首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use of the quadratic shear-stress law for estimating boundary drag requires specific knowledge of the magnitude of a drag coefficient, CD, and sectional mean velocity, u?. In previous attempts to adapt the relationship for use in studies of marine-sediment transport, the flow measurement has been standardized at a level 100 cm above the bed. The particularized value of the drag coefficient has been designated as C100.In the entrance area to Chesapeake Bay, Virginia, C100 has been found to range through unacceptably wide limits. Two-thirds of the values obtained are between 3.5 · 10?3 and 5.4 · 10?2. Mean C100 for the area is 1.3 · 10?2 as compared to 3 · 10?3 for tidal channels within Puget Sound, Washington.Present data suggest that, given a moveable bed, a size hierarchy of mobile bed forms, time-varying flow, and a lack of equilibrium between flow and bed, C100 changes continuously with boundary shear stress.Accurate evaluation of boundary shear stress in tidal entrances with high flow rates and mobile beds presently requires measurement of velocity profiles.  相似文献   

2.
For strongly tidal, funnel-shaped estuaries, we examine how tides and river flows determine size and shape. We also consider how long it takes for bathymetric adjustment, both to determine whether present-day bathymetry reflects prevailing forcing and how rapidly changes might occur under future forcing scenarios.Starting with the assumption of a 'synchronous' estuary (i.e., where the sea surface slope resulting from the axial gradient in phase of tidal elevation significantly exceeds the gradient in tidal amplitude ), an expression is derived for the slope of the sea bed. Thence, by integration we derive expressions for the axial depth profile and estuarine length, L, as a function of and D, the prescribed depth at the mouth. Calculated values of L are broadly consistent with observations. The synchronous estuary approach enables a number of dynamical parameters to be directly calculated and conveniently illustrated as functions of and D, namely: current amplitude Û, ratio of friction to inertia terms, estuarine length, stratification, saline intrusion length, flushing time, mean suspended sediment concentration and sediment in-fill times.Four separate derivations for the length of saline intrusion, LI, all indicate a dependency on (Uo is the residual river flow velocity and f is the bed friction coefficient). Likely bathymetries for `mixed' estuaries can be delineated by mapping, against and D, the conditions LI/L<1,EX/L<1 (EX is the tidal excursion) alongside the Simpson-Hunter criteria D/U3<50 m−2 s3. This zone encompasses 24 out of 25 `randomly' selected UK estuaries.However, the length of saline intrusion in a funnel-shaped estuary is also sensitive to axial location. Observations suggest that this location corresponds to a minimum in landward intrusion of salt. By combining the derived expressions for L and LI with this latter criterion, an expression is derived relating Di, the depth at the centre of the intrusion, to the corresponding value of Uo. This expression indicates Uo is always close to 1 cm s−1, as commonly observed. Converting from Uo to river flow, Q, provides a morphological expression linking estuarine depth to Q (with a small dependence on side slope gradients).These dynamical solutions are coupled with further generalised theory related to depth and time-mean, suspended sediment concentrations (as functions of and D). Then, by assuming the transport of fine marine sediments approximates that of a dissolved tracer, the rate of estuarine supply can be determined by combining these derived mean concentrations with estimates of flushing time, FT, based on LI. By further assuming that all such sediments are deposited, minimum times for these deposition rates to in-fill estuaries are determined. These times range from a decade for the shortest, shallowest estuaries to upwards of millennia in longer, deeper estuaries with smaller tidal ranges.  相似文献   

3.
Velocity and suspension measurements in the logarithmic layer of hydraulically smooth turbulent tidal flow from the North Sea are reported. The data were not compatible with the assumption of Newtonian flow for the experimental seawater—clay suspension.Laboratory measurements were initiated with mud and seawater from the North Sea in which the boundary-layer structure of this two-phase flow was measured down into the viscous sublayer. The dilute seawater—clay suspension was a mixture of illite, kaolinite and chlorite minerals with concentrations less than 380 mg/l and exhibited turbulent drag reduction.By reviewing flow measurements of other authors it is suggested that turbulent drag reduction occurs on a geophysical scale if the flows transport cohesive sediments. It is proposed that drag reduction is caused by dynamic interaction between turbulent shear strain in the flow and deformation of aggregates.As a consequence, the values of the critical friction velocity u1 crit and of erosion rates must be reviewed for cohesive bottom materials. Normally they were obtained under the assumption of a Newtonian flow structure which is not applicable if the flow transports cohesive sediments.To detect the occurrence of drag reduction in geophysical boundary layers (hydraulically smooth), flow measurements must be performed down into the viscous sublayer. The adequate velocity sensors must have a diameter of ?1 mm.  相似文献   

