首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vegetation and soil carbon storage in China   总被引:18,自引:2,他引:18  
This study estimated the current vegetation and soil carbon storage in China using a biogeochemical model driven with climate, soil and vegetation data at 0.5° latitude-longitude grid spatial resolution. The results indicate that the total carbon storage in China's vegetation and soils was 13.33 Gt C and 82.65 Gt C respectively, about 3% and 4% of the global total. The nationally mean vegetation and soil carbon densities were 1.47 kg C/m2 and 9.17 kg C/m2, respectively, differing greatly in various regions affected by climate, vegetation, and soil types. They were generally higher in the warm and wet Southeast China and Southwest China than in the arid Northwest China; whereas vegetation carbon density was the highest in the warm Southeast China and Southwest China, soil carbon density was the highest in the cold Northeast China and southeastern fringe of the Qinghai-Tibetan Plateau. These spatial patterns are clearly correlated with variations in the climate that regulates plant growth and soil organi  相似文献   

2.
Numerical analysis of seismic soil–pile interaction was considered in order to investigate the influence of flow mechanisms. Two models were employed—a simplified model, where the pore pressure at any depth is that of the free field, and a more complete model in which the pore pressure is associated with three-dimensional flow. The soil behavior was modeled by a nonlinear, quasi-hysteretic constitutive relation. A parametric study was carried out, varying the superstructure mass and soil permeability. It was found that there is a pore pressure threshold below which both models yield similar results, but that this threshold cannot be quantified a priori, as it depends strongly on soil–pile interaction.  相似文献   

3.
Soil piping is a widespread, although often overlooked land degradation process. So far, subsurface soil erosion studies have been focused on the importance of soil piping in hydrological and geomorphological processes, and factors controlling piping processes. Nowadays, the environmental changes being caused by the Anthropocene have clearly demonstrated that society depends on soil more than ever before, so the traditional studies of soil erosion processes need to be redefined. In that sense, geomorphologists face to overcome new piping-related problems. In this article we identify new possible areas of research: (i) soil pipes and pipe collapses (PCs) as natural hazards, (ii) role of soil piping in carbon cycle, (iii) soil pipes and PCs and their relationships with biodiversity, and (iv) piping-affected areas as geodiversity sites. Only better recognition of natural hazards driven by soil piping, such as land subsidence and degradation, landslides, flooding and off-site sediment effects may result in better prevention and control measures in piping-affected areas. Moreover, in the context of Global Change the role of soil piping in carbon cycle should be raised. Land-use and land-cover changes, as well as climate change may affect piping dynamics in different morphoclimatic regions and soil loss due to piping may lead to carbon loss. Soil pipes and PCs are closely interlinked with biodiversity, both positively and negatively. Piping erosion may directly and indirectly destroy vegetation and animals, although in some cases piping erosion may create new habitats and provide favourable conditions for some species. However, soil piping is not only an environmental and societal problem, but it may also contribute to the world geodiversity, which is clearly observed in badland sites. Piping erosion may have a significant impact on environment and society, thus further research with new questions is essential to provide knowledge for sustainable development.  相似文献   

4.
Vegetation is an important factor in maintaining ecological balance and improving eco-environment. For improving environment, vegetation cover, as a substitute for the integrated action of stems and leaves, seems to be a crucial factor. However, recent st…  相似文献   

