首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports a study of the metamorphic evolution of pelitic, semi-pelitic migmatites and mafic granulites of the Chafalote Metamorphic Suite (CMS), Uruguay, which represents the southernmost exposures of high-grade metamorphic rocks in the Dom Feliciano Belt, Uruguain—Sul-Rio-Grandense shield, South America. This belt is one of the Brasiliano orogens that crop out along the Brazilian and Uruguayan Atlantic margin, and the CMS is one of several disconnected segments of supracrustal rock in a dominantly granitic terrain. Petrological evidence from CMS mafic granulites and semi-pelitic migmatites indicates four distinct metamorphic assemblages. The early prograde assemblage (M1) is preserved only as inclusions in porphyroblasts of the peak-metamorphic (M2) assemblage. Peak-metamorphism was followed by near-isothermal decompression (M3), which resulted in symplectites and coronitic textures in the mafic granulites and compositional zoning of Ca in garnet (decreasing rimwards) and plagioclase (increasing rimwards) in the semi-pelitic migmatites. The retrograde metamorphic assemblage (M4) is represented by hydration reaction textures replacing minerals of the M2 and M3 assemblages. Average PT calculations using the program THERMOCALC and conventional thermobarometric methods yield peak-metamorphic (M2) PT conditions of 7–10 kbar and 830–950 °C, near-decompressional (M3) PT conditions of 4.8–5.5 kbar and 788–830 °C and M4 retrograde PT conditions of 3–6 kbar and 600–750 °C. The calculated PT path for the CMS rocks is ‘clockwise’ and incorporates a near-isothermal decompression segment followed by minor cooling, consistent with a history of crustal thickening followed by extensional collapse at ca. 650–600 Ma. The metamorphism recorded by rocks of this crustal segment may be correlated with 650 Ma metamorphism in the Coastal Terrane of the Kaoko Belt in Namibia, being the first unequivocal match between South America and Africa provided by crystalline rocks south of the Congo Craton.  相似文献   

2.
A suite of metapelites, charnockites, calc-silicate rocks, quartzo-feldspathic gneisses and mafic granulites is exposed at Garbham, a part of the Eastern Ghats granulite belt of India. Reaction textures and mineral compositional data have been used to determine the P–T–X evolutionary history of the granulites. In metapelites and charnockites, dehydration melting reactions involving biotite produced quartzofeldspathic segregations during peak metamorphism. However, migration of melt from the site of generation was limited. Subsequent to peak metamorphism at c . 860° C and 8 kbar, the complex evolved through nearly isothermal decompression to 530–650° C and 4–5 kbar. During this phase, coronal garnet grew in the calc-silicates, while garnet in the presence of quartz broke down in charnockite and mafic granulite. Fluid activities during metamorphism were internally buffered in different lithologies in the presence of a melt phase. The P–T path of the granulites at Garbham contrasts sharply with the other parts of the Eastern Ghats granulite belt where the rocks show dominantly near-isobaric cooling subsequent to peak metamorphism.  相似文献   

3.
Ferrous granulites in the area of Tidjénouine (Central Hoggar) exhibit a remarkable mineralogical composition characterized by the association orthoferrossilite–fayalite–quartz. These granulites are metamorphosed mafic igneous rocks showing the juxtaposition of different metamorphic parageneses. Peak paragenesis with garnet–clinopyroxene–amphibole–plagioclase–quartz reach to assemblage with orthopyroxene–plagioclase2. Secondary orthopyroxene reacted with garnet to produce symplectites with fayalite + plagioclase + quartz. The latest stage corresponds to an orthopyroxene–fayalite–quartz–plagioclase assemblage. The metamorphic history of the ferrous granulites is inferred by combining the study of phase relations with the construction of a petrogenetic grid and pseudosection in the CFMASH and CFAS systems using the Thermocalc program of [J. Metamorph. Geol. 6 (1988) 173]. The evolution of paragenetic minerals indicates a metamorphic PT path through the following conditions: 7.1 ± 1 kbar at 880 °C, 4.9 ± 1.6 kbar at 750 °C and 3–4 kbar at 700 °C, which is consistent with a clockwise PT path recorded throughout the area.  相似文献   