4.
5.
长江河口潮波传播机制及阈值效应分析   总被引:1,自引:0,他引:1  
河口潮波传播过程受沿程地形(如河宽辐聚、水深变化)及上游径流等诸多因素影响,时空变化复杂。径潮动力非线性相互作用研究有利于揭示河口潮波传播的动力学机制,对河口区水资源高效开发利用具有重要指导意义。本文基于2007—2009年长江河口沿程天生港、江阴、镇江、南京、马鞍山、芜湖的逐日高、低潮位数据及大通站日均流量数据,统计分析不同河段潮波衰减率与余水位坡度随流量的变化特征,结果表明潮波衰减率绝对值与余水位坡度随流量增大并不是单调递增,而是存在一个阈值流量和区域,对应潮波衰减效应的极大值。为揭示这一阈值现象,采用一维水动力解析模型对研究河段的潮波传播过程进行模拟。结果表明,潮波传播的阈值现象主要是由于洪季上游回水作用随流量加强,余水位及水深增大,导致河口辐聚程度减小,而余水位坡度为适应河口形状变化亦有所减小,从而形成相对应的阈值流量和区域。  相似文献   

6.
A study of estuarine flows during a neap tide was performed using 13-hour roving acoustic Doppler current profiles (ADCP) and conductivity-temperature-depth (CTD) profiles in the Altamaha River estuary, Georgia, U.S.A. The least-squared harmonic analysis method was used to fit the tidal (M2) component and separate the flow into two components: the tidal and residual (M2-removed) flows. We applied this method to depth-averaged data. Results show that the M2 component demonstrates over 95% of the variability of observation data. As the flow was dominated by the M2 tidal component in a narrow channel, the tidal ellipse distribution was essentially a back-and-forth motion. The amplitude of M2 velocity component increased slightly from the river mouth (0.45 m/sec) to land (0.6 m/sec) and the phase showed fairly constant values in the center of the channel and rapidly decreasing values near the northern and southern shoaling areas. The residual flow and transport calculated from depth-averaged flow shows temporal variability over the tidal time scale. Strong landward flows appeared during slack waters which may be attributed to increased baroclinic forcing when turbulent mixing decreases.  相似文献   

7.
The dynamics of a seasonally formed salt-wedge propagating along the micro-tidal channel of Strymon River estuary, Northern Greece, and its consequences on river water quality, are thoroughly studied through intensive sampling campaigns. The wedge is developed at the downstream river part, under the summer limited freshwater discharge conditions (Q < 30 m3/s). The geometric features of the wedge (length and thickness) appeared directly related to Strymon River discharge. A maximum intrusion length of 4.7 km along Strymon River estuary was observed under minimum river discharge of almost 6 m3/s. Relations produced from in situ data illustrate that limited river flow expands the wedge horizontally, reducing its vertical dimension, while higher flows lead to increased wedge thickness. Estuarine flushing time ranges between 0.2 and 1.5 days, exponentially dependent on Strymon River discharge. Wedge velocities depicted tidal asymmetry between tidal phases, with consistent inward motion, even under the ebb tidal stage. Strong vertical stratification prevails throughout the tidal cycle, proving the limited vertical mixing between the two layers, although higher interfacial stresses are produced in ebb. Bottom topography plays an interesting role in wedge propagation, as the presence of an underwater sill either prevents saline intrusion during flood or isolates the front of the wedge from its core at the ebb. Ecological consequences of salt-wedge propagation in Strymon River estuary are the frequent evidence of bottom hypoxic conditions and the increased TSS levels, leading to the occurrence of a turbidity maximum at the tip of the salt-wedge. Higher BOD and ammonium levels were mostly observed at the river end, associated to point and non-point pollution sources. Nitrates and silicates were found associated with freshwater fluxes, while ammonia levels were related to saline intrusions. The reduced phosphorus freshwater fluxes, resulting from phosphorus uptake at the upstream reservoir (Kerkini Lake) and the increased bottom turbidity induced by the salt-wedge seem responsible for the limited chlorophyll-a levels along Strymon River estuary.  相似文献   

