首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
本文以山西省为实验区,基于ICESat/GLA14测高数据对SRTM1 DEM和ASTER GDEM V2数据的垂直精度进行了对比,分析了其在坡度、土地利用类型和地貌类型中的误差分布情况,并基于地形剖面方法分析了2种DEM数据在地形表达上的差异。研究结果表明:① 在垂直精度上,SRTM1 DEM数据要明显高于ASTER GDEM V2数据,其绝对误差均值分别为4.0 m和7.8 m,标准偏差分别为6.0 m和10.7 m,均方根误差分别为6.1 m和10.7 m。② 这2种DEM数据的精度受坡度影响严重,随坡度值的升高误差增大;SRTM1 DEM的绝对误差均值、标准偏差和均方根误差在水田最小,在林地最大,而ASTER GDEM V2的这3种误差在居民用地最小,在林地最大;SRTM1 DEM 和ASTER GDEM V2的绝对误差均值、标准偏差和均方根误差在平原地区最小,在大起伏山地最大。③ 在平原和台地地区,ASTER GDEM V2数据高程值有异常波动,SRTM1 DEM在起伏山地存在对山谷过高估计。总体上,SRTM1 DEM比ASTER GDEM V2对地形的表达准确,与ICESat/GLA14对地形的描述基本相一致。  相似文献   

2.
数字高程模型(Digital Elevation Model, DEM)是一种至关重要的空间信息,广泛应用于各行各业。其中,ASTER GDEM与SRTM几乎覆盖了全球陆域,为地学研究提供了非常实用的高程数据支撑,但是由于二者传感器采集数据原理的不同,使得高程数据在不同地貌条件下的高程精度亦存在程度不一的误差。本文提出了一种新型的基于地貌特征的DEM融合方法,使得融合GDEM与SRTM后的DEM数据,消除了地貌特征的影响、显著地提高了DEM质量。该方法主要分为地理配准和高程融合2个步骤:①基于河流线对等线性地貌特征的位置数据,构建了GDEM与SRTM的水平偏移相关的误差评价函数,采用多级网格搜索法求得DEM间的水平偏移距离,实现对DEM的配准;②按照DEM高程值在不同地貌单元及边界线附近的高程变化特征,建立地貌分区的高程融合模型来融合两种地理配准后的DEM高程,尤其是实现了地貌单元边界线附近的高程平滑过渡。本文以怀柔北部地区为实验区,以1:5万地形图为参考,对2种DEM数据进行融合,统计结果表明:① 融合DEM在各地貌单元的误差均显著下降,地形表达较之融合前更加精确;② 高程差呈现正态分布,明显区别于融合前DEM不对称的多峰分布形态,说明地貌影响被有效地剔除;③ GDEM和SRTM数据的精度对坡度有较大依赖性,融合后DEM的精度在不同坡度范围下均优于GDEM和SRTM,显著降低了融合前DEM对坡度的依赖程度;④ 在不同坡向下,GDEM和SRTM的RMSE取值波动较大,融合DEM的RMSE取值在各方向表现稳定,高程精度较GDEM和SRTM有显著提高。  相似文献   

3.
为了评价不同地貌下国产资源三号测绘卫星DSM数据精度,以云南省高海拔山区为研究案例,并以1:10 000实测地形图DEM为假定真值,以90 m分辨率SRTM DEM为评价参考,从高程精度和地形描述精度两个指标对15 m分辨率的ZY-3 DSM进行精度评价。结果表明:在不同地貌下ZY-3 DSM的高程精度和地形描述精度都优于SRTM DEM。从高程中误差分析来看,台地地貌精度最高,ZY-3 DSM高程中误差仅为SRTM DEM的1/6,平原地貌精度最低,该比值为1/2;就地形描述评价而言,四种地貌下ZY-3 DSM的Et均方根误差实际值与理论值均非常接近,实际值与理论值的比在0.975 2~1.594 3之间,而SRTM DEM在5.310 1~8.749 4之间。由此看来,不同地貌下ZY-3 DSM数据精度整体高于SRTM DEM。  相似文献   