4.
High Mg-Al spinel-sapphirine granulites, orthopyroxene-bearing quartzofeldspathic granulites, two pyroxene-bearing mafic granulites and metapelitic gneisses are exposed around Paderu, Eastern Ghats Belt. Geothermobarometry in orthopyroxene-bearing quartzofeldspathic granulites and mafic granulites indicate near isobaric cooling through 90°C from ca. 720°C to 630°C, at 8.0 kbar. However, signatures of ultrahigh temperature metamorphism are recorded from the mineralogy and reaction textures in the high Mg-Al granulites. Mineral reactions deduced in this work, when combined with others described by Lalet al (1987) from the same area and plotted in an appropriate petrogenetic grid in the system FMASO indicate an ACW path comprising a high dT/dP prograde arm reaching Pmax − Tmax = 9.5 kbar, ∼ 1000°C, followed by near-isobaric cooling down to 9 kbar, 900°C and subsequent decompressive reworking.  相似文献   

5.
In the Laouni terrane, which belongs to the polycyclic Central Hoggar domain, various areas contain outcrops of formations showing granulite-facies parageneses. This high-temperature metamorphism was accompanied by migmatization and the emplacement of two types of magmatic suite, one of continental affinity (garnet pyroxenites and granulites with orthoferrossilite–fayalite–quartz), and the other of arc affinity (layered metanorites). Paragenetic, thermobarometric and fluid-inclusion studies of the migmatitic metapelites and metabasites make it possible to reconstruct the PTaH2O path undergone by these formations. This path is clockwise in the three studied areas, being characterized by a major decompression (Tamanrasset: 10.5 kbar at 825 °C to 6 kbar at 700 °C; Tidjenouine: 7.5 kbar at 875 °C; to 3.5 kbar at 700 °C; Tin Begane: 13.5 kbar at 850 °C; to 5 kbar at 720 °C), followed by amphibolitization that corresponds to a fall of temperature (from 700 to 600 °C) and an increase in water activity (from 0.2–0.4 to almost 1).The main observed features are in favour of petrogenesis and exhumation related to the Eburnean orogeny. However, the lacks of good-quality dating work and a comparison with juvenile Pan-African formations having undergone high-pressure metamorphism, in some cases reaching the eclogite facies, do not rule out the possibility that high-temperature parageneses are locally due to Pan-African events.  相似文献   

6.
Precambrian granulite-facies rocks occur in significant proportion in the East Antarctic Precambrian shield. Ages of metamorphic and deformational events range from 2500 m.y. to about 500 m.y., but some rocks are much older, notably the approximately 3500 m.y. ages for crust formation in Enderby Land. Mineral assemblages over most of the area are typical of the hornblende granulite facies, and sparse temperature pressure estimates indicate metamorphism at 700–800°C and 5–8 kbar at reduced water pressures. A terrane of exceptional interest is the Napier complex of Enderby Land, where sapphirine-quartz ± garnet, sillimanite-orthopyroxene, osumilite, and inverted pigeonite are associated with pyroxene-granulite-facies rocks. Metamorphic conditions are estimated to have reached 900°–980°C, 7–9 kbar, and pH2O < 0.5 kbar. Metamorphism in the Napier complex, and possibly in other parts of East Antarctica, may be associated with large loss of fluid rather than massive influx of CO2.  相似文献   

7.
Multi-equilibrium thermobarometry shows that low-grade metapelites (Cubito-Moura schists) from the Ossa–Morena Zone underwent HP–LT metamorphism from 340–370 °C at 1.0–0.9 GPa to 400–450 °C at 0.8–0.7 GPa. These HP–LT equilibriums were reached by parageneses including white K mica, chlorite and chloritoid, which define the earliest schistosity (S1) in these rocks. The main foliation in the schists is a crenulation cleavage (S2), which developed during decompression from 0.8–0.7 to 0.4–0.3 GPa at increasing temperatures from 400–450 °C to 440–465 °C. Fe3+ in chlorite decreased greatly during prograde metamorphism from molar fractions of 0.4 determined in syn-S1 chlorites down to 0.1 in syn-S2 chlorites. These new data add to previous findings of eclogites in the Moura schists indicating that a pile of allochtonous rocks situated next to the Beja-Acebuches oceanic amphibolites underwent HP–LT metamorphism during the Variscan orogeny. To cite this article: G. Booth-Rea et al., C. R. Geoscience 338 (2006).  相似文献   

