首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional quantitative textural analysis coupled with numerical modelling has been used to assess the dominant mechanisms governing crystallization of garnet porphyroblasts in rocks from diverse regional metamorphic environments. In every case, spatial dispositions, crystal size distributions, and compositional zoning patterns of porphyroblasts indicate the dominance of diffusion-controlled nucleation and growth mechanisms.
Nine samples from three geological areas were studied: a suite of semi-pelitic rocks from the Picuris Mountains, New Mexico (USA); a suite of mafic samples from the Llano Uplift, Texas (USA); and a kyanite schist from Mica Dam, British Columbia (Canada). The semi-pelitic suite exhibits post-deformational garnet growth, whereas garnet in the mafic suite and in the kyanite schist grew synkinematically in rocks displaying weak and strong penetrative fabrics, respectively.
For each sample, the centres and radii of thousands of garnet crystals were located and measured in three dimensions, using images produced by high-resolution computed X-ray tomography. Statistical measures of the degree of ordering and clustering of nucleation sites, and estimates of crystal isolation for each porphyroblast, were then computed from the measured spatial dispositions. These measures can be reproduced in simple numerical models only by diffusion-controlled nucleation and growth mechanisms. Normalized radius-rate relations computed from compositional zoning patterns in the garnets require thermally accelerated diffusion-controlled growth, providing independent confirmation of the conclusions based on textural analysis. The unexpected similarity of results from all samples indicates that diffusion-controlled nucleation and growth mechanisms may govern porphyroblast crystallization in many metamorphic regimes.  相似文献   

2.
The pre-Mesozoic, mainly Variscan metamorphic basement of the Col de Bérard area (Aiguilles Rouges Massif, External domain) consists of paragneisses and micaschists together with various orthogneisses and metabasites. Monazite in metapelites was analysed by the electron microprobe (EMPA-CHIME) age dating method. The monazites in garnet micaschists are dominantly of Variscan age (330–300 Ma). Garnet in these rocks displays well developed growth zonations in Fe–Mg–Ca–Mn and crystallized at maximal temperatures of 670°C/7 kbar to the west and 600°C/7–8 kbar to the east. In consequence the monazite is interpreted to date a slightly pressure-dominated Variscan amphibolite-facies evolution. In mylonitic garnet gneisses, large metamorphic monazite grains of Ordovician–Silurian (~440 Ma) age but also small monazite grains of Variscan (~300 Ma) age were discovered. Garnets in the mylonitic garnet gneisses display high-temperature homogenized Mg-rich profiles in their cores and crystallized near to ~800°C/6 kbar. The Ordovician–Silurian-age monazites can be assigned to a pre-Variscan high-temperature event recorded by the homogenised garnets. These monazite age data confirm Ordovician–Silurian and Devonian–Carboniferous metamorphic cycles which were already reported from other Alpine domains and further regions in the internal Variscides.  相似文献   

3.
Formation of garnet polycrystals during metamorphic crystallization   总被引:1,自引:0,他引:1  
Garnet polycrystals may form throughout the metamorphic history of a rock, starting at the earliest stages of garnet growth when closely spaced nuclei coalesce. In mica schist from Townshend Dam, VT, electron back-scattered diffraction (EBSD) analysis shows that garnet polycrystals possess two or more distinct lattice orientations separated by high-angle boundaries (28–61°). The minimum rotational displacements required to bring these lattice orientations into concordance with each other are commonly normal to the same low-energy planes that occur as crystal faces of euhedral garnet. There is no evidence for intracrystalline deformation, and the polycrystals therefore probably represent individual garnet crystals that coalesced during growth. The boundaries cross-cut growth zoning and inclusion trails of the polycrystals, indicating that early-formed polycrystals, once coalesced, behave chemically and physically as single crystals. Statistical analysis of a 3D, high-resolution X-ray computed tomographic data set of a large sample (912 cm3) of a Townshend Dam schist, combined with microprobe and EBSD analyses of garnet, are consistent with a high degree of clustering at all stages of garnet growth. The formation and prevalence of polycrystals implies that garnet nuclei impinged on each other and coalesced, and that coalescence was a common feature throughout garnet growth in the rock.  相似文献   

