to carboxyl, hydroxyl, amine, and C–N groups in M. spicatum.  相似文献   

17.
Phanerochaete chrysosporium, a white rot basidiomycete, was immobilized over Luffa cylindrica sponge discs, treated with 0.1 N HCl and its potentiality for the removal of hexavalent chromium [Cr(VI)] from water was investigated in both batch and in up-flow fixed-bed bioreactor. The acid treatment of biomass increased the uptake capacity and percentage removal of Cr(VI) from 33.5 to 46.5 mg g?1 and 67 to 92 %, respectively. Maximum uptake of Cr(VI) was achieved at pH 2, temperature 40 °C after 100 min of contact time. The Cr(VI) sorption on the biomass was better explained by Langmuir isotherm. Thermodynamic studies indicated that the process was spontaneous and endothermic. Sorption kinetic study showed that pseudo-second-order model best correlates the Cr(VI) sorption on the biomass as compare to pseudo-first-order kinetic model. The performance of fixed-bed bioreactor was evaluated at different bed heights (5, 15 and 25 cm) and flow rates (1.66, 4.98 and 8.33 mL min?1) by using bed depth service time model. Response surface methodology statistical method was applied for optimizing the process parameters. FTIR analysis showed that amino groups were mainly involved in adsorption of Cr(VI).  相似文献   

18.
Uniaxial compressive strength (UCS) of an intact rock is an important geotechnical parameter for engineering applications. Using standard laboratory tests to determine UCS is a difficult, expensive and time-consuming task. The main purpose of this study is to develop a general model for predicting UCS of limestone samples and to investigate the relationships among UCS, Schmidt hammer rebound and P-wave velocity (V P). For this reason, some samples of limestone rocks were collected from the southwestern Iran. In order to evaluate a correlation, the measured and predicted values were examined utilizing simple and multivariate regression techniques. In order to check the performance of the proposed equation, coefficient of determination (R 2), root-mean-square error, mean absolute percentage error, variance accounts for (VAF %), Akaike Information Criterion and performance index were determined. The results showed that the proposed equation by multivariate regression could be applied effectively to predict UCS from its combinations, i.e., ultrasonic pulse velocity and Schmidt hammer hardness. The results also showed that considering high prediction performance of the models developed, they can be used to perform preliminary stages of rock engineering assessments. It was evident that such prediction studies not only provide some practical tools but also contribute to better understanding of the main controlling index parameters of UCS of rocks.  相似文献   

19.
A sample preparation method of total sulphur measurement of reactive mine tailings was optimized. The total sulphur was measured by inductively coupled plasma optical emission spectroscopy, and ultrasound technique was used for sample digestion. The optimization process was adopted by a combined approach of experimental design and response surface methodology. The digestion time, temperature and acid-oxidant combination (i.e. effect of H2O2 with a fixed amount of acid mixture) were investigated. A two-level and three-factor (23) full factorial design of experiment was applied to identify the most significant factors, and a central composite design was used to optimize the digestion procedure. KZK-1, a sericite schist, was selected as the certified reference material. The optimum methodology at 95 % confidence level (P < 0.05) was identified to be 10 min of digestion at 77 °C, with a solution of 1 ml HNO3:1 ml HCl:1.35 ml H2O2. This combination resulted in 100 % sulphur recovery. The investigated method was verified by X-ray diffraction analysis. The optimum digestion level was applied to a reactive mine tailings, which achieved satisfactory results with a percentage relative standard deviation < 3 %.  相似文献   

20.
Instrumental and historical data on mainshocks for 13 seismogenic sources in western Anatolia have been used to apply a regional time- and magnitude-predictable model. Considering the interevent time between successive mainshocks, the following two predictive relations were computed: log T t = 0.13 M min + 0.21 M p ? 0.15 log M 0 + 2.93 and M f = 0.87 M min ? 0.06 M p + 0.33 log M 0 ? 6.54. Multiple correlation coefficient and standard deviation have been computed as 0.50 and 0.29, respectively, for the first relation, and 0.65 and 0.47, respectively, for the second relation. The positive dependence of T t on M p and the negative dependence of M f on M p indicate the validity of time- and magnitude-predictable model on the area considered in this study. On the basis of these relations and using the occurrence time and magnitude of the last main shocks in each seismogenic source, the probabilities of occurrence Pt) of the next main shocks during the next 50 years with decade interval as well as the magnitude of the expected main shocks were determined. The highest probabilities P 10 = 80 % (M f = 6.8 and T t = 13 years) and P 10 = 32 % (M f = 7.6 and T t = 29 years) were estimated for the seismogenic source 11 (Golhisar-Dalaman-Rhodes) for the occurrence of a strong and a large earthquake during the future decade, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号