首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
运用岩石破裂过程分析软件RFPA2D,通过设置不同尺寸、剪切速率,探究裂隙形成、声发射能量以及位移之间的关系。数值模拟结果表明非均质岩石剪切破坏过程裂纹的扩展贯穿模式及声发射能量的对应关系。结果表明:(1)岩石剪切破坏的尺寸效应显著,剪切速率影响较小。(2)大裂隙的生成伴随较强的声发射能量,引起Y方向位移波动明显。(3)岩石剪切破坏剪裂纹是由大量细小张裂隙发育演变而来,对破坏模式起主导作用。  相似文献   

2.
王刚  冯净  陈雪畅  闫松  李胜鹏 《岩土力学》2022,43(Z2):144-154
增强煤层注水能力是目前需要亟待解决的问题,而煤层注水难易程度缺乏准确的判别标准。通过考虑煤体孔裂隙渗流分形结构特征和毛细作用下化学润湿特性,建立了煤层注水渗流量模型;基于概率论与数理统计方法基础,构建了集对联系度区间评价体系,划分了煤层注水的难易程度。结果显示:(1)注水效果受孔隙率、孔隙半径、接触角、液体的密度、表面张力、黏滞性系数、重力加速度等渗流结构参数和化学润湿特性等最简参数的影响,体系模型表征了煤体渗流结构和化学润湿特性与渗流量的关系。(2)在组合赋权下,孔隙率权重为0.32,对注水效果贡献较大,最大孔喉半径和接触角的贡献度次之;最小孔喉半径权重为0.17,对注水效果影响最小。(3)煤样X1、X2、X5评价指标值介于(0,0.25),属于难注水煤层;煤样X3、X4评价指标值介于(0.25,0.50),属于较难注水煤层。  相似文献   

3.
煤层气排采过程中煤储层孔隙度和渗透率的动态变化,是煤层气开发地质研究的热点之一。本文利用晋城无烟煤样,分析了三轴应力条件下煤岩的应力-应变效应,讨论了煤样渗透率的动态变化规律。结果表明,围限压力条件下,煤岩吸附甲烷后其抗压强度明显增大;煤样最大径向吸附应变与孔隙压力的关系,可用朗格缪尔方程形式予以描述;煤岩渗透性与有效应力、煤岩吸附膨胀量均呈负指数关系,说明两者对煤岩渗透性影响的实质相同,即煤岩孔隙、裂隙受到应力作用逐渐减小或闭合。同时,在较低孔隙压力条件下,需考虑克林伯格效应对煤层渗透性的影响。经检验,S-D模型能够较为客观地预测煤岩渗透性动态变化规律。  相似文献   

4.
煤层高压注水是最常用的一种煤层气压裂技术,煤层高压注水不仅是一种煤与瓦斯突出的防治措施,而且也是煤层增透的主要措施之一。本文主要测试分析高压注水是不同注水时间和不同注水压力对煤岩渗透性的影响。研究结果表明,随着注水时间和注水压力的增加,煤岩渗透率都有明显提高,但是在高压注水4 h和高压注水20 MPa后煤岩渗透率的增长速度减慢。  相似文献   

5.
单孔岩样水压致裂的数值分析   总被引:2,自引:0,他引:2  
郭保华 《岩土力学》2010,31(6):1965-1970
水压致裂是改变岩体结构的一种天然行为和人为手段。采用F-RFPA2D软件,对水压致裂过程、裂缝扩展形态及注水孔形状和大小、应力条件和岩样强度等影响因素进行了研究。将开始出现声发射的水压称为微裂压力,将声发射急剧增多、裂缝非稳定扩展直至岩样破坏的水压称为破裂压力。岩样尺寸一定时,微裂压力和破裂压力随内孔面积增加而降低,方形孔岩样的微裂压力和破裂压力均小于同面积的圆形孔。微裂压力和破裂压力随围压或岩样强度增加而增加,且其差值随岩样强度增加而增加,理论破裂压力与模拟值趋势基本一致。方形孔的宏观裂纹起裂位置多在角点附近,而圆形孔比较随机。无围压时,宏观裂纹的延伸方向随机;有围压时,宏观裂纹扩展方向大致与主应力方向一致,且沿较大主应力方向的宏观裂纹扩展至岩样破坏,较小主应力方向宏观裂纹不完全发育。研究结果对水压致裂试验和工程实践有一定参考意义。  相似文献   