4.
Kinetic theory allows the calculation of a time scale for metamorphic events using the extent of relaxation of garnet growth zoning along a particular P-T trajectory. Eclogitic garnets from the Kokchetav Massif (Kazakhstan), the Great Caucasus (Russia), and the Yukon-Tanana terrane (Canada) experienced different metamorphic P-T histories and display different types of zoning patterns, which allowed testing of a variety of geospeedometric procedures. In all cases, the preservation of sharp compositional gradients and hence the limited degree of diffusive modification of garnet compositions can be explained if associated tectono-metamorphic processes were of very short duration. Results of diffusion modeling indicate rates of temperature and pressure change on the burial and/or the exhumation path on the order of several hundreds of °C/m.y. and several cm/yr, respectively. These extreme exhumation and cooling rates apply for rocks buried to a depth greater than, for example, 20 km, thus arguing for the existence of contrasted velocity fields for eclogitic block exhumation from deep versus shallow levels of the lithosphere.  相似文献   

5.
The spatial disposition, compositional zoning profiles, and size distributions of garnet crystals in 11 specimens of pelitic schist from the Picuris Range of New Mexico (USA) demonstrate that the kinetics of intergranular diffusion controlled the nucleation and growth mechanisms of porphyroblasts in these rocks. An ordered disposition of garnet centers and a significant correlation between crystal radius and near-neighbor distances manifest suppressed nucleation of new crystals in diffusionally depleted zones surrounding pre-existing crystals. Compositional zoning profiles require diffusionally controlled growth, the rate of which increases exponentially as temperature increases with time; an acceleration factor for growth rate can be estimated from a comparison of compositional profiles for crystals of different sizes in each specimen. Crystal size distributions are interpreted as the result of nucleation rates that accelerate exponentially with increasing temperature early in the crystallization process, but decline in the later stages because of suppression effects in the vicinity of earlier-formed nuclei. Simulations of porphyroblast crystallization, based upon thermally accelerated diffusionally influenced nucleation kinetics and diffusionally controlled growth kinetics, quantitatively replicate textural relations in the rocks. The simulations employ only two variable parameters, which are evaluated by fitting of crystal size distributions. Both have physical significance. The first is an acceleration factor for nucleation, with a magnitude reflecting the prograde increase during the nucleation interval of the chemical affinity for the reaction in undepleted regions of the rock. The second is a measure of the relative sizes of the porphyroblast and the diffusionally depleted zone surrounding it. Crystal size distributions for the Picuris Range garnets correspond very closely to those in the literature from a variety of other localities for garnet and other minerals. The same kinetic model accounts quantitatively for crystal size distributions of porphyroblastic garnet, phlogopite, sphene, and pyroxene in rocks from both regional and contact metamorphic occurrences. These commonalities indicate that intergranular diffusion may be the dominant kinetic factor in the crystallization of porphyroblasts in a wide variety of metamorphic environments.  相似文献   

6.
Combining Lu–Hf garnet geochronology with in situ trace element analyses in garnet allowed us to gain new insight into the metamorphic evolution of UHP–UHT rocks in the Stary Gierałtów region, in the Polish Sudetes. Prograde garnet growth recorded by Rayleigh-type heavy REE (HREE) zoning in the felsic granulites indicates that the obtained 386.6 ± 4.9 Ma Lu–Hf age represents the time of garnet crystallization on a prograde UHP metamorphic path. The surrounding rocks were metamorphosed at the same time as indicated by 381.2 ± 6.7 Ma Sm–Nd garnet age obtained for the mid-crustal metapelites. The second metamorphic episode, which affected most of the lower crust in the Orlica–Śnieżnik Massif (OSM) occurred at ca. 340 Ma as determined by U–Pb zircon and Sm–Nd garnet dating of granulites in this and previous studies is interpreted as a high temperature event, which took place on a retrograde path.