4.
以山西省吕梁市水峪贯地区为研究区域,基于大比例尺地形图对ICESat/GLA14数据的垂直精度进行了分析。首先,对ICESat/GLA14数据下载和处理,以1:5万地形图为基础数据,生成DEM,提取地形因子;然后,提取ICESat/GLA14数据对应的高程值、坡度、坡向、起伏度等信息;最后,对ICESat/GLA14数据与地形图数据的高程差以及高程差随这些分类后的影响因子的变化规律进行了统计分析、研究结果表明:ICESat/GLA14数据在水峪贯地区平均误差为-5.66m,绝对误差均值为21.92m,标准偏差为27.40m,均方根误差为27.98m;ICESat/GLA14数据的垂直精度随坡度和地形起伏度的增加而降低,受坡向因子影响不大,平均误差在NS轴左边为负值,NS轴右边为正值。  相似文献   

5.
南极洲被巨厚冰雪覆盖,地质构造以南极横断山脉为界,总体分为东南极地盾和西南极活动带。数字高程模型(DEM)是研究南极冰盖变化的基础数据之一。通过多期次数字高程模型相比较获得高程的变化信息,是分析南极冰盖厚度变化和物质平衡的重要手段。然而不同类型DEM之间存的平面误差和垂直误差影响分析结果的精度。首先利用配准消除DEM间的水平误差,然后计算并按坡度提取CryoSat DEM与其他DEM的平均高程差和标准差,最后分析高程差的时空变化特征。通过分析发现,DEM之间存在不同的平面误差。其中TanDEM_X DEM与CryoSat DEM的高程平面偏差最小,而ICESat DEM与CryoSat DEM的高程平面偏差最大。在垂直方向上,0°~1°的坡度范围内,CryoSat DEM与TanDEM_X DEM的平均高程差在3.5~5.5 m之间,标准差小于18.0 m;CryoSat DEM和Bamber 1km DEM的平均高程差在-2.5~+1.0 m之间,标准差小于24.2 m;CryoSat DEM与ICESat DEM的平均高程差在-25.0~-1.0 m之间,标准差小于47.2 m;CryoSat DEM与RAMPv2 DEM的平均高程差在1.3~3.2 m之间,标准差小于45.6 m。通过研究发现南极冰盖内部高程增加,但西南极冰盖和东南极冰盖高程均在降低,且西南极降低明显,同时南极边缘地区高程降低明显。本研究为全球变化研究和南极物质平衡研究提供了重要参考。   相似文献   

6.
目前广泛应用的数字高程模型(DEM)包括SRTM和ASTER GDEM,但在地形影响下,两类数据的误差分布并不均匀。本文选用1:5万地形图DEM及河流要素作为参照,在青藏高原东麓山区开展实验,分别采用"河流-河谷"位置偏移量与高程中误差来评价两类数据的平面精度与垂直精度,结果表明:(1)实验区内SRTM3存在向西南方向的水平位置偏移,平均偏移量为127.8 m,ASTER GDEM则以正西方向偏移为主,平均偏移量为104.1 m,该区域ASTER GDEM的总体平面精度较好;(2)SRTM3数据样本的绝对误差分布相对集中,高程中误差为35.3 m,小于ASTER GDEM样本的高程中误差50.2 m,总体垂直精度优于ASTER GDEM;(3)在平均高程大于4500 m的高海拔区域,两类数据的中误差与高程值正相关,SRTM3中误差随高程增速较慢,垂直精度较ASTER GDEM高;(4)两组数据垂直精度对坡度有较大依赖性,中误差随坡度近似指数曲线增长,在平缓区域SRTM3中误差小于ASTER GDEM。本研究为该类数据在山区的选用及误差修正提供依据。  相似文献   

