首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
当代中国地球物理学向何处去   总被引:22,自引:19,他引:3       下载免费PDF全文
在20世纪的百年中,地球物理学在经历了以活动论为内涵的板块构造和行星际探测双重革命的重大发展时期以后,当今正处在一个新的起点上.从全球地球科学发展趋势来看,地球物理学的未来面临着比以往任何时候都更富有挑战性,特别是在当今经济全球化和科学全球化的复杂格局下.显然,当必会展现出前所未有的发现和突破的机遇,同时也正在一个充满希望的新的转折点上.然而,当今我国的地球物理学却在不断削弱,并逐步入“消亡”,即面临着严峻的“危机”.在这21世纪的新时期,中国地球物理学向何处去?它面临的“危机”在哪里?其机遇又在何方?它在社会发展与科学进步的长河中占有什么样的地位?又扮演着什么样的角色?国人必须给予严肃的关注,以使其在中国地球物理学的发展和逐步步入世界科技强国的进程中,发挥其本能的作用,并做出应有的新贡献.为此,本文将讨论以下4个方面的问题:(1)地球物理学的发展导向和战略意义;(2)20世纪百年来地球物理学主要的重大成就;(3)当今中国地球物理学的发展势态与危机;(4)当今中国地球物理学向何处去.  相似文献   

2.
中国地球物理仪器和实验设备研究与研制的发展与导向   总被引:30,自引:20,他引:10       下载免费PDF全文
地球物理学本质上是一门观测的科学.高精度和高分辨率的观测与实验仪器和设备乃是在地球物理学发展进程中的“前哨”.为此,在我国地球物理学领域里,在对仪器和设备的研究中必须转变观念,即在引进技术,仿造和合作研制的基点上发展自己的研究与研制体系,并在不断深化的进程中,逐步开创中国地球物理仪器研究和研制的新局面,形成具有中国特色的,并具有独立主权和品牌的地球物理仪器及设备的创新研究和研制体制,进而开拓新市场,走向世界,并独立于世界科技之林.  相似文献   

3.
当代地球物理学研究的核心科学问题和发展导向   总被引:20,自引:14,他引:6       下载免费PDF全文
地球物理学在20世纪的百年中取得了辉煌的成就,也提出了一系列有待研究和探索的科学问题.基于国家战略需求和自主创新的方针,基于国家在金属矿产资源、油气能源、地震与火山灾害和军事与国防的需求和防范,则必须深化研究和认识地球本体.为此,地球内部物质与能量的交换、深层过程和动力学响应已成为21世纪地球科学研究和发展的核心,地球物理学必须造福于人类.  相似文献   

4.
在21世纪的今天,中国正处于快速工业化、经济腾飞和科学技术突飞猛进的进程中,地球物理学面临巨大的机遇,展现出多维的发展空间,同时也面临着严峻的挑战.为此,国家战略需求和自主创新已成为中华民族能否独立于世界民族之林的最强音!在这前提下,地球物理学家就必须超越已有的框架,穿过地平线,全方位的研究、探索、揭示、发现地球内部的奥秘.必须清晰地认识到新世纪里地球物理学的发展导向,即地球物理学的前沿领域和深化研究与现代科学技术进步的制约;地球物理学必须牢牢地把握住向高层次的综合研究脉络方能有所发现与突破;地球物理学所面临的机遇、多元发展空间和挑战;地球内部圈层结构与大陆动力学研究的主体内涵和导向.  相似文献   

5.
《中国科学:地球科学》(中文版)和SCIENCE CHINA EarthSciences(英文版)是中国科学院主管、中国科学院和国家自然科学基金委员会共同主办的地球科学类综合性学术刊物,由《中国科学》杂志社出版.旨在报道地质科学、地球化学、地球物理学、地理科学、环境科学、海洋科学、大气科学和空间科学等基础研究与应用研究方面具有创新性和高水平的最新研究成果,要求文章的可读性强,能够在地球科学相关学科领域产生深刻的影响.月刊,每月1日出版.  相似文献   

6.
21世纪地球物理学的机遇与挑战   总被引:18,自引:14,他引:4  
21世纪的地球物理学(主要指固体地球物理学)面临着机遇,同时也面临着挑战,其研究的核心领域应为地球深部物质与能量的交换,圈层耦合和其深层动力过程.本文将对以下问题进行探讨:(1)地球物理学的发展和深化与现代科学技术进步的制约.(2)地球物理学必须向高层次的综合研究方向发展.(3)地球物理学面临的机遇与挑战.(4)地球内部圈层结构与大陆动力学研究的思考和内涵.  相似文献   