5.
F. Worrall  J. K. Adamson 《水文研究》2008,22(14):2531-2541
This study considers the impact of managed rotational burning of vegetation and sheep grazing upon the composition of soil waters within an upland peat soil. The study has considered soil water compositions from a complete factorial design of treatment plots where three different burning treatments were considered in replication with grazing and no grazing. All plots were sampled across a complete year with three dipwells in each plot. The study included aluminium (Al), iron, calcium, sodium (Na), magnesium (Mg), potassium, sulphate, chloride (Cl?), bromide, fluoride, phosphate (PO )and nitrate; and in order to clarify the nature of the results, the pH, conductivity and dissolved organic carbon were also considered, but the major results for these are reported elsewhere. The study finds: (1) Ca, Na, Mg and PO concentrations are significantly lower on all burnt plots, with only Al concentration being significantly higher on burnt plots. (2) Only Cl? showed any significant changes (a decrease) with the presence of sheep grazing, and then only when plots were also burnt. (3) A principal component analysis shows that the composition of most soil waters can be described by rainwater and soil water components, but in unburnt plots a base‐rich, high ionic strength water is sometimes present. The study suggests that burning, but not grazing, caused significant changes in soil water composition leading to increased interaction between incoming rainwaters and the peat soil but led to loss of interaction with deeper waters. However, no evidence was found for structural change in the soils even after long term (50 years) grazing and burning management. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Based on the modified Biot's theory of two-phase porous media, a study was presented on seismic reflection and transmission coefficients at an air-water interface of saturated porous soil media. The major differences between air-saturated soils and water-saturated soils were theoretically discussed, and the theoretical formulas of reflection and transmission coefficients at an air-water interface were derived. The characteristics of propagation and attenuation of elastic waves in air-saturated soils were given and the relations among the frequency, the angle of incidence and the reflection, transmission coefficients were analyzed by using numerical methods. Numerical results show that the propagation characteristic of the wave in air-saturated soils is great different from that in water-saturated soils. The frequency and the angle of incidence can have great influences on the reflection and transmission coefficients at interface. Some new cognition about the wave propagation is obtained and the study suggests that we may carefully pay attention to the influence of air on the dynamic analysis of seismic wave.  相似文献   

7.
Earthquake geotechnical engineering has been recognised as an important branch of earthquake engineering. The analysis of soil–structure interaction may also be crucial when structural design problems are involved. Soil–structure interaction is a complex problem and needs to be analysed by physical and numerical modelling. Two physical models, consisting of a shallow foundation resting on a sand deposit, are tested on a shaking table to analyse soil–foundation interaction. The physical models are monitored, recording the time-histories of accelerations and displacements in the soil deposit and on the foundation. FEM codes are then employed to numerically model the resulting behaviour, using specific constitutive models and a new hand-made code based on the characteristic-line method. Simplified analytical approaches, still preferred in engineering, are discussed and developed. A comparison is made between the numerical and analytical results and they are also compared with the experimental results to validate the numerical modelling and analytical approaches and, in the new light of the Performance-Based-Design, evaluate their ability to predict foundation displacements (SLE) and bearing capacity (SLU). Finally, interesting aspects regarding the seismic behaviour of the shallow foundation on the sand deposit have been observed and noted.  相似文献   

8.
Infiltration is the process of water penetrating into soil, generally referred to as the downward movement of water from the soil surface[1,2]. This process is af-fected by water supply and the soil infiltrability, de-termines the amounts of water entering into soil pro-file and the surface runoff. Infiltrability is defined as the infiltration flux of a unit area under atmospheric pressure and sufficient water supply. The actual infil-tration rate and/or the infiltrability is expressed in m/s …  相似文献   