7.
数字高程模型(Digital Elevation Model, DEM)是地球表层系统科学相关研究的基础数据,DEM数据精度的定量评价对科学选择DEM数据源、量化数据误差的影响等具有重要意义。在目前全球尺度可免费获取的DEM数据中,2018年发布的TanDEM-X 90 m DEM(TanDEM-X 90)数据凭借其较好的现势性得到了广泛关注。然而,目前大区域尺度上开展的针对TanDEM-X 90数据精度的评价工作较为有限,缺乏对其整体精度及误差空间分布特征的系统认知。本文以ICESat/GLAS卫星测高数据为评价数据,并选择SRTM-3 DEM和AW3D30 DEM作为对比数据,以平均绝对误差(MAE)、均方根误差(RMSE)、偏度和峰度等为统计指标,重点研究了TanDEM-X 90在中国主要陆地区域的误差统计特征和空间分布规律,探讨了高程、坡度、地貌类型、土地覆盖等对DEM精度的影响,并进行了适用性分析。结果表明:① 在中国区域,TanDEM-X 90数据的平均绝对误差和均方根误差分别为4.31 m和7.87 m,其高程精度与SRTM-3相近,但明显低于AW3D30;② 当坡度低于4°时,TanDEM-X 90的整体精度为3种数据中最高的;③ 对于平原、丘陵、台地这3类地貌类型,TanDEM-X 90相较SRTM-3而言具有一定精度优势;④ 本研究还以流域为单元绘制了全国尺度的TanDEM-X 90误差空间分布图,为该数据在全国尺度或典型区域的应用提供重要参考。研究也表明TanDEM-X 90在反映地表高程信息方面具有更好的时效性,能更好地反映中国区域近年来受人类活动影响的地表高程变化。  相似文献   

8.
TanDEM-X 90 m 数字高程模型(DEM)在其原始雷达影像的采集与DEM产品生产过程中,坡度、坡向和地表覆盖物等 因素都会对误差产生一定的影响。为了便于该数据更好地为各领域的研究提供服务,本文以整个中国大陆为研究区域,运用ICESat/GLA14数据对该区域的TanDEM-X 90 m DEM对应位置的高程数据进行提取统计,对比分析了我国陆地区域 TanDEM-X DEM数据与GLA14高程点数据的整体误差精度,并提取坡度、坡向地形因子,研究TanDEM-X 90 m DEM误差在不同坡度、不同坡向以及不同地表覆盖物影响下的分布规律。结果表明:① TanDEM-X 90 m DEM在中国区域整体的绝对误差均值为3.89 m,中误差为9.03 m,标准差为8.85 m; ② 受地形因子的影响,在坡度<3°时,绝对误差均值仅为1.29 m,标准差为2.84 m; 在坡度>25°时,绝对误差均值20 m以上,标准差也达到30 m左右,即误差随着坡度的上升逐渐增大;③ 坡向对误差也有一定影响,在南北方向的绝对误差均值明显比东西方向小;④ 受地表覆盖物影响较大,在荒地误差最小,绝对误差均值仅为 1.85 m,但在冰川积雪区绝对误差均值达到12.68 m。通过与无人机获取的等高线及剖面图对比分析发现,TanDEM-X 90 m DEM能较好地反映真实地形情况。最后,根据不同影响因素的权值,绘制全国范围的TanDEM-X 90 m DEM误差绝对值分布图,且验证了可靠性。  相似文献   

9.
SRTM3和ASTER GDEM V2数据具有较高的空间分辨率和广泛的覆盖范围,对于地学研究具有重要意义;但在不同地形复杂度和地面覆盖物区域,两类数据的误差分布并不均匀。SRTM3和ASTER GDEM V2数据自公布以来,其精度修正一直是研究热点。然而大范围区域精度验证缺乏有效手段,传统方法可靠性差且数据获取成本较高。自ICESat-1数据公开以来,它们已成为SRTM3和ASTER GDEM V2精度评定的主要检核点。为此,本文以山东省为研究区域,借助ICESat-1评估了SRTM3和ASTER GDEM V2的高程精度,并根据插值误差曲面对两种DEM进行了修正。分析表明,原始SRTM和ASTER高程中误差分别为5.57 m和7.20 m,均高于标称精度;随着坡度的增大,高程精度呈降低的趋势。通过分析土地覆盖类型与误差分布关系表明:农田、灌丛土地类型精度较高;森林、湿地精度较低。分别采用反距离加权、普通克里金、地形转栅格和自然邻域插值方法构建误差曲面。结果表明:不同的插值方法构建的误差曲面的特征和精度也不同。其中,反距离加权修正的效果最佳,其次是地形转栅格和自然邻域,而普通克里金修正的效果最差。  相似文献   