6.
运用自主研制的煤岩热-流-固耦合试验系统,以原煤为研究对象,进行峰后轴压保持在不同应力水平下围压的卸载试验,以分析围压卸载对原煤变形特性和渗透特性的影响。研究结果表明:通过径向应变 、轴向应变 和体应变 的不可恢复变形量以及三者在力加载过程中的响应程度来定义损伤变量,满足损伤变量的变化区间[0, 1],并以此计算煤样在卸载过程中的损伤量,得到在峰后轴压 保持不变,对围压 进行卸载时,损伤量D随着 的减小而增大,煤样的损伤程度越来越大;当轴压卸荷到不同应力时,煤样的渗透率随围压卸载次数的增加而增大,表明当 减小时, 对渗透率的影响越来越重要,同时煤样内部的孔隙裂隙以发育、扩展、延伸为主。此外,渗透率k在 卸载初期,几乎不增加;当 继续卸载时, 开始增大,并且斜率越来越大,表明煤样的损伤加剧。当保持 不变,对 进行卸载时,相当于摩尔应力圆半径增大,煤样向破坏的趋势发展,发生二次破坏的可能性增大。随着 的卸载,卸围压前 越大,摩尔应力圆半径越大,煤样的承载能力就越弱,更易发生煤样的二次破坏,表现在煤样的轴向应变 和径向应变 发生突变。  相似文献   

7.
王辰霖  张小东  杜志刚 《岩土力学》2019,40(6):2140-2153
应用三轴加载煤岩渗流试验装置,对预制贯通裂隙煤样开展循环加卸载轴压渗透率试验,分析循环加卸载轴压作用下预制裂隙煤样渗透率的变化规律及其之间的差异。研究结果表明:预制裂隙煤样渗透率与轴压呈负指数函数关系,渗透率对应力敏感性随加卸载次数增加而降低。加载阶段渗透率差值与卸载阶段渗透率差值随加卸载次数增加而降低,渗透率差值与应力敏感性系数呈正相关性。加载阶段与卸载阶段渗透率存在明显差值,渗透率产生明显损失量,其随加卸载次数增加而降低。竖直裂隙煤样渗透率与应力敏感性系数明显高于水平裂隙煤样与完整煤样,水平裂隙煤样渗透性与完整煤样渗透性相差不大,但水平裂隙煤样应力敏感性系数高于完整煤样。竖直裂隙煤样渗透率差值与渗透率损失量明显高于水平裂隙煤样与完整煤样,水平裂隙煤样渗透率差值高于完整煤样,但两者渗透率损失量相差不大。循环加卸载轴压结束后,完整煤样渗透率损失率最大,水平裂隙煤样渗透率损失率居中,竖直裂隙煤样渗透率损失率最小;竖直裂隙煤样渗透率恢复率最大,水平裂隙煤样渗透率恢复率居中,完整煤样渗透率恢复率最小。  相似文献   

8.
煤层甲烷解吸—扩散—渗流过程的影响因素分析   总被引:18,自引:3,他引:15  
从煤层甲烷产出机理入手,分析了影响煤层甲烷解吸、扩散和渗流过程的因素。结果表明:影响解吸的因素主要是压力、含气量、煤的水分含量、基块尺寸、温度等;影响甲烷扩散的因素主要是甲烷浓度、扩散距离、平均自由程和煤岩孔隙分布;而影响渗流的因素有渗透率、裂隙发育状况、压差、储层损害等。进而指出,解吸、扩散和渗流3个环节紧密相连,相互影响,相互制约,三者的最佳匹配将是煤层气经济开发的必要条件。   相似文献   

9.
利用PCI-2声发射系统对四川芙蓉白皎煤矿煤岩展开不同围压(0、8、16、25 MPa)的声发射试验研究,旨在揭示不同围压下煤岩破坏过程的振铃计数率、声发射时空分布、声发射b值及破坏煤岩的损伤特性变化规律,为有效预测煤岩破坏提供有利的理论依据。研究表明:声发射现象能够较好地反映煤岩内部裂纹的扩展情况,围压对煤岩破坏具有一定的抑制作用。随围压增大,振铃计数率平静期越长;单轴、三轴状态下振铃计数率高频段发生时段不同。单轴状态下声发射定位点均匀分布于煤岩内部,三轴状态下则集中分布于破坏截面。随围压增大,峰前声发射b值波动现象增强,可利用b值变化预测煤岩破坏。基于累计振铃计数、结合煤岩破坏应力建立煤岩损伤破坏模型,结合声发射振铃计数率、时空分布、b值及损伤变量可对煤岩有效破坏的前兆应力点进行预测。研究成果将为煤岩破坏的微震监测分析奠定基础。移动阅读   相似文献   