Trace element distribution in garnets from the layered granulites showed significant differences in distribution of medium and HREE in garnets from mafic and felsic protoliths over the course of the metamorphic evolution. This had strong impact on the isotopic dating results and led to “decoupling” of the Sm–Nd and Lu–Hf clocks, which recorded timing of the two different metamorphic episodes separated by as much as 40 Ma. Moreover, the preservation of the HREE growth zonation profile in garnets from the felsic granulites whose minimum metamorphic temperature was established at 900 °C implies that the Lu–Hf system under relatively dry conditions does not undergo significant diffusional re-equilibration even at such extreme temperatures and therefore it sill provides the age of prograde garnet growth. Under hydrous conditions, at least some resetting will take place, as documented by the partially relaxed HREE zonation profile in the amphibolitised mafic granulite, which yielded a 10 Ma younger age. The HREE distribution study appeared to be a particularly valuable and essential tool, which allowed us to distinguish garnet growth from post-growth complexities and hence, provide improved age interpretation. Medium REE, on the other hand, did not show any obvious correlation with the isotopic signature of garnet.

Two distinct metamorphic episodes recorded in the Stary Gierałtów region show that buoyancy-driven uplift of UHP rocks can be arrested at the base of a continental crust if not supported by any additional force. In our case study, the UHP rocks would have never reached the surface if their uplift had not been resumed after a long pause under a different tectonic regime. The multistage, discontinuous uplift revealed by the UHP rocks of the OSM provides a new scenario for the exhumation of continental crust from mantle depths distinct from the fast-track exhumation histories recognized in UHP terranes elsewhere.  相似文献   


7.
Summary Garnet occurs as a significant mineral constituent of felsic garnet-biotite granite in the southern edge of the Třebíč pluton. Two textural groups of garnet were recognized on the basis of their shape and relationship to biotite. Group I garnets are 1.5–2.5 mm, euhedral grains which have no reaction relationship with biotite. They are zoned having high XMn at the rims and are considered as magmatic. Group II garnets form grain aggregates up to 2.5 cm in size, with anhedral shape of individual grains. The individual garnet II grains are usually rimmed by biotite and have no compositional zoning. The core of group I garnets and group II garnets contains 67–80 mol% of almandine, 5–19 mol% of pyrope, 7–17 mol% of spessartine and 2–4 mol% of grossular. Biotite occurs in two generations; both are magnesian siderophyllites with Fe/(Fe + Mg) = 0.50–0.69. The matrix biotite in granites (biotite I) has high Ti content (0.09–0.31 apfu) and Fe/(Fe + Mg) ratio between 0.50 and 0.59. Biotite II forms reaction rims around garnet, is poor in Ti (0.00–0.06 apfu) and has a Fe/(Fe + Mg) ratio between 0.61 and 0.69. The textural relationship between biotite and garnet indicates that garnet reacted with granitic melt to form Ti-poor biotite and a new granitic melt, depleted in Ti and Mg and enriched in Fe and Al. In contrast to the host durbachites (hornblende-biotite melagranites), which originated by mixing of crustal melts and upper mantle melts, the origin of garnet-bearing granites is related to partial melting of the aluminium-rich metamorphic series of the Moldanubian Zone.  相似文献   