8.
The integration of new and published geochronologic data with structural, magmatic/anatectic and pressure–temperature (P–T) process information allow the recognition of high-grade polymetamorphic granulites and associated high-grade shear zones in the Central Zone (CZ) of the Limpopo high-grade terrain in South Africa. Together, these two important features reflect a major high-grade D3/M3 event at ~ 2.02 Ga that overprinted the > 2.63 Ga high-grade Neoarchaean D2/M2 event, characterized by SW-plunging sheath folds. These major D2/M2 folds developed before ~ 2.63 Ga based on U–Pb zircon age data for precursors to leucocratic anatectic gneisses that cut the high-grade gneissic fabric. The D3/M3 shear event is accurately dated by U–Pb monazite (2017.1 ± 2.8 Ma) and PbSL garnet (2023 ± 11 Ma) age data obtained from syntectonic anatectic material, and from sheared metapelitic gneisses that were completely reworked during the high-grade shear event. The shear event was preceded by isobaric heating (P = ~ 6 kbar and T = ~ 670–780 °C), which resulted in the widespread formation of polymetamorphic granulites. Many efforts to date high-grade gneisses from the CZ using PbSL garnet dating resulted in a large spread of ages (~ 2.0–2.6 Ga) that reflect the polymetamorphic nature of these complexly deformed high-grade rocks.  相似文献   

9.
The metamorphic evolution of the Garzón Massif, Colombia, is established on the basis of the textural, goethermobarometric, and geochronological relationships of the metamorphic minerals. The geothermobarometric data define a clockwise, nearly isothermal decompression path (ITD) for rocks from Las Margaritas migmatites, constrained by four PT areas: 780–826 °C and 6.3–8.0 kbar, 760–820 °C and 8.0–8.8 kbar, 680–755 °C and 6.6–9.0 kbar, and 630 °C and 4 kbar. For the a garnet-bearing charnockitic gneiss from the Vergel granulites, the path is counterclockwise, constrained by geothermobarometric data of 5.3–6.2 kbar and 700–780 °C and 6.2–7.2 kbar and 685–740 °C. The clockwise ITD path represents a loop followed by the orogen during the transitional granulite–amphibolite metamorphic conditions, probably associated with a subduction process followed by a collisional tectonic event. This subduction framework produced continental crust thickening between 1148 and 1034 Ma and later collision with another continental block approximately 1000 Ma ago. The orogenic exhumation occurred with moderate uplift rate. The counterclockwise trajectory and two metamorphic events suggest a vertical displacement between the Vergel granulites and Las Margaritas migmatites units, because there is no isotopic difference that indicates the existence of different terranes. The data confirm that the metamorphic evolution for this domain was more dynamic than previously believed and includes: (1) metamorphic processes with the generation of new crust with a possible mixture of old material and (2) metamorphic recycling of continental crust. These geological processes characterize a complex Mesoproterozoic orogenic event that shares certain features with the Grenvillian basement rocks participating in the formation of Rodinia.  相似文献   

10.
The Eastern Ghats Frontal Thrust (EGFT) demarcates the boundary between the Archaean/Paleoproterozoic cratonic rocks to the west, and the Meso/Neoproterozoic granulites of the Eastern Ghats Mobile Belt (EGMB) to the east. At Jeypore (Orissa, India), mafic schists and granites of the cratonic domain document a spatial increase in the metamorphic grade from greenschist facies (garnet, clinozoisite – absent varieties) in the foreland to amphibolite facies (clinozoisite- and garnet-bearing variants) progressively closer to the EGFT. Across the EGFT, the enderbite–charnockite gneisses and mafic granulites of EGMB preserves a high-grade granulite facies history; amphibolite facies overprinting in the enderbite–charnockite gneisses at the cratonic fringe is restricted to multi-layered growth of progressively Al, Ti – poor hornblende at the expense of pyroxene and plagioclase. In associated mafic granulites, the granulite facies gneissic layering is truncated by sub-centimeter wide shear bands defined by synkinematic hornblende + quartz intergrowth, with post-kinematic garnet stabilized at the expense of hornblende and plagioclase. Proximal to the contact, these granulites of the Eastern Ghats rocks are intruded by dolerite dykes. In the metadolerites, the igneous assemblage of pyroxene–plagioclase is replaced by intergrown hornblende + quartz ± calcite that define the thrust-related fabric and are in turn mantled by coronal garnet overgrowth, while scapolite is stabilized at the expense of recrystallized plagioclase and calcite. Petrogenetic grid considerations and thermobarometry of the metamorphic assemblages in metadolerites intrusive into granulites and mafic schists within the craton confirm that the rocks across the EGFT experienced prograde heating (Tmax value ∼650–700 °C at P  6–8 kbar) along the prograde arm of a seemingly clockwise PT path. Since the dolerites were emplaced post-dating the granulite facies metamorphism, the prograde heating is correlated with renewed metamorphism of the granulites proximal to the EGFT. A review of available age data from rocks neighboring the EGFT suggests that the prograde heating of the cratonic granites and the re-heating of the Eastern Ghats granulites are Pan – African in age. The re-heating may relate to an Early Paleozoic Pan-Gondwanic crustal amalgamation of older terrains or reactivation along an old suture.  相似文献   