10.
对SRTM1 DEM高程误差进行校正可有效提高其应用精度。以具有典型地貌特征的黄土高原作为研究区域,以ICESat-2/ATL08陆地高程作为参考数据,引入主流机器学习算法建立SRTM1高程误差与影响因子之间的关系模型对高程值进行校正;通过分析模型性能指标、误差频数分布、校正误差空间格局以及典型剖面误差分布,以此得到不同地貌类型区的高程误差校正模型适用性。实验结果表明:在平原、风沙丘陵和黄土塬地貌区随机森林模型高程校正效果最佳,平均绝对误差分别降低0.49、0.82和1.2 m,同时校正误差在空间分布上异常值较少,低起伏度的平原和风沙丘陵地貌区典型剖面误差与原误差较为贴合;山地区支持向量机模型适用性更强,均方根误差和平均绝对误差分布降低了6.79 m和5.43 m,可大幅提升误差绝对值较小的点位频数,同时在空间格局和典型剖面验证效果最佳;黄土丘陵地貌区弹性反馈神经网络模型效果最优,均方根误差和平均绝对误差分别降低了2.3 m和2.04 m,空间分布上误差降低效果显著,典型剖面误差异常值较少;土石丘陵地貌区卷积神经网络模型效果更理想,均方根误差与平均绝对误差分别降低4.14 m和3.5 ...  相似文献   

11.
星载激光雷达ICESat-2和GEDI可以为数字高程模型产品的精度评价与修正提供全球覆盖的、可靠的高精度参考数据源。然而,现有的DEM修正方法主要是针对DEM误差中的植被高信号且多采用线性回归模型。为此,本文分析了ASTER GDEM v3精度与土地覆盖类型、高程、坡度、起伏度及植被覆盖率的关系。在此基础上,提出了一种考虑上述多种精度影响因素并结合XGBoost和空间插值的DEM误差修正方法。结果分析表明:原始ASTER GDEM的误差整体呈正态分布,平均误差为-3.463 m,存在较大负偏差,高程精度随着高程、坡度、起伏度及植被覆盖率VCF的增大呈降低趋势;经过修正后,ASTER GDEM平均误差降低到了-0.233 m,负偏差得到有效改善,整体平均绝对误差降低了26.04%,整体均方差降低了23.56%,耕地、林地、草地、湿地、水域及人造地表的DEM平均绝对误差和均方差都有不同程度的降低;本文提出的方法对多种特征要素与地形误差间的非线性关系进行拟合建模,在研究区取得了较好的修正效果。  相似文献   

12.
Digital elevation model(DEM) is the most popular product for three-dimensional(3D) digital representation of bare Earth surface and can be produced by many techniques with different characteristics and ground sampling distances(GSD). Space-borne optical and synthetic aperture radar(SAR) imaging are two of the most preferred and modern techniques for DEM generation. Using them, global DEMs that cover almost entire Earth are produced with low cost and time saving processing. In this study, we aimed to assess the Satellite pour l'observation de la Terre-5(SPOT-5), High Resolution Stereoscopic(HRS), the Advanced Space-borne Thermal Emission and Reflection Radiometer(ASTER), and the Shuttle Radar Topography Mission(SRTM) C-band global DEMs, produced with space-borne optical and SAR imaging. For the assessment, a reference DEM derived from 1∶1000 scaled digital photogrammetric maps was used. The study is performed in 100 km2 study area in Istanbul including various land classes such as open land, forest, built-up land, scrub and rough terrain obtained from Landsat data. The analyses were realized considering three vertical accuracy types as fundamental, supplemental, and consolidated, defined by national digital elevation program(NDEP) of USA. The results showed that, vertical accuracy of SRTM C-band DEM is better than optical models in all three accuracy types despite having the largest grid spacing. The result of SPOT-5 HRS DEM is very close by SRTM and superior in comparison with ASTER models.  相似文献   