8.
Summary ?Diffusion modeling of zoning profiles in garnet rims from mafic granulites is used to estimate cooling rates in the Proterozoic basement of Sri Lanka, which represents a small, but important fragment of the Gondwana super-continent. Metamorphic peak temperatures and pressures, estimated with two-pyroxene thermometry and garnet–clinopyroxene–plagioclase–quartz (GADS) barometry, yield 875±20 °C and 9.0±0.1 kbar. These peak metamorphic conditions are slightly higher than results obtained by garnet-biotite Fe–Mg exchange thermometry of 820±20 °C. Reset flat zoning profiles were observed in most garnets. Only narrow garnet rims touching biotite exhibit retrograde zoning in terms of Fe and Mg exchange. The garnet zoning observed requires a slow cooling history. Equilibrium was achieved along grain boundaries during or close to peak metamorphism. During subsequent cooling to lower temperatures, only local exchange between garnet and biotite occurred. A cooling rate of 1–5 °C/Ma is estimated. The estimated temperature-time history from garnet profiles is in good agreement with the cooling history inferred from mineral radiogenic ages in the literature. Received December 11, 2001; revised version accepted August 28, 2002  相似文献   

9.
The metapelitic schists of Jandagh or simply Jandagh metapelites can be divided into four groups based on mineral assemblages: (1) quartz-muscovite schists, (2) quartz-muscovite-biotite schists, (3) garnet-muscovite-chlorite schists, and (4) garnet-muscovite-staurolite schists. The Jandagh garnet-muscovite-chlorite schists show the first appearance of garnets. These garnets contain 58–76% almandine, 1–18% spessartine, and 8–20% grossular. Microprobe analysing across the garnets demonstrates an increase in Mg# from core to rim. This is a feature of the prograde metamorphism of metapelites. Well-preserved garnet growth zoning is a sign that metapelites were rapidly cooled and later metamorphic phases had no effect here. The appearance of staurolite in garnet-muscovite-chlorite schists signifies a beginning of the amphibolite facies. The absence of zoning in staurolite suggests that its formation and growth during prograde metamorphism occurred at a widely spaced isograde. Thermobarometric investigations show that the Jandagh metapelites were formed within a temperature range of 400–670°C and pressures of 2.0–6.5 kbar. These results are in agreement with the mineral paragenetic evidence and show the development of greenschist and amphibolite facies in the area studied.  相似文献   

10.
A Cretaceous to low-Tertiary sequence of interbedded pelites, cherts, basic and acidic volcanics and calcareous lenses has been metamorphosed by an Oligocene event. A complete intergradational metamorphic sequence is exposed in the Ouégoa destrict. The following metamorphic zones have been recognised: — (1) lowest-grade rocks consisting of quartz-sericite phyllites and pumpellyite metabasalts (2) lawsonite zone, characterized by the association of lawsonite and albite (3) epidote zone, characterised by epidote-omphacite-sodic hornblendealmandine bearing metabasalts and epidote-albite-almandine-glaucophane bearing metasediments; calcareous metasediments may also carry omphacite. The epidote and lawsonite zones are separated by a narrow belt of transitional rocks. Garnets occur in metasediments throughout the lawsonite zone as rare tiny crystals (<0.03 mm diam.). Garnets first appear in metabasalts in lawsonite-epidote transitional rocks. Garnets are widespread and abundant in epidote-zone metasediments and metabasalts. 45 garnets from rocks representative of all lithologies and metamorphic grades have been analysed with an electron-probe microanalyser. The garnets were consistently zoned. Garnets in lawsonite and low-grade epidote zones show a “bell-type” zoning with cores enriched in Mn relative to Fe and rims enriched in Fe, Mg and frequently Ca. Garnets from high-grade epidote-zone metapelites and metabasalts show, in addition, a shallow oscillatory zoning with complimentary variations in Mn and Fe equivalent to 5 mole- % spessartine and almandine. The Fe-for-Mn substitutional zoning, believed to be caused by a diffusion/saturation effect similar to that of the Rayleigh fractional model (Hollister, 1966), appears to have had superimposed on it the effects of parent-rock chemistry and metamorphic grade which control in a complex manner the composition of the cores and the rims of garnets. Garnets from different rock types and metamorphic grade are compositionally distinct. Garnets from lawsonite-zone rocks, irrespective of parent-rock chemistry appear to be spessartine. Garnets from epidote-zone metaigneous rocks and most metasediments are almandine. Garnets from epidote-zone metasediments with bulk-rock compositions which are manganiferous, or have high oxidation ratios, or both, may be spessartine-rich. Garnets from metabasalts are consistently more pyropic in both core and rim compositions than garnets from pelitic metasediments; the pyrope content of cores and rims of garnets from equivalent rock types and mineral assemblages increases with increasing metamorphic grade. Cores of garnets from epidote-zone pelites are richer in grossular than garnets from lower-grade pelites. The reaction which brings almandine garnet into Ouégoa district blueschist assemblages simultaneously with the replacement of lawsonite by epidote involves components of chlorites and sodic amphiboles and can be represented by the following simplified equation: ferroglaucophane+Fe-rich chlorite+lawsonite → glaucophane+Mg-rich chlorite+epidote+almandine.  相似文献   