11.
The granulites and granitoids around Rayagada in the north central part of the Eastern Ghats belt display structural and petrological differences when compared to similar rocks from Chilka and Jenapore in the northern Eastern Ghats. The impress of F1 deformation is almost erased while that ofF 3 is muted. The metapelites have a restricted chemical range and are non-migmatitic. There are two varieties of leptynitic granitoids, one of which is interlayered with yet another S-type granite containing cordierite. The maximum recorded temperature from geothermometers is 780‡C, but the magnitude of pressure is comparatively low, the highest value being 6.3 kbar. Another distinctive feature of the pressuretemperature record is the absence of evidence of decompression in the lower realms of pressure and temperature. Metamorphic reactions that could be identified indicate cooling, a noteworthy reaction being the sillimanite to andalusite transformation. Integration of data from pressure-temperature sensors suggest cooling at two pressures, 6 and 5 kbar. The generation of two types of granitoids from metapelites is interpreted to be due to intersection with solidus curves for pelitic and graywacke-like compositions, constrained by recent experiments, at 6 and 5 kbar. The first melting occurred on a prograde path while the second one was due to increase in temperature during exhumation at tectonic rates. Thus inspite of a broad similarity in the geodynamic scenario across the northern part of the Eastern Ghat belt, differences in exhumation rates and in style of melting were responsible for producing different signatures in the Rayagada granulite terrane.  相似文献   

12.
The boundary between the Archean cratons and the Eastern Ghats Belt in peninsular India represents a rifted Mesoproterozoic continental margin which was overprinted by a Pan-African collisional event associated with the westward thrusting of the Eastern Ghats granulites over the cratonic foreland. The contact zone contains a number of deformed and metamorphosed nepheline syenite complexes of rift-related geochemical affinities. In addition to the nepheline-bearing rocks, metamorphosed quartz-bearing monzosyenitic bodies can also be identified along the suture in the region between the Godavari-Pranhita graben and the Prakasam Igneous Province. One such occurrence at Jojuru near Kondapalle is geochemically comparable to the nepheline syenites and furnishes a weighted mean concordant U–Th–Pb SHRIMP zircon age of 1263 ± 23 Ma (2σ), which provides a lower age bracket for the rift-related magmatic activity. The original igneous mineral assemblage in the monzosyenite was partially replaced by the formation of coronitic garnet during the Pan-African metamorphism of the rocks. PT estimates of garnet corona formation at the interface between clinopyroxene–orthopyroxene–ilmenite clusters and plagioclase indicate mid to upper amphibolite facies condition (5.5–7.0 kbar and 600–700 °C) during the thrust induced deformation and metamorphism associated with the Pan-African collisional tectonics.  相似文献   

13.
The South Indian Craton is composed of low-grade and high-grade metamorphic rocks across different tectonic blocks between the Moyar–Bhavani and Palghat–Cauvery shear zones and an elongated belt of eastern margin of the peninsular shield. The Madras Block north of the Moyar–Bhavani shear zone, which evolved throughout the Precambrian period, mainly consists of high-grade metamorphic rocks. In order to constrain the evolution of the charnockitic region of the Pallavaram area in the Madras Block we have undertaken palaeomagnetic investigation at 12 sites. ChRM directions in 61 oriented block samples were investigated by Alternating Field (AF) and Thermal demagnetization. Titanomagnetite in Cation Deficient (CD) and Multi Domain (MD) states is the remanence carrier. The samples exhibit a ChRM with reverse magnetization of Dm = 148.1, Im = + 48.6 (K = 22.2, α95 = 9.0) and a palaeomagnetic pole at 37.5 °N, 295.6 °E (dp/dm = 7.8°/11.8°). This pole plots at a late Archaean location on the Indian Apparent Polar Wander Path (APWP) suggesting an age of magnetization in the Pallavaram charnockites as 2600 Ma. The nearby St. Thomas Mount charnockites indicate a period of emplacement at 1650 Ma (Mesoproterozoic). Thus the results of Madras Block granulites also reveal crustal evolution similar to those in the Eastern Ghats Belt with identical palaeopoles from both the areas.  相似文献   