10.
煤层瓦斯渗透率是影响瓦斯抽采和动力灾害防治的重要参数。为了研究煤体损伤和剪胀变形对渗透率的影响,首先引入损伤变量反映煤体损伤破坏状态,建立了基于体应变增量的煤体损伤本构模型。并采用Hurst指数表征裂隙表面粗糙度,基于裂隙表面的分形特征,建立了裂隙渗透率在压缩和剪切作用下的演化模型。通过对TOUGH2和FLAC3D软件进行二次开发,建立了基于双重孔隙模型的TOUGH2(CH4)-FLAC气-固耦合数值分析工具。采用本软件对煤样单轴压缩过程进行模拟分析,结果表明:煤体的破坏是损伤单元累积和贯通的结果,最终形成贯通煤体的损伤带是造成煤体失稳破坏的主因;围岩内的渗透率增加区域与损伤区位置基本一致,其中裂隙系统的渗透率增加幅度最大可达2个数量级;剪切破坏区的裂隙发生剪胀变形,引起裂隙渗透率大幅增加。建立的理论模型与数值计算工具为制定瓦斯治理措施提供了理论指导。  相似文献   

11.
揭示致密砂岩的破裂机制对致密油气储层压裂设计和压裂缝网改造具有重要的指导意义。本文采用鄂尔多斯盆地延长组长6储层致密砂岩试样,开展了不同围压下的常规三轴压缩试验,分析了围压对岩石力学性质的影响。采用声发射定位技术研究了试样破裂过程,分析了不同围压下声发射定位事件的信号特征及其时空演化序列。此外,对破裂后试样进行了CT扫描,基于CT切片图像观测了试样内部破裂特征。得到以下几点认识:(1)不同围压下,声发射时空演化差异主要表现在压密阶段。随着围压的增加,声发射事件主要发生时段后移。(2)围压对声发射特征参数累计振铃计数的影响主要表现在压密阶段,其他阶段累计振铃计数呈相似变化趋势。不同围压下均可将累计振铃计数快速增加的瞬间作为岩石即将破裂的标志。(3)随着围压的增加,岩石破裂形态趋于简单化,由拉张破裂为主的复杂形态逐渐转变为单一的剪切破裂形态。(4)CT扫描切片直观地反映了试样的破裂形态,与声发射定位所得试样整体破裂形态相吻合,并且在声发射定位的基础上进一步刻画了裂纹分布情况与各裂纹相互作用过程。采用声发射定位技术与CT扫描双重方法,研究试样破裂过程,对于深入研究岩石破裂机制具有一定的意义。  相似文献   

12.
孔隙压力作用下煤岩破裂及声发射特性的数值模拟   总被引:11,自引:1,他引:10  
徐涛  杨天鸿  唐春安  梁正召 《岩土力学》2004,25(10):1560-1564
运用嵌入孔隙压力的岩石破裂过程分析RFPA2D系统,对孔隙压力作用下煤岩的变形强度特性进行了数值试验研究。数值试验结果表明,在孔隙压力一定时,随着围压的增加,煤岩的杨氏模量、抗压强度都随之增高;而当围压一定时,随着孔隙压力的增加,煤岩的杨氏模量、抗压强度则稍有降低,而且峰值强度后的应力-应变曲线有呈现脆性的趋势。此外数值模拟还研究了不同围压及孔隙压力作用下煤岩的声发射特性  相似文献   

13.
Damage and fracture propagation around underground excavations are important issues in rock engineering. The analysis of quasi-brittle materials can be performed using constitutive laws based upon damage mechanics. The finite element code RFPA2D (Rock Failure Process Analysis) based on damage mechanics was used to simulate a loading-type failure process around an underground excavation (model tunnel) in brittle rock. One of the features of RFPA2D is the capability of modeling heterogeneous materials. In the current model, the effect of the homogeneous index (m) of rock on the failure modes of a model tunnel in rock was studied. In addition, by recording the number of damaged elements and the associated amount of energy released, RFPA2D is able to simulate acoustic activities around circular openings in rock. The results of a numerical simulation of a model tunnel were in very good agreement with the experimental test using the acoustic emission technique. Finally, the influence of the lateral confining pressure on the failure mechanism of the rock around the model tunnel was also investigated by numerical simulations.  相似文献   