9.
The performance of pipelines subjected to permanent strike–slip fault movement is investigated by combining detailed numerical simulations and closed-form solutions. First a closed-form solution for the force–displacement relationship of a buried pipeline subjected to tension is presented for pipelines of finite and infinite lengths. Subsequently the solution is used in the form of nonlinear springs at the two ends of the pipeline in a refined finite element model, allowing an efficient nonlinear analysis of the pipe–soil system at large strike–slip fault movements. The analysis accounts for large strains, inelastic material behavior of the pipeline and the surrounding soil, as well as contact and friction conditions on the soil–pipe interface. The numerical models consider infinite and finite length of the pipeline corresponding to various angles β between the pipeline axis and the normal to the fault plane. Using the proposed closed-form nonlinear force–displacement relationship for buried pipelines of finite and infinite length, axial strains are in excellent agreement with results obtained from detailed finite element models that employ beam elements and distributed springs along the pipeline length. Appropriate performance criteria of the steel pipeline are adopted and monitored throughout the analysis. It is shown that the end conditions of the pipeline have a significant influence on pipeline performance. For a strike–slip fault normal to the pipeline axis, local buckling occurs at relatively small fault displacements. As the angle between the fault normal and the pipeline axis increases, local buckling can be avoided due to longitudinal stretching, but the pipeline may fail due to excessive axial tensile strains or cross sectional flattening. Finally a simplified analytical model introduced elsewhere, is enhanced to account for end effects and illustrates the formation of local buckling for relative small values of crossing angle.  相似文献   

10.
Persistent organochlorine pollutants (POPs) are analyzed for the dropping-amended soils from the habitats of Antarctic seabirds and seals in Fildes Peninsula and Ardley Island. The concentration ranges are 0.21 to 3.85 ng/g for polychlorinated biphenyls (ΣPCBs),0.09 to 2.01 ng/g for organochlorine pesticides (ΣDDT),and 0.06 to 0.76 ng/g for hexachlorocyclohexanes (HCHs). Among these,hepata-chlorobiphenyls,hexachlorobiphenyls,p,p′-DDE and α-HCH compounds are dominant. The concentra-tion ranges of ΣPCB,DDT and HCH in the eggs of skuas were 91.9―515.5 ng/g,56.6―304.4 ng/g and 0.5―2.0 ng/g respectively; those in the eggs of penguins were 0.4―0.9 ng/g,2.4―10.3 ng/g and 0.1― 0.4 ng/g; and those in the eggs of giant petrel were 38.1―81.7 ng/g,12.7―53.7 ng/g and 0.5―1.5 ng/g respectively. The dominant POP compounds in the eggs are PCB180,PCB153,p,p′-DDE and hexa-chlorobenzene (HCB). The present study shows that the concentration of POPs in the sea-bird-inhabited-dropping-amended soil varies with the extent of predation and nest occupancy of dif-ferent seabird populations. Statistical analysis on the POP concentrations from the different seabird eggs implies that the difference in the bio-concentration levels of the birds depends on the bio-habits of the species,such as the range of activity,distance of immigration,feeding pattern,and nest occupation. Among these,the most important factor is the location of the seabirds in the food chain and their feeding pattern. This shows that POPs accumulated in the seabirds resulted from the bio-concentration through the food chain. In addtion,210Pb dating for the dropping-amended soils (AD1-a and AD2) was performed,which provided the POP accumulation rate and the historic record for the soil profile. It indicates that POP will continuously affect the Antarctic ecosystem for a long time.  相似文献   

11.
During strong earthquakes, adjacent structures with non-sufficient clear distances collide with each other. In addition to such a pounding, cross interaction of adjacent structures through soil can exchange the vibration energy between buildings and make the problem even more complex. In this paper, effects of both of the mentioned phenomena on the inelastic response of selected steel structures are studied. Number of stories varied between 3 and 12 and different clear distances up to the seismic codes prescribed value are considered. The pounding element is modeled within Opensees. A coupled model of springs and dashpots is utilized for through-the-soil interaction of the adjacent structures, for two types of soft soils. The pounding force, relative displacements of stories, story shears, and plastic hinge rotations are compared for different conditions as the maximum responses averaged between seven consistent earthquakes. As a result, simultaneous effects of pounding and structure–soil–structure interaction are discussed.  相似文献   

12.
13.
High-resolution sampling,measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau,and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic car-bon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm-2 to 30.75×104 kg C hm-2 in the alpine meadow eco-systems,with an average of 26.86×104 kg C hm-2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m-2 a-1 to 254.93 gC m-2 a-1,with an average of 191.23 g C m-2 a-1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m-2 a-1 to 181 g C m-2 a-1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%―81.23% of total CO2 emitted from or-ganic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming,the storage,volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed,which needs further research.  相似文献   