14.
The sapphirine granulites from G. Madugula, Eastern Ghats preserve a variety of mineral textures and reactions. Corona and reaction textures are used in conjunction with mineral compositions to construct a sequence of metamorphic reactions describing the mineralogical evolution of sapphirine granulites. An early stage is characterized by the development of sapphirine + quartz, spinel + quartz in textural equilibrium, and possible relicts after osumilite during peak metamorphic conditions. Sapphirine/spinel crystals were later detached from quartz in the form of mineral coronas. During a subsequent sapphirine-cordierite stage, several cordierite forming reactions reflect decreasingP-T conditions. Finally during the late stage, a few samples show evidence of retrogressive hydration. Sapphirine is rather iron-rich (12.8 wt%) and the Mg number in the analysed minerals varies in the order: cordierite > phlogopite > sapphirine > orthopyroxene > spinel > garnet.P-T conditions of metamorphism have been constrained through the application of geothermobarometry and thermodynamically calibrated MAS equilibria.P-T vectors from granulite facies rocks in the G. Madugula area indicate that the rocks experienced substantial decompression (up to 3 kbar) and moderate cooling (150–200°C) subsequent to peak conditions of metamorphism (8.4 kbar, > 900°C). The decompressionalP-T history of sapphirine granulites interpreted from textural features and thermobarometric estimates suggest that they may have eventually resulted from exhumation of thickened crust.  相似文献   

15.
The spinel–quartz-bearing Al–Fe granulites from Ihouhaouene (In Ouzzal, West Hoggar) have a migmatitic appearance with quartzo-feldspathic layers intercalated with restitic layers. These granulites are characterized by a hercynitic spinel–quartz assemblage typical of high grade terranes. The stability of the spinel–quartz assemblage is attributed to an elevation of temperature (from 800 to >1100 °C) at high pressures (10–11 kbar), followed by an isothermal decompression from 9 to 5 kbar, an evolution typical of the In Ouzzal clockwise PT path. The Al–Fe granulites’ history can be subdivided into different successive crystallisation stages. During the first stage, the spinel–quartz assemblage formed, probably following a prograde event that also produced partial melting. During a second stage, the primary spinel–garnet–sillimanite–quartz paragenesis broke-down to give rise to the secondary assemblage. The metamorphic evolution and phase relations during this stage are shown in PTX pseudosections calculated for the simple FMASH system. These pseudosections show that the orthopyroxene–cordierite–spinel symplectite appeared during a high temperature decompression, as a product of destabilisation of garnet in sillimanite-free microdomains with high XMg values. At the same time, the spinel–quartz association broke-down into cordierite in Fe-rich microdomains. Average pressure and temperature estimates for the orthopyroxene–spinel–garnet–cordierite–quartz association are close to the thermal peak of metamorphism (1000 ± 116 °C at 6.3 ± 0.5 kbar). With decreasing temperatures garnet–sillimanite corona developed from the breakdown of the primary spinel–quartz assemblage in the Fe-rich microdomains, whereas cordierite–spinel formed at the expense of primary sillimanite and garnet in the Mg-rich microdomains.  相似文献   