7.
20世纪中叶以来,在世界科技大潮中,地球物理学发展迅猛.因为它是一门涉及面极为广泛、且交叉内涵亦非常错综的一门边缘科学领域.在地球物理学的整体发展进程中,人才的竞争是第一要素,学科交叉与交叉科学的耦合响应与发现乃是地球物理学领域新的生长点和新的科学前沿的源头.在世界科技发展的长河中,最具代表性的学科交叉领域如生物物理学中的DNA双螺旋结构的发现和地球科学中全球海陆板块构造的创立应属典范,此乃理解学科交叉和原始创新理念的源泉.显然地球内部物质与能量的交换及其深层过程和动力学机制的研究与探索,将必是地球物理学与有关学科的大跨度交叉,且会促使其前进、发展和自主创新.所以它在地球科学发展中占有极为重要的地位.  相似文献   

8.
地球物理学及地球动力学研究与计算数学   总被引:1,自引:1,他引:0       下载免费PDF全文
地球物理学是20世纪,特别是在其中叶以后迅速发展起来的一门边缘科学.它以物理学、数学和信息科学为依托,并与地质学、地球化学密切结合;以研究和探索地球内部介质的属性、结构变异和深部物质与能量的交换、深层过程和动力学响应.这在促进社会与经济的发展和科学与技术的进步中占有重要地位,因为大量资源的需求和自然灾害的防范在人类生活和生存空间以及可持续发展中乃核心所在.在研究和探索这一系列的地球科学问题的进程中,首先必须通过地表进行高精度的地球物理探测、观测和高分辨率的数据采集,进而利用不同的数学方法反演计算地球内部介质的精细结构和其物理—力学过程与动力学响应.基于此,本文主要讨论了:1)地球物理学和地球动力学的发展趋势及特点;2)地球物理学的发展对计算数学的需求;3)地球动力学和数值模拟与计算地球物理学.最后对这些问题和基本导向进行了讨论.  相似文献   

9.
征稿简则     
简介:《中国科学:地球科学》(中文版)和SCIENCE CHINA Earth Sciences (英文版)是中国科学院和国家自然科学基金委员会共同主办、《中国科学》杂志社出版的学术刊物.力求及时报道地质科学、地球化学、地球物理学、空间科学、地理科学、环境科学、大气科学和海洋科学基础研究与应用研究方面具有创新性和重要科学意义的最新研究成果.  相似文献   

10.
征稿简则     
《中国科学:地球科学》2021,(4):F0003-F0003
简介:《中国科学:地球科学》(中文版)和SCIENCE CHINA Earth Sciences (英文版)是中国科学院和国家自然科学基金委员会共同主办、《中国科学》杂志社出版的学术刊物.力求及时报道地质科学、地球化学、地球物理学、空间科学、地理科学、环境科学、大气科学和海洋科学基础研究与应用研究方面具有创新性和重要科学意义的最新研究成果.  相似文献   

11.
随着近代观测和实验技术的发展,人们越来越重视对地球运动及其机理的认识,并注意到大地测量学与地球物理学和地球动力学的联系与渗透。本文将对以上三者的联系以及大地测量学在监测地球运动和研究地球动力事件中的作用作一综述,并对近年国内外这方面的研究进展作一介绍。  相似文献   

12.
The contribution made by V.V. Beloussov (1907–1990), an outstanding Earth scientist in the former Soviet Union and Russia, to the development of planetary geophysics is considered. Beloussov was a brilliant coordinator of international cooperation and direct inspirer of international scientific programs of paramount importance. He took up one of the key positions in organizing and holding the International Geophysical Year (IGY) in 1957–1958. In 1960, Beloussov was elected President of the International Union of Geodesy and Geophysics and proposed the project “The upper mantle and its influence on the Earth’s crust,” which subsequently became known worldwide as the Upper Mantle Project. The project underlined that the experience of the IGY should be extended to studies of the deep structure of the Earth and the processes taking place in the Earth’s interior. The fulfillment of this and the subsequent Geodynamic project resulted in a breakthrough in the knowledge about the deep structure of the Earth, particularly the structure of the oceans. Beloussov actively advocated integrating science of the Earth, geonomy, and in his scientific research sought a geonomic approach incorporating the entire complex of geological, geophysical, and geochemical data. Beloussov’s scientific heritage contains propositions that are of current importance and can be involved in modern developments of the Earth sciences.  相似文献   

13.
Nanoscience and technology are not exactly new, but nevertheless rapidly expanding fields that are providing revolutions in all sciences on the scale of what genomics and proteomics have done in recent years for the biological sciences. Nanoscience is based on the fact that properties of materials change as a function of the physical dimension of that material, and nanotechnology takes advantage of this by applying selected property modifications of this nature to some beneficial endeavor. The prefix ‘nano’ is used because the property dependence on physical size is generally observed close to the nanoscale, somewhere around 10−9 m. The dimensions at which changes are observed depend on the specific material and the property in question, as well as which of the three dimensions are restricted in real space (e.g. small particles vs. thin films vs. ‘one-dimensional’ phases). Properties change in these confined spaces because the electronic structure (i.e. the distribution of electron energies) of the material is modified here in the gray area between the bulk and atomistic/molecular realms, or equivalently between the continuum and strictly quantum domains. Earth materials with at least one dimension in the nanorange are essentially ubiquitous. Many have been known for several decades and more are being discovered all the time. But the scientific emphasis has now shifted to that of measuring, understanding and ultimately predicting the property changes from the bulk to nanodomains, and to the understanding of the significant ways that Earth processes are affected by these changes. In addition, where possible, Earth scientists are using nanoscience to develop nanotechnology that should play important roles in Earth sustainability issues of the future.  相似文献   