14.
This paper presents a pre-shaking technique for measuring the $V_{s}$ profile of sand deposits and determining the natural frequencies of the sand bed and soil-structure system in a centrifuge model at an acceleration of 80 g. The pre-shaking technique is a non-destructive test. It uses a shaker as a wave generation source and a vertical array of accelerometers embedded in the sand bed and the accelerometers attached to the pile head as receivers. The pre-shaking method can be easily used for in-flight subsurface exploration ( $V_{s}$ profile measurements) and in-flight system identification of soil-structure systems (natural frequency measurements). A soil–pile centrifuge model is used to demonstrate the versatility of pre-shaking during a routine centrifuge shaking table test. This paper discusses the testing setup, testing procedures, related SI techniques, and signal processing for the soil–pile system. The natural frequencies measured by the pre-shaking tests are consistent with theory-based results. This technique can be conducted at any time before and after major earthquake events occur in a test.  相似文献   

15.
Excessive soil erosion and deposition is recognised as a significant land degradation issue. Quantifying soil erosion and deposition is a non-trivial task. One of these methods has been the mathematical modelling of soil erosion and deposition patterns and the processes that drive them. Here we examine the capability of a landscape evolution model to predict both soil erosion rate and pattern of erosion and deposition. This numerical model (SIBERIA) uses a Digital Elevation Model (DEM) to represent the landscape and calculates erosion and deposition at each grid point in the DEM. To assess field soil redistribution rates (SRR) and patterns the distribution of the environmental tracer 137Cs has been analysed. Net hill slope SRR predicted by SIBERIA (a soil loss rate of 1.7 to 4.3 t ha-1 yr-1) were found to be in good agreement with 137Cs based estimates (2.1 – 3.4 t ha-1 yr-1) providing confidence in the predictive ability of the model at the hillslope scale. However some differences in predicted erosion/deposition patterns were noted due to historical changes in landscape form (i.e. the addition of a contour bank) and possible causes discussed, as is the finding that soil erosion rates are an order of magnitude higher than likely soil production rates. The finding that SIBERIA can approximate independently quantified erosion and deposition patterns and rates is encouraging, providing confidence in the employment of DEM based models to quantify hillslope erosion rates and demonstrating the potential to upscale for the prediction of whole catchment erosion and deposition. The findings of this study suggest that LEMs can be a reliable alternative to complex and time consuming methods such as that using environmental tracers for the determination of erosion rates. The model and approach demonstrates a new approach to assessing soil erosion that can be employed elsewhere. © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical study on the influence that cracks and discontinuities (closed cracks) can have on the seismic response of a hypothetical soil–structure system is presented and discussed. A 2-D finite-difference model of the soil was developed, considering a bilinear failure surface using a Mohr–Coulomb model. The cracks are simulated with interface elements. The soil stiffness is used to characterize the contact force that is generated when the crack closes. For the cases studied herein, it was considered that the crack does not propagate during the dynamic event. Both cases, open and closed cracks, are considered. The nonlinear behavior was accounted for approximately using equivalent linear properties calibrated against several 1-D wave propagation analyses of selected soil columns with variable depth to account for changes in depth to bed rock. Free field boundaries were used at the edges of the 2-D finite-difference model to allow for energy dissipation of the reflected waves. The effect of cracking on the seismic response was evaluated by comparing the results of site response analysis with and without crack, for several lengths and orientations. The changes in the response obtained for a single crack and a family of cracks were also evaluated. Finally, the impact that a crack may have on the structural response of nearby structures was investigated by solving the seismic-soil–structure interaction of two structures, one flexible and one rigid to bracket the response. From the results of this investigation, insight was gained regarding the effect that discontinuities may have both on the seismic response of soil deposits and on nearby soil–structure systems.  相似文献   