13.
摘总结前人在GIS领域应用格网的理论和实验基础上,使用GlobusToolkit3构建DEM计算地形因子的格网服务(CSED),适用于大洲规模的DEM地形分析,并能够通过Web发布计算结果。基于此格网系统,进行了ShuttleRadarTopographyMission(SRTM)数据在地形因子自动化提取方面的计算实验。这些计算由于依赖的计算环境的重大变化,所体现出来的效率性能等方面有了很大的变化。本文选取中国青藏地区的地形数据进行了详细试验,并对实验区数据和GTOPO30的计算结果进行了对比分析。  相似文献   

14.
Automatic recognition of loess landforms using Random Forest method   总被引:1,自引:1,他引:0  
The automatic recognition of landforms is regarded as one of the most important procedures to classify landforms and deepen the understanding on the morphology of the earth. However, landform types are rather complex and gradual changes often occur in these landforms, thus increasing the difficulty in automatically recognizing and classifying landforms. In this study, small-scale watersheds, which are regarded as natural geomorphological elements, were extracted and selected as basic analysis and recognition units based on the data of SRTM DEM. In addition, datasets integrated with terrain derivatives(e.g., average slope gradient, and elevation range) and texture derivatives(e.g., slope gradient contrast and elevation variance) were constructed to quantify the topographical characteristics of watersheds. Finally, Random Forest(RF) method was employed to automatically select features and classify landforms based on their topographical characteristics. The proposed method was applied and validated in seven case areas in the Northern Shaanxi Loess Plateau for its complex andgradual changed landforms. Experimental results show that the highest recognition accuracy based on the selected derivations is 92.06%. During the recognition procedure, the contributions of terrain derivations were higher than that of texture derivations within selected derivative datasets. Loess terrace and loess mid-mountain obtained the highest accuracy among the seven typical loess landforms. However, the recognition precision of loess hill, loess hill–ridge, and loess sloping ridge is relatively low. The experiment also shows that watershed-based strategy could achieve better results than object-based strategy, and the method of RF could effectively extract and recognize the feature of landforms.  相似文献   

15.
全球开放DEM数据为数字地形分析提供了重要数据源。与已有的全球开放DEM数据相比,资源三号卫星具有更高的空间分辨率、更大的覆盖范围和更好的现势性。将资源三号卫星生成的DEM数据与全球开放DEM数据进行误差对比则为基于资源三号卫星的全球DEM数据研制提供科学依据。本文以山西省中部太原市为研究区,基于高精度激光点云数据生成DEM为参考数据,对资源三号卫星影像生成的DEM数据与全球典型的开放DEM数据(AW3D30、SRTM1和ASTER GDEM)的误差进行了对比分析,并获得了其在不同坡度等级下绝对误差与相对误差的平均值、平均绝对值、均方根值和标准偏差值。研究结果表明:①4种DEM数据的误差分布均具有较好的对称性。同时,平均误差接近于0 m,SRTM1和ASTER GDEM数据更是如此。因此均方根误差值与标准偏差值近似一致;②资源三号DEM具有最高的精度,误差最小(均方根误差4.6 m)。其次为AW3D30数据(均方根误差5.6 m)和SRTM1数据(均方根误差8.8 m)。ASTER GDEM数据误差最大(均方根误差12.6 m),精度最差;③资源三号DEM、SRTM1和ASTER GDEM数据的误差均随坡度的变大而增大,而AW3D30数据误差随着坡度增加呈现先减小后增大的趋势。总体上,与其他3种DEM数据相比,资源三号DEM在所有坡度范围均具有最小的误差值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号