14.
In 1988 the interdisciplinary role of space geodesy has been discussed by a prominent group of leaders in the fields of geodesy and geophysics at an international workshop in Erice (Mueller and Zerbini, 1989). The workshop may be viewed as the starting point of a new era of geodesy as a discipline of Earth sciences. Since then enormous progress has been made in geodesy in terms of satellite and sensor systems, observation techniques, data processing, modelling and interpretation. The establishment of a Global Geodetic Observing System (GGOS) which is currently underway is a milestone in this respect. Wegener served as an important role model for the definition of GGOS. In turn, Wegener will benefit from becoming a regional entity of GGOS.What are the great challenges of the realisation of a 10?9 global integrated observing system? Geodesy is potentially able to provide – in the narrow sense of the words – “metric and weight” to global studies of geo-processes. It certainly can meet this expectation if a number of fundamental challenges, related to issues such as the international embedding of GGOS, the realisation of further satellite missions and some open scientific questions can be solved. Geodesy is measurement driven. This is an important asset when trying to study the Earth as a system. However its guideline must be: “What are the right and most important observables to deal with the open scientific questions?”.  相似文献   

15.
In the past 30 years the Satellite Laser Ranging(SLR) technique has improved to a large extent, currently achieving a ranging precision down toa few millimeters. Moreover the growth in the size of the international network of SLR stations and therapidly growing constellation of geodetic target satellites make the SLR a well established technique for solidEarth studies and for the related Earth subsystem sciences. The long SLR observation history has become a veryimportant source of data for global and local changes detection and monitoring in many different fields.Tectonic plate motion, crustal deformation, post-glacial rebound and subsidence, Earth rotation, and polarmotion, time variations of the Earth's gravitational field, ocean tides modeling, center of mass of the totalEarth system monitoring, International Terrestrial Reference System (ITRS) maintenance are only themain applications in which the SLR technique plays a significant role. Plate boundary zones in whichdeformation is diffuse are in general geographical areas associated with high seismic and volcanic activity.A principal key to understand the geophysics of a plate boundary process is the detailed knowledge of the3-D kinematics. This work will focus on the relevant results of the Eurasian SLR subnetwork in termsof technological evolution and crustal deformation. A general overview of the Eurasian SLR stationperformance will be presented with particular reference to the state-of-the-art SLR observatory MLRO (Matera LaserRanging Observatory). The current tectonic deformations (velocity and strain-rate field) detectedby the Eurasian network and by the former WEGENER/MEDLAS campaigns will also be discussed.  相似文献   

16.
The Earth’s lithosphere and mantle respond to Space Weather through time-varying, depth-dependent induced magnetic and electric fields. Understanding the properties of these electromagnetic fields is a key consideration in modelling the hazard to technological systems from Space Weather. In this paper we review current understanding of these fields, in terms of regional and global-scale geology and geophysics. We highlight progress towards integrated European-scale models of geomagnetic and geoelectric fields, specifically for the purposes of modelling geomagnetically induced currents in power grids and pipelines.  相似文献   

17.
The core concerns of plate tectonics theory are the dynamics of subducting plates, which can be studied by integrating multidisciplinary fields such as seismology, mineral physics, rock geochemistry, geological formation studies, sedimentology, and numerical simulations. By establishing a theoretical model and solving it with numerical methods, one can replicate the dynamic effects of a subducting plate, quantifying its evolution and the surface response. Simulations can also explain the observations and experimental results of other disciplines. Therefore, numerical models are among the most important tools for studying the dynamics of subducting plates. This paper provides a review on recent advances in the numerical modeling of subducting plate dynamics. It covers various aspects, namely, the origin of plate tectonics, the initiation process and thermal structure of subducting slab, and the main subduction slab dynamics in the upper mantle, mantle transition zone, and lower mantle. The results of numerical models are based on the theoretical equations of mass, momentum, and energy conservation. To better understand the dynamic progress of subducting plates, the simulation results must be verified in comparisons with the results from natural observations by geology, geophysics and geochemistry. With the substantial increase in computing power and continuous improvement of simulation methods, numerical models will become a more accurate and efficient means of studying the frontier issues of Earth sciences, including subducting plate dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号