11.
The Moldanubian basement of the Schwarzwald contains basic to ultrabasic rocks of both crustal and mantle origin which display high-pressure mineral assemblages or relics of such. In order to constrain the P-T-t evolution of the crustal high-pressure rocks, petrological and geochronological studies have been carried out on three eclogite samples. Geothermobarometric estimations indicate minimum metamorphic pressures of 1.6 GPa and equilibration temperatures of 670 750°C. Reaction textures document various metamorphic stages during exhumation of the high-pressure rocks. The age of high-pressure metamorphism is constrained by Sm-Nd isochrons of 332±13 Ma, 334±11 Ma, and 337±6 Ma defined by garnet, whole rock and clinopyroxene. For one sample, large garnets show prominent growth zoning in terms of major elements, Sm, Nd, and inclusions, dividing the grains into two growth stages. Sm-Nd isotope analyses on these garnets indicate that the time span between the two growth stages is too small to be resolved, reflecting a rather rapid metamorphic evolution. This result is further constrained by a Rb-Sr isochron age of 325±6 Ma on retrograde biotite and whole rock on the same sample. For one of the studied eclogites, formation of the magmatic precursor rocks is possibly approximated by the Ordovician U-Pb upper intercept age of a discordia from zircons.  相似文献   

12.
冀磊  刘福来  王舫  田忠华 《岩石学报》2021,37(2):513-529
石榴夕线片麻岩是中、下地壳主要组成岩石之一,岩石内石榴石和夕线石的结晶学优选方位会显著影响地壳深部流变性质,因此探讨特征变质矿物的变形机制和主要受控因素对构造带深部演化过程有深远意义。本文选取红河-哀牢山韧性剪切带内石榴夕线片麻岩为研究对象,通过定向切片内显微构造、电子探针、X-ray成分扫描、电子背散射衍射(EBSD)和相平衡模拟综合研究,揭示出石榴石在溶解沉淀反应过程中具有明显的粒度敏感性,不同粒径石榴石表现出截然不同的长宽比、成分环带、包裹体排列方式和压力影发育情况。石榴石表面流体活动明显截切早期生长环带。EBSD分析揭示石榴石破碎颗粒以绕〈112〉轴机械旋转为主,溶解过程主要集中于颗粒表面和裂隙内高曲率位置。夕线石的EBSD结果表明基质内夕线石以绕〈010〉轴旋转为主,而流体作用明显区域夕线石则以(100)[001]滑移为主。岩石相平衡模拟限定岩石变质峰期P-T条件达高压麻粒岩相,退变过程中同剪切变形导致大量流体渗入而形成降温降压退变轨迹,由~9.5kbar、760℃演化至~6.0kbar、500~600℃,并在粗粒石榴石内保存早期进变质环带,剪切抬升过程中石榴石内普遍发育垂直剪切方向的裂隙,并在流体作用下进一步改造其形态。此研究揭示红河-哀牢山剪切带内除前人报道的石榴石高温韧性变形外,还存在大量中-上地壳层次同变质反应下的溶解-沉淀蠕变作用。因此,石榴石变质-变形的综合研究有助于揭示变质杂岩带挤压-剪切-伸展多阶段构造演化过程。  相似文献   