8.
泥沙运动作为水流和底床相互作用的纽带,是河流、河口及海岸工程研究的重要内容。在潮波作用明显的河口、海岸地区,周期性的动力作用下的泥沙运动具有往复和可逆的特征,因此研究这类水域的泥沙的净输运更具有实际的意义。基于泥沙输运和流速呈指数关系假设,建立潮流环境下的泥沙全沙净输运的解析解公式,并对该公式的计算结果和数值计算以及数学模型的结果进行了检验和验证,结果表明本研究提出的公式能较好地反应潮流环境下的泥沙净输运。由此,基于本公式采用潮流分潮调和常数可计算得到全沙净输运,并可以分析各分潮流及其相互作用与泥沙净输运的关系。研究结果显示,在受径流影响较大的半日潮河口,S2、MS4、M2三潮相互作用对全沙净输运的贡献显著高于通常的潮流不对称作用,即M2、M4的相互作用。此外,河口区域径流导致的余流对泥沙净输运的贡献不可忽略,特别是在洪季,大径流量条件下往往导致余流较大,其对泥沙净输运的贡献所占比例较大。  相似文献   

9.
Measurements of salinity perturbations in a partially mixed estuary have been used to evaluate the usefulness of an inductive salinometer and to determine some of the characteristics of the salinity perturbations. The salinometer performed satisfactorily under most conditions. Although internal wave like effects were present, the turbulence fluctuations were dominant. The salinity fluctuations and the turbulent fluxes sw and su were found to behave in a manner similar to the density fluctuations in a thermally stratified atmospheric boundary layer and a laboratory open channel flow. A quadrant analysis suggested that the contribution of each quadrant to the turbulent flux changed with Ri. The turbulence parameters ν and cγ were found to decrease and increase respectively as Ri increases.  相似文献   

10.
海南岛莺歌海近岸的潮汐不对称与潮致余流研究   总被引:3,自引:1,他引:2  
潮汐不对称与潮致余流在河口海岸区的物质输运中扮演着重要角色。已往的研究表明,在驻波占主导的河口海湾中,涨落潮的历时不对称与流速不对称有较为良好的对应关系。而潮致余流主要由地形与潮波的非线性作用所致。本研究以海南岛莺歌海附近为代表,结合实际观测与数值模型,研究复杂地形的开阔近岸区的潮汐不对称与潮致余流。结果表明,在莺歌海近岸区,涨落潮历时不对称皆表现为涨潮历时短于落潮历时,而流速不对称则出现复杂的空间变化。对流速不对称的机制分解表明,研究区的流速不对称主要由K1、O1与M2的相互作用,以及潮余流与各潮汐分潮的相互作用所控制。其中前者产生涨潮流速大于落潮流速的涨潮优势,而后者则与余流的方向相对应,出现多个涨潮优势与落潮优势的区域。总体而言,研究区的流速不对称由余流与各潮汐分潮的相互作用所决定。这表明,采用涨落潮历时的不对称来确定潮汐不对称的方法在开阔近海区可能并不适用。对潮致余流的研究表明,研究区的欧拉余流远大于斯托克斯余流。欧拉余流表现为多个顺时针与逆时针的涡流。涡流分布与地形具有较好的对应关系,潮流沙脊区多发育顺时针涡流,而深槽区则以发育逆时针涡流为主。摩擦力在涡流的发育中起着重要作用。  相似文献   

11.
An empirical analysis is performed on the most detailed, recent measurements of turbulent oscillatory boundary layer flow. The measurements show that throughout elevations where the flow can be considered horizontally uniform, one deficit model is sufficient for describing the fundamental mode. Some general properties of the non dimensional velocity deficit D1(z) appear with striking consistency. First of all the identity ln ¦D1¦ ≡ Arg D1, which is a theoretical result for smooth laminar flow, seems to hold with great accuracy for a large range of turbulent flow conditions as well. This is of principal theoretical interest because all previous analytical eddy viscosity models as well as numerical mixing length models predict a consistent and fairly large difference between Arg D1 and ln ¦D1¦. If the identity between ln ¦D1¦ and Arg D1 extends all the way to the bed, it means that the bed shear stress leads the free stream velocity by 45 degrees. It is also found that the structure of smooth turbulent oscillatory flows as measured by Kalkanis (1964) corresponds to a sharp maximum in the normalized energy dissipation rate.  相似文献   