16.
New 40Ar/39Ar geochronology places time constraints on several stages of the evolution of the Penninic realm in the Eastern Alps. A 186±2 Ma age for seafloor hydrothermal metamorphic biotite from the Reckner Ophiolite Complex of the Pennine–Austroalpine transition suggests that Penninic ocean spreading occurred in the Eastern Alps as early as the Toarcian (late Early Jurassic). A 57±3 Ma amphibole from the Penninic subduction–accretion Rechnitz Complex dates high-pressure metamorphism and records a snapshot in the evolution of the Penninic accretionary wedge. High-pressure amphibole, phengite, and phengite+paragonite mixtures from the Penninic Eclogite Zone of the Tauern Window document exhumation through ≤15 kbar and >500 °C at 42 Ma to 10 kbar and 400 °C at 39 Ma. The Tauern Eclogite Zone pressure–temperature path shows isothermal decompression at mantle depths and rapid cooling in the crust, suggesting rapid exhumation. Assuming exhumation rates slower or equal to high-pressure–ultrahigh-pressure terrains in the Western Alps, Tauern Eclogite Zone peak pressures were reached not long before our high-pressure amphibole age, probably at ≤45 Ma, in accordance with dates from the Western Alps. A late-stage thermal overprint, common to the entire Penninic thrust system, occurred within the Tauern Eclogite Zone rocks at 35 Ma. The high-pressure peak and switch from burial to exhumation of the Tauern Eclogite Zone is likely to date slab breakoff in the Alpine orogen. This is in contrast to the long-lasting and foreland-propagating Franciscan-style subduction–accretion processes that are recorded in the Rechnitz Complex.  相似文献   

17.
The Mozambique Belt (MB) of the East Africa Orogen contains large areas of granulite-facies migmatitic gneisses with Archaean and Palaeoproterozoic protolith ages and that were recycled during the Neoproterozoic Pan-African orogeny. The study area is situated along the Great Ruaha River and within the Mikumi National Park in central Tanzania where migmatitic gneisses and mafic to intermediate granulites are interlayered with Neoproterozoic granulite-facies migmatitic metapelites. Mineral textures suggest isothermal decompression, with the peak mineral assemblage comprising Grt–Bt–Ky–Kfs–Pl–Qtz ± Phn ± Ti-Oxide ± melt and amphibolite-facies retrograde assemblage Grt–Bt–Sil–Ms–Kfs–Pl–Qtz ± Fe–Ti-Oxide. The near isothermal retrograde overprint is seen in well-developed formation of pseudomorphs after garnet. The HP granulite-facies assemblages record PT conditions of 13–14 kbar at 760–800 °C. Retrogression and the release of fluids from crystallizing melts occurred at 7 kbar and 650–700 °C. A fluid inclusion study shows three types of fluid inclusion consisting of nearly pure CO2, as well as H2O–NaCl and H2O–CO2 mixtures. We suggest that a immiscible CO2-bearing brine represents the fluid composition during high-grade peak metamorphism, and that the fluid inclusions containing H2O–NaCl or nearly pure CO2 represent trapped fluids from in situ crystallised melt. The results suggest strong isothermal decompression, which is probably related to a fast exhumation after crustal thickening in the central part of the Mozambique Belt in Tanzania.  相似文献   

18.
We report for the first time the evidence for prograde high-pressure (HP) metamorphism preceding a peak ultrahigh-temperature (UHT) event in the northernmost part of the Madurai Block in southern India. Mg–Al-rich Grt–Ged rocks from Komateri in Karur district contain poikiloblastic garnet with numerous multi-phase inclusions. Although most of the inclusion assemblages are composed of gedrite, quartz, and secondary biotite, rare staurolite + sapphirine and spinel + quartz are also present. The XMg (=Mg/[Fe+Mg]) of staurolite (0.45–0.49) is almost consistent with that reported previously from Namakkal district in the Palghat–Cauvery Shear Zone system (XMg = 0.51–0.52), north of the Madurai Block. The HP event was followed by peak UHT metamorphism at T = 880–1040 °C and P = 9.8–12.5 kbar as indicated by thermobarometric computations in the Grt–Ged rock and associated mafic granulite. Symplectic intergrowth of spinel (XMg = 0.50–0.59, ZnO < 1.7 wt.%) and quartz, a diagnostic indicator of UHT metamorphism, probably formed by decompression at UHT conditions. The rocks subsequently underwent retrograde metamorphism at T = 720–760 °C and P = 4.2–5.1 kbar. The PT conditions and clockwise exhumation trajectory of the Komateri rocks, comparable to similar features recorded from the Palghat–Cauvery Shear Zone system, suggest that the Madurai Block and the Palghat–Cauvery Shear Zone system underwent similar HP and UHT metamorphic history probably related to the continent–continent collision during the final stage of amalgamation of Gondwana supercontinent.  相似文献   

19.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   

20.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号