17.
Identifying the main controlling factors of the stream temperature (Tw) variability is important to target streams sensitive to climate and other drivers of change. The thermal sensitivity (TS), based on relationship between air temperature (Ta) and Tw, of a given stream can be used for quantifying the streams sensitivity to future climate change. This study aims to compare TS for a wide range of temperate streams located within a large French catchment (110,000 km2) using 4 years of hourly data (2008–2012) and to cluster stations sharing similar thermal variabilities and thereby identify environmental key drivers that modify TS at the regional scale. Two successive classifications were carried out: (a) first based on TaTw relationship metrics including TS and (b) second to establish a link between a selection of environmental variables and clusters of stations. Based on weekly TaTw relationships, the first classification identified four thermal regimes with differing annual Tw in terms of magnitude and amplitudes in comparison with Ta. The second classification, based on classification and regression tree method, succeeded to link each thermal regime to different environmental controlling factors. Streams influenced by both groundwater inflows and shading are the most moderated with the lowest TS and an annual amplitude of Tw around half of the annual amplitude of Ta. Inversely, stations located on large streams with a high distance from source and not (or slightly) influenced by groundwater inflows nor shading showed the highest TS, and so, they are very climate sensitive. These findings have implications for guiding river basin managers and other stakeholders in implementing thermal moderation measures in the context of a warming climate and global change.  相似文献   

18.
Introduction Earthquake is not an isolated event. The focal region is not a closed system either. It is able to exchange energy or material with the medium outside this region. These kinds of exchange may cause various physical and chemical effects, so it is possible to get precursory signals by using space remote sensing technology. Many scholars (QIANG, et al, 1990; GENG, et al, 1992; XU, et al, 1995) have carried out some preliminary researches and experiments on the mechanism of therm…  相似文献   

19.
In order to understand the potential of revegetation of halophytic community at the north edge of Taklimakan Desert, the species structure, storage capacity, the vertical distribution pattern and seasonal dynamics of soil seed bank and their interrelationship with community structure of above-ground plants were investigated. The results show that (i) 9 species were identified from seed bank in different seasons indicating that plant composition in this area was simple. (ii) The seed density in soil was 222±10.79 grain/m2 on average, and showed a seasonal variation range from 132±8.16 grain/m2 in summer to 303±12.70 grain/m2 in autumn. (iii) The similarity coefficient between soil seed bank and above-ground vegetation was 0.778. (iv) Vertically, seed densities declined with soil depth. 82.4% of total seeds were found in the top 3 cm of soil profile. No active seeds were found in soil profile below 6 cm. It is concluded that the seed bank at the north edge of Taklimakan Desert contains active seeds of all plant species observed on above ground, and is able to supply potential contribution to reconstruction of vegetation.  相似文献   

20.
The main purpose of this study is to investigate the accuracy of an advanced beam model for the soil–pile–structure kinematic and inertial interaction and demonstrate its efficiency and advantages compared to other commonly used beam or solid models. Within this context, a Beam on Nonlinear Winkler Foundation model is adopted based on the Boundary Element Method (BEM), accounting for the effects induced by geometrical nonlinearity, rotary inertia and shear deformation, employing the concept of shear deformation coefficients. The soil nonlinearity is taken into consideration by means of a hybrid spring configuration consisting of a nonlinear (p–y) spring connected in series to an elastic spring–damper model. The nonlinear spring captures the near-field plastification of the soil while the spring–damper system (Kelvin–Voigt element) represents the far-field viscoelastic character of the soil. An extensive case study is carried out on a pile-column–deck system of a bridge, found in two cohesive layers of sharply different stiffness and subjected to various earthquake excitations, providing insight to several phenomena. The results of the proposed model are compared with those obtained from a Beam-FE solution as well as from a rigorous fully three-dimensional (3-D) continuum FE scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号