13.
Calcsilicate and garnet-pyroxene rocks with dolomite and Mg-calcite matrices occur with UHPM diamondiferous biotite gneisses and schists of the Kokchetav Massif. The calcsilicates are characterized by high diamond grade, K-bearing diopside, and very high Mg-garnets (Mg# > 77) with variable Ca contents (Ca# = 42.5–80). A rare calcsilicate sample with alternating layers of different bulk compositions was selected for oxygen isotope and electron probe microanalysis of garnets and pyroxenes. A grain of fresh garnet with a brownish-yellow luminescent inner domain (Mg# 94) and a non-luminescent outer part (Mg# 88) was selected for in situ analysis of δ18O by ion microprobe (10 μm spot). The profile demonstrates a δ18O gradient of 1.5‰/200 μm, from 11.3 (rim) to 12.8‰ (core) VSMOW. Additional 2 mg samples of hand-picked garnet and clinopyroxene fragments from different parts of the same sample (selected by color and chemical differences) were analyzed for δ18O by laser fluorination, yielding even larger differences in δ18O: 6.3–10.6‰ in garnets and 6.1–8.1 in clinopyroxenes. The zonation in δ18O among grains of the same mineral in different lithologies may in part reflect initial heterogeneities of the finely layered sedimentary precursors. The δ18O values for the garnets are among the highest observed for UHP-origin (both for crustal or mantle rocks), confirming a sedimentary origin for these carbonate-bearing rocks, and ruling out a primitive mantle-derived protolith. Oxygen diffusion in garnet at peak metamorphism temperature (1,000°C) was arrested by rapid cooling.  相似文献   

14.
Garnet single crystals of several millimeters in diameter were collected from the uppermost horizon of a soil profile developing immediately on the gneissic rocks of the Vertiskos Unit of the Serbomacedonian Massif in northern Greece. The garnets were analyzed for major elements by EDS analyzer mounted on a scanning electron microscope, and the obtained data were utilized to determine their source rocks. Bivariate diagrams, spider diagrams as well as statistical analysis were used in order to correlate and compare the garnet composition of the basement rocks of the Vertiskos Unit with the existing reference data. This case study demonstrates the difficulty in assigning a source rock to sediment, using only the chemical compositional of detrital garnet. Direct linking of the detrital garnets and the outcropping rocks is not always possible despite well documented outcrop lithologies. This is largely due to a complex metamorphic evolution that leads to overlapping compositions between garnets originating from different lithologies that have undergone similar metamorphic processes and alteration effects.  相似文献   

15.
Trace element zoning in garnets from two contact-metamorphosed rocks from the Kwoiek area, British Columbia (Hollister 1969a), was measured with an ion microprobe. Zoning profiles have three distinct parts with chemical breaks defined by co-variation of major and trace elements. Important features of the trace element zoning profiles are: (1) roughly bell-shaped zoning profiles for Y and the HREEs, (2) an abrupt increase in Ti at a point midway through each garnet with inflections in the zoning profiles of other elements (Li, Na, Cr, V, Y, Zr, and the HREE), and (3) irregular Cr and V profiles. Unlike Mn zoning, the zoning profiles of most other trace elements cannot be easily modeled using simple Rayleigh fractionation models. Ti activity in the two samples is buffered by phase relations with ilmenite. Garnets from a continuously heated contact metamorphic environment should display continuous Ti zoning profiles if equilibrium was maintained and provided the Ti buffering assemblage did not change during garnet growth. The irregular Ti profiles suggest disequilibrium behavior. Several elements (Cr, V) may indicate breakdown of a phase enriched in trace elements during metamorphism. The source for the mass excess of these elements is probably the refractory cores of ilmenite grains. Either differing matrix transport rates of trace lements or interface kinetic controlled segregation could explain the unusual trace element behavior at the element inflection point. The preferred explanation involves segregation of elements at the interface of the garnet that were trapped during episodes of rapid garnet growth.  相似文献   

