首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
南海北部是中国海上油气的重要基地,也是中国天然气水合物调查的首选地区。对南海北部东沙群岛附近具有BSR特征的HD196站位沉积物样品的地球化学特征进行综合分析,得到以下结果:柱状样沉积物的常量元素的分布具有分段性,且与沉积物孔隙水中的离子浓度和甲烷含量的变化趋势相一致,可能对其下面是否存在天然气水合物有指示意义;同时柱状样沉积物孔隙水中离子浓度的变化与世界上发现天然气水合物地点的孔隙水离子浓度的变化一致。HD196站位的地质条件表明本站位具有天然气水合物形成的温压条件、气源条件和构造条件,因此在本站位的下面赋存天然气水合物的可能性比较大,在此进一步工作有可能取得天然气水合物勘查的突破。  相似文献   

2.
南海北部孔隙水碘与天然气水合物成藏关系研究   总被引:2,自引:0,他引:2  
天然气水合物是一种重要的新型能源。然而,深海水合物具有埋藏深、作业难度大等特点,水合物难以被高效准确地识别,这已成为制约南海水合物地质调查的瓶颈之一。针对这一问题,本文结合近年来国际上新兴的碘及碘同位素方法,对南海北部台西南盆地两个站位的柱状沉积物(HD-86V和HD-109)开展了水合物成藏识别的研究。该沉积物孔隙水中碘离子含量分别介于8.3~132.0μmol/L和7.4~118.1μmol/L之间,远高于正常海水值(0.44μmol/L)。结合区域水合物勘查结果及甲烷含量特征,发现孔隙水碘离子含量与甲烷含量表现为显著的正相关关系。对比琼东南盆地及神狐工区等区域数据,均表明沉积物孔隙水碘离子含量在南海水合物成藏示踪方面具有良好的应用前景和推广价值。  相似文献   

3.
硫酸根离子(SO42-)是海洋沉积物孔隙水中的重要组分之一。硫酸盐还原菌利用孔隙水中SO42-作为氧化剂氧化沉积物中有机质或甲烷,造成孔隙水中SO42-离子浓度降代,同时使溶解在孔隙水中CO2的碳同位素组成降低。研究表明,在有天然气水合物出现的地区,强烈的甲烷缺氧氧化作用使孔隙水SO42-浓度急剧下降,表现为海底沉积物中硫酸盐-甲烷界面(SMI)较浅。如布莱克海台区,SMI界面为5.1~23.9m,界面附近深解于孔隙水中CO2的δ13C值低达-39%。笔者发现南海北京海区几个站位具有类似于布莱克海台区的较浅的SMI界面(7.5~17.2m)和极低的δ13C值(-29‰),结合其他地质、地球物理和地球化学证据,推测这些站位处可能赋存有天然气水合物,值得开展进一步详查工作。  相似文献   

4.
采用Ba型、H型和Cs型三步阳离子交换树脂法,对海洋沉积物中孔隙水的氯进行了分离和提纯。氯的回收率达99.6%,能满足氯同位素质谱测定的需要。氯同位素的测量采用基于Cs2Cl^+离子的高精度正热电离质谱法,对ISL354NaCI标准物质的多次测量结果为”CI/”CI=0.319130±0.000029,对一个南海海底沉积物中孔隙水的多次测量结果为^37CI/^35CI=0.319144±0.000043,表明此方法的稳定性好,测量精度高,可用于海洋沉积物中孔隙水的氯同位素示踪研究  相似文献   

5.
天然气水合物是一种具有广阔前景的清洁能源资源,但目前对海洋天然气水合物预测方法有多种,利用浅层沉积物孔隙水地球化学示踪沉积层深部天然气水合物的方法,可以为海域天然气水合物前期普查提供一个廉价有效的途径。利用南海北部东沙海域D-5、D-8和D-F站位沉积物孔隙水硫酸根离子、