14.
为研究不同库水深度处侏罗系软岩的损伤演化特性,对三峡库区侏罗系泥质粉砂岩进行了不同水压力状态下的MTS三轴压缩声发射试验,建立了基于声发射振铃计数考虑水致初始损伤的损伤演化方程,对水压力作用下侏罗系软岩的力学劣化特性、损伤演化阶段和损伤演化特征值进行了分析,结果表明:随着水压力增大(0 MPa到1MPa),软岩的起裂应力、损伤应力、峰值应力、残余应力以及弹性模量整体均呈现出减小的趋势,减小幅度分别为74.2%、66.9%、62.4%、43.4%、51.9%;侏罗系软岩的损伤演化过程可分为损伤形成阶段、损伤稳定发展阶段、损伤破坏阶段和损伤破坏后阶段,各个损伤阶段与裂隙扩展阶段基本保持同步;损伤演化特征值能够定量地反映水压力对侏罗系软岩的影响劣化程度,各个损伤演化特征值与水压力均呈现出较好的数学相关性,初始损伤变量和起裂损伤变量随水压力的增大而增大,起裂损伤增量和起裂损伤应变随水压力的增大而减小;在水压力增大过程中,初始损伤变量与起裂损伤变量的数值逐渐逼近,起裂损伤增量和起裂损伤应变数值逐渐接近于0,说明库水压力的存在会对侏罗系软岩造成不同程度的损伤,能够加速岩石的裂隙发展和破坏进程。  相似文献   

15.
付宏渊  蒋煌斌  邱祥  姬云鹏 《岩土力学》2020,41(12):3840-3850
为探究不同外部环境因素影响下浅层粉砂质泥岩边坡裂隙渗流特性,采用自主研发的岩体裂隙渗流试验装置,对含6种不同裂隙面粗糙度(JRC)的粉砂质泥岩裂隙试样进行渗流试验,研究了不同低围压和覆水深度下粉砂质泥岩裂隙渗流特性。结果表明:不同覆水深度及JRC下围压与粉砂质泥岩裂隙渗透系数均呈反相关,两者之间关系可用幂函数表征,且渗透系数的降低过程可分为快速降低(围压为0~30 kPa)和缓慢降低(围压为30~50 kPa)两个阶段,CT扫描结果验证了围压增大使得粉砂质泥岩裂隙开度减小是渗透系数随围压增大而减小的主要原因。随围压的增大或覆水深度的减小,不同JRC粉砂质泥岩裂隙渗透系数的离散程度逐渐减小。当围压增至最大,同时覆水深度最小时,JRC对裂隙渗透系数的影响将会被消除。不同围压下,粉砂质泥岩裂隙渗透系数与覆水深度呈正相关,且两者关系可用指数函数表征。推导出了粉砂质泥岩裂隙渗流非线性Izabsh模型,该模型能较好地反映低应力及低流速下粉砂质泥岩裂隙渗流量与压力梯度之间的非线性变化关系,但随围压的增大,该模型的相关性有一定程度的减小。  相似文献   

16.
为探究渗流-应力耦合作用下岩石内部微元体的损伤演化特征,对取自某矿井的砂岩进行了三轴渗透及声发射试验。研究结果表明:砂岩的渗透率变化历经降低、动态平衡、快速增加以及略微回落四个阶段;声发射现象呈阶段性变化特征,随着围压的升高,声发射最大值越滞后;基于柱状分形理论得到的分形特征表明,分形维数逐渐降低,表明砂岩内部损伤经历了一个从无序到有序的变化趋势,分形维数突变点的出现,可作为砂岩即将失稳破坏的前兆;渗流-应力耦合作用下砂岩的损伤值呈指数型函数增加,渗透损伤Ds主要集中于屈服阶段之后,渗透损伤与总损伤的比值随围压的升高呈线性减小;应力加载是损伤产生的主要因素,渗透作用为次要因素;分形维数df与损伤D、渗透损伤Ds之间呈良好的负指数型函数关系。  相似文献   

17.
李果  张茹  徐晓炼  张艳飞 《岩土力学》2015,36(6):1633-1642
通过对煤岩试件进行常规三轴力学试验,并对破坏后的煤岩试件进行CT扫描,之后将处理过的CT图片导入Mimics10.01进行三维重构,得到了煤岩试件内部裂隙空间的分布情况。另外,利用自编的Matlab程序对煤岩试件的体分形维进行了初步分析。结果表明:煤岩试件在三轴加载条件下主要发生压剪破坏;且围压不同,煤岩试件表现出了特定的力学规律;利用Mimics10.01重构得到的煤岩三维裂隙空间分布情况显示,随着围压的增大,煤岩试件剪切破坏面的连通率和体密度有增大的趋势;体分形维计算的结果显示,煤岩内部破坏越严重,体分形维值越小。  相似文献   