16.
Abstract An outcrop of staurolite-bearing pelitic schist from the Solitude Range in the south-western Rocky Mountains, British Columbia, was examined in order to determine the nature of prograde garnet- and staurolite-producing reactions using information from garnet zoning and inclusion mineralogy. Although not present as a matrix phase, chloritoid is present as inclusions in garnet and is interpreted to have participated in the simultaneous growth of garnet and staurolite by a reaction such as chloritoid + quartz = garnet + staurolite + H2O.
A garnet zoning trend reversal, which is most pronounced with respect to almandine and grossular components, is present in the outer core of garnets. The location of the zoning reversal corresponds to the outer limit of chloritoid inclusions in garnet. As there is no evidence for polymetamorphism, the zoning reversal is interpreted to indicate continued garnet growth by prograde reaction(s) during a single metamorphic event after the exhaustion of chloritoid as a matrix phase.
Metamorphic conditions recorded by mineral rim compositions are 550–600° C at 6–7 kbar. Because there is no evidence for partial resorption of garnet during production of staurolite, we interpret these results to represent peak conditions.  相似文献   

17.
A spatial association is observed between the size distribution of garnet porphyroblasts and the size distribution of quartz veins in greenschist facies metapelites from Troms, North Norway. The size distribution of quartz veins reflects the flow regime of metamorphic fluids. The hypothesis that the flow regime of metamorphic fluids is also responsible for the size distribution of garnet crystals was tested by ascribing empirical acceleration parameters to the nucleation and growth rates of garnet crystals.
In regions where fluid flow was interpreted as pervasive', acceleration parameters for nucleation were high, whereas in regions where fluid flow was interpreted as channelled', acceleration parameters for growth were high. Accelerated crystal growth is further implied from the chemical zoning and crystal morphologies of garnets collected near discrete veins.
This spatial association may imply that fluid flow can be instrumental in controlling garnet crystallization. Fluid flow could affect garnet crystallization kinetics by facilitating thermal advection and/or mass transfer. In the study area, rhodochrosite (MnCO3) veins provide evidence for mass transfer of Mn by fluid flow. An influx of Mn would expand the stability field of garnet to lower temperatures. The resulting thermal overstep could accelerate nucleation and/or growth of garnets.
The corollary of this study is that size distributions and chemical zoning of garnets, or other porphyroblast phases, can be used to study metamorphic fluid flow.  相似文献   

18.
在对胶北荆山群麻粒岩相富铝岩石中石榴石、黑云母的成分环带进行深入研究基础上,选取不同粒径、与不同矿物相邻的石榴石、黑云母各微区点成分,利用石榴石-黑云母温度计分别进行了温度估算。确定在黑云母含量较高的岩石(V_(Grt)/V_(Bt)≤1)中,利用大颗粒石榴石(d≥1500μm)晶体核部(或靠近长英质矿物一侧的晶体幔部)成分与基质中远离石榴石等镁铁矿物处于长英质矿物之间的黑云母核部成分配合。通过石榴石-黑云母温度计可以获得相当可信的变质峰期温度。但是对于黑云母含量极低的岩石(V_(Grt)/V_(Bt)≥6),由于黑云母的成分普遍遭到了强烈改造。使得温度估算结果异常偏低,因此不适合采用石榴石-黑云母温度计估算峰期温度。同一岩石中,采用不同的相邻石榴石-黑云母矿物对晶体边缘成分获得的温度值差异较大,反映它们在峰期后发生Fe-Mg交换反应并达到封闭温度平衡状态的程度不同,因此利用石榴石-黑云母温度计难以获得准确的封闭温度。通过热力学计算,建立了一个新的石榴石-黑云母温度计公式。确定胶北荆山群所经历的变质峰期温度为720~770℃,峰期后最低相对封闭温度为480~500℃。  相似文献   