12.
Numerical experiments in an idealized river mouth are conducted using a three-dimensional hydrodynamics model (EFDC model) to examine the impacts of suspended sediment concentration (SSC), settling velocity of sediment and tidal mixing on the formation and maintenance of estuarine hyperpycnal flows. The standard experiment presents an illustrative view of hyperpycnal flows that carry high-concentrated sediment and low-salinity water in the bottom layer (>1.0 m in thickness) along the subaqueous slope. The structure and intra-tidal variation of the simulated hyperpycnal flows are quite similar to those previously observed off the Huanghe (Yellow River) mouth. Results from the three control experiments show that SSC of river effluents is the most important parameter to the formation of hyperpycnal flows. High SSC will increase the bulk density of river effluents and thus offset the density difference between freshwater and seawater. Low SSC of river effluents will produce a surface river plume, as commonly observed in most large estuaries. Both the settling velocity of sediment particles and the tidal mixing play an important role in maintaining the hyperpycnal flows. Increasing settling velocity enhances the deposition of sediment from the hyperpycnal layer and thus accelerates the attenuation of hyperpycnal flows, whereas increasing tidal mixing destroys the stratification of water column and therefore makes the hyperpycnal flows less evident. Our results from numerical experiments are of importance to understand the initiation and maintenance of hyperpycnal flows in estuaries and provide a reference to the rapidly decaying hyperpycnal flows off the Huanghe river mouth due to climatic and anthropogenic forcing over the past several decades.  相似文献   

13.
14.
瓯江口是一个径流量变化剧烈的强潮河口。本文基于非结构网格FVCOM模型,建立瓯江口海域大范围三维数学模型,研究不同时间尺度(潮周期、大-小潮)的盐度变化,并利用势能异常动力方程对数值模拟结果分析了瓯江口层化过程的动力机制。同时,利用河口Ri数和层化参数△s/<s>研究了不同时间尺度的层化稳定性及其空间变化,得出决定层化状态的潮差和径流量的阈值。结果显示:瓯江北口上段、中段和口门在潮差分别超过3.8m、4.0m和4.6m时呈完全混合状态。当径流量小于280 m3/s或大于510 m3/s,北口上段持续完全混合;而在口门附近,完全混合和层化的临界径流量约为280 m3/s。研究认为瓯江河口北口存在周期性的层化,北口下段在落潮和涨潮初期呈部分混合状态,而其它时段为完全混合。上段只在落潮初期存在层化。层化增强主要是纵向对流与横向速度剪切导致,而湍混合和纵向潮应力是层化减弱的主要因素。  相似文献   

15.
The dominant physical and chemical processes that control Fe, Mn and Zn are explored by comparing the compositions of sediments and their sources. The MnFe and ZnFe ratios in sediment are found to be largely unaffected by local hydraulic sorting (unlike the actual concentrations of Fe, Mn and Zn) and thus are useful indicators of origin. The sediments in northern Chesapeake Bay have markedly lower MnFe and ZnFe ratios than those found in the Susquehanna River (dissolved plus suspended) under ordinary flow, but not under high flow conditions. Since high flow conditions dominate sediment transport, seaward loss of a major fraction of the river-derived Mn and Zn need not be invoked to reconcile sediment and river compositions. Sediments in the seaward end of the northern bay have higher MnFe and ZnFe ratios than their principal external source, the eroding shore deposits. The excess Zn appears to be derived from the atmosphere; the required depositional flux of Zn is consistent with measurements of the total atmospheric flux. The excess Mn can be explained by remobilization of roughly 5% of the river-borne Mn from sediments in the landward part of the northern bay. Because rare floods influence sediment composition markedly, comparing suspended particles in the river at ordinary stages with resuspended sediment in the estuary would lead to the false interpretation that Mn and Zn were being desorbed in the saltwater.  相似文献   

16.
A 3D,time-dependent,baroclinic,hydrodynamic and salinity model was implemented and applied to the Oujiang River estuarine system in the East China Sea.The model was driven by the forcing of tidal elevations along the open boundaries and freshwater inflows from the Oujiang River.The bottom friction coefficient and vertical eddy viscosity were adjusted to complete model calibration and verification in simulations.It is demonstrated that the model is capable of reproducing observed temporal variability in the water surface elevation and longitudinal velocity,presenting skill coefficient higher than 0.82.This model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow conditions in the Oujiang River estuary.The model results reveal that the river channel presents a two-layer structure with flood currents near the bottom and ebb currents at the top layer in the region of seawater influenced on north shore under high river flow condition.The river discharge is a major factor affecting the salinity stratification in the estuarine system.The water exchange is mainly driven by the tidal forcing at the estuary mouth,except under high river flow conditions when the freshwater extends its influence from the river’s head to its mouth.  相似文献   