18.
为研究盐岩变形破坏过程中损伤变量和分形维数之间的关系,对取自某地的纯盐岩开展了单轴压缩和三轴压缩试验。在基于声发射振铃计数的损伤模型和基于声发射定位点空间演化的分形维数计算的基础上,对盐岩变化破坏过程中的损伤变量和分形维数进行了研究。研究表明:在盐岩变形破坏过程中,盐岩分形维数逐渐降低,损伤变量逐渐增加,且分形维数下降的各个阶段与损伤变量增加的各个阶段相对应;盐岩变形破坏前分形维数不再明显下降,且不同应力状态下,盐岩变形破坏前分形维数不同;随着围压增大,盐岩变形破坏前分形维数逐渐降低,其中单轴压缩和三轴压缩应力状态时,分形维数分别低于2.42和2.31、2.20时,预示着试件内部损伤开始汇集,逐渐形成宏观破裂面,导致试件变形破坏;围压对盐岩声发射活动有明显的抑制作用,随着围压的增大,盐岩变形破坏过程中声发射活动逐渐减少,且在此过程中可以发现:在应力加载初期,盐岩分形维数快速下降时所对应的应力百分比逐渐增大,在应力加载后期,当盐岩分形维数不再明显减小时对应的应力百分比逐渐增大;在盐岩变形破坏的加载初期,损伤变量较小,能量释放较少;盐岩变形破坏前损伤变量增加较快,能量快速释放。  相似文献   

19.
张勃阳  白海波  张凯 《岩土力学》2016,37(3):745-752
岩溶陷落柱是内部结构杂乱无章的特殊地质构造,易成为隐伏于煤层底板下的垂向导水通道,是华北地区石炭二叠系煤田的重大安全隐患。在采动影响下,底板隐伏陷落柱的突水通道通常由底板破坏带和陷落柱共同组成,为了研究其渗流突变机制,利用自行研制的破碎岩体渗透性试验系统,对不同底板破坏带条件下,隐伏陷落柱的渗流特性进行了试验研究。研究结果表明:渗流突变发生的根本原因是大颗粒流失导致破碎岩体孔隙结构改变;发生渗流突变时,流速随渗流边界孔隙直径的增大而增大,同时试样的初始孔隙度均大于0.21;未发生渗流突变时,渗流边界对渗流无显著影响,并且试样的渗透率随孔隙度的增大而增大,渗透率比和孔隙度比存在幂函数关系;非Darcy流 因子为负是渗流突变发生的充分必要条件,非Darcy流 因子的大小决定渗流突变的剧烈程度。  相似文献   

20.
The failure mechanism of hydraulic fractures in heterogeneous geological materials is an important topic in mining and petroleum engineering. A three-dimensional (3D) finite element model that considers the coupled effects of seepage, damage, and the stress field is introduced. This model is based on a previously developed two-dimensional (2D) version of the model (RFPA2D-Rock Failure Process Analysis). The RFPA3D-Parallel model is developed using a parallel finite element method with a message-passing interface library. The constitutive law of this model considers strength and stiffness degradation, stress-dependent permeability for the pre-peak stage, and deformation-dependent permeability for the post-peak stage. Using this model, 3D modelling of progressive failure and associated fluid flow in rock are conducted and used to investigate the hydro-mechanical response of rock samples at laboratory scale. The responses investigated are the axial stress–axial strain together with permeability evolution and fracture patterns at various stages of loading. Then, the hydraulic fracturing process inside a rock specimen is numerically simulated. Three coupled processes are considered: (1) mechanical deformation of the solid medium induced by the fluid pressure acting on the fracture surfaces and the rock skeleton, (2) fluid flow within the fracture, and (3) propagation of the fracture. The numerically simulated results show that the fractures from a vertical wellbore propagate in the maximum principal stress direction without branching, turning, and twisting in the case of a large difference in the magnitude of the far-field stresses. Otherwise, the fracture initiates in a non-preferred direction and plane then turns and twists during propagation to become aligned with the preferred direction and plane. This pattern of fracturing is common when the rock formation contains multiple layers with different material properties. In addition, local heterogeneity of the rock matrix and macro-scale stress fluctuations due to the variability of material properties can cause the branching, turning, and twisting of fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号