19.
In this study we use two dimensional chemical patterns and numerical modeling to estimate the relative rates of chemical transport along interphase boundaries (ib) and through grain (s) interiors during retrograde Fe–Mg exchange between garnet and biotite at a garnet–biotite–quartz triple junction. We demonstrate that systematic variations in garnet–rim compositions, which are frequently observed along garnet–quartz interfaces, and deviations from concentric retrograde zoning patterns start to develop when chemical transport along the interphase boundaries becomes slow during cooling. The capacities for chemical transport along an interphase boundary depend on the product D ib K ib/s a, where D ib is the diffusion coefficient of the exchangeable components within the interphase boundary medium, K ib/s is the equilibrium partitioning coefficient between the cation exchange partners and the interphase boundary medium and a is the interphase boundary width. The model is applied to analyze the retrograde zoning patterns in garnets from the Mozambique belt (SE-Kenya), which cooled from 820°C at a rate of ca. 2°C/my. It is found that non-equilibrated compositions in garnet along garnet/quartz interphase boundaries started to develop below 700°C due to insufficient rates of chemical transport along these boundaries. The transport capacities of garnet/quartz interphase boundaries was estimated to have been between about 1E-23 cm3/s (575°C) and 1E-20 cm3/s (700°C) from modeling the observed X Fe pattern in garnet close to a garnet–quartz–biotite triple junction and relying on published data on the diffusivity of Fe2+ in garnet. Similar transport capacities are obtained; when the interphase boundary is assumed to be filled with a material that has the transport properties and chemical composition of a free melt in equilibrium with garnet, biotite and quartz at the respective conditions. In contrast, if the transport properties of the interphase boundary medium are related to the diffusivities and solubility of Fe2+ and FeOH+ within a free aqueous solution, chemical transport along the interphase boundaries would be much more efficient, and exchange equilibrium would have been maintained during the entire cooling history of the rocks. The observation of systematic deviations from local equilibrium along the garnet–quartz interphase boundaries leads us to exclude the presence of an aqueous fluid along the interphase boundary at any time during cooling.  相似文献   

20.
Eclogite inclusions from kimberlitic diatremes on the Colorado Plateau contain intricately zoned garnet and pyroxene and unusual textures. Detailed electron microprobe traverses for a clinopyroxene-garnet-phengite-lawsonite-rutile assemblage show garnet zoning from Alm69Gr21Py10 (core) to Alm61Gr13Py26 (rim) and pyroxene zoning from Jd50 (core) through Jd77 to Jd55 (rim). Pyroxene cores are Cr-rich in another rock. Sharp compositional discontinuities and zoning reversals are preserved in garnet and pyroxene. Oscillatory zoning occurs in both phases on a 10–20 m scale, with variations of up to 6% Py in garnet and 15% Jd in pyroxene. Phengite is unzoned and contains 74% celadonite endmember.Skeletal, pyroxene-filled garnet crystals are common in some rocks, and garnets in other rocks clearly began growth as shell-like crystals. Some rocks contain domains of coarse, prismatic pyroxene with very fine-grained, interstitial magnesium silicates. The texture appears to have resulted from crystallization in the presence of a fluid phase, and water pressure is inferred to have equalled total pressure during crystallization. Eclogite formation at high water pressure may reflect subcrustal crystallization.An analysis of error propagation shows that ferrous iron calculations from electron probe data are not meaningful for these jadeitic pyroxenes, and temperature differences between core and rim crystallization cannot be documented. The garnet textures and oscillatory zoning are unusual for metamorphic rocks, and they suggest disequilibrium crystallization after overstepping of reaction boundaries. All data fit a model of eclogite formation during cooling and metasomatism of basaltic dikes intruded into a cool upper mantle, but the results here do not preclude other origins, such as subduction zone metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号