17.
基于FVCOM的泉州湾海域三维潮汐与潮流数值模拟   总被引:1,自引:0,他引:1  
基于FVCOM海洋数值模式,采用非结构的三角形网格和有限体积法,建立了泉州湾海域高分辨率(26 m)的三维潮汐、潮流数值模型。模拟结果同2个验潮站和3个连续测流站的观测资料符合良好,较好地反映了泉州湾内潮汐、潮流运动的变化状况和分布特征,给出了M2、S2、K1、O1 4个主要分潮的同潮图、表层潮流椭圆分布,以及模拟区域内最大可能潮差、表层最大可能潮流流速和潮余流分布。分析表明,4个分潮的最大潮汐振幅和迟角差分别为219 cm和19°,85 cm和25°,26 cm和12°,26 cm和9°;石湖港以东海域的潮波为逆时针旋转的驻波,以西海域为前进波;最大可能潮差由湾口的8.0m向湾内增加至8.8 m。湾内潮流类型为规则半日潮流,落潮最大流速大于涨潮最大流速,北乌礁水道为强流区,表层最大可能潮流流速为2.4 m/s;湾口潮流运动以逆时针方向的旋转流形式为主,湾内的潮流运动以往复流形式为主,长轴走向主要沿着水道方向,与等深线和海岸线平行;四个分潮流表层最大流速分别为1.4 m/s,0.58 m/s,0.12 m/s,0.10 m/s。余流流速大小与潮流强弱有密切的联系,表、中、底层最大余流流速分别为26 cm/s,20 cm/s,16 cm/s,三者在水平方向基本呈北进南出的分布形态。  相似文献   

18.
Based on the one-dimensional salinity transport equation with constant diffusion coefficient, and separated water flow velocity into runoff and tidal current with the single-frequency in an idealized estuary, the simplest unsteady analytical so- lution of salinity intrusion is deduced and the estimation formula of diffusion coefficient is obtained in this paper. The unsteady solution indicates that salinity process in estuaries results from the interaction of runoff and tidal current, and its amplitude is in direct proportion to the product of the velocity of runoff water and the amplitude of tidal flow velocity and in inverse proportion to the diffusion coefficient and the tidal angular frequency, and its phase lag tidal flow with 7/2 which reveals the basic features of the maximum salinity appearing after flood slack and the minimum salinity appearing before ebb slack under the effect of runoff (the advance or lag time is relative to the magnitude of runoff and tidal flow). According to the measured flow velocity and salinity data, the salinity diffusion coefficient could be estimated. Finally, with the field data of observing sites on the deepwater navigation channel of the Yangtze Estuary, the diffusion coefficient is calculated and a comparative analysis of simulated and measured of salinity process is made. The results show that the solution can comprehensively reflects the basic characteristics and processes of salinity intrusion under the interaction of runoff and tidal flow in estuaries. The solution is not only suitable for theoretical research, but also convenient for estimating reasonable physical parameters and giving the initial condition in the salinity intrusion numerical simulation.  相似文献   

19.
Channel constrictions within an estuary can influence overall estuary-sea exchange of salt or suspended/dissolved material. The exchange is modulated by turbulent mixing through its effect on density stratification. Here we quantify turbulent mixing in Hikapu Reach, an estuarine channel in the Marlborough Sounds, New Zealand. The focus is on a period of relatively low freshwater input but where density stratification still persists throughout the tidal cycle, although the strength of stratification and its vertical structure vary substantially. The density stratification increases through the ebb tide, and decreases through the flood tide. During the spring tides observed here, ebb tidal flow speeds reached 0.7?m?s?1 and the buoyancy frequency squared was in the range 10?5 to 10?3?s?2. Turbulence parameters were estimated using both shear microstructure and velocimeter-derived inertial dissipation which compared favourably. The rate of dissipation of turbulent kinetic energy reached 1?×?10?6?m2?s?3 late in the ebb tide, and estimates of the gradient Richardson number (the ratio of stability to shear) fell as low as 0.1 (i.e. unstable) although the results show that bottom-boundary driven turbulence can dominate for periods. The implication, based on scaling, is that the mixing within the channel does not homogenise the water column within a tidal cycle. Scaling, developed to characterise the tidal advection relative to the channel length, shows how riverine-driven buoyancy fluxes can pass through the tidal channel section and the stratification can remain partially intact.  相似文献   

20.
Using a vertically two-dimensional, two-layer model, we have analytically examined the generation mechanism of a nonzero Eulerian residual flow by strong tide-topography interaction in a narrow channel where the frictional effect is not included. In this case, tidally generated baroclinic disturbances are forced non-uniformly in space and time while being advected by a strong tidal flow over the non-uniform slope of the bottom topography. Consequently, nonzero Eulerian residual flow results when averaged over one tidal period. Although the time average of the velocity field is thus nonzero, the associated Eulerian residual transport in each layer is compensated by a Stokes transport so that no Lagrangian residual transport results in both layers. This warns us that simple time averaging of the velocity data obtained at a fixed mooring station might lead to a spurious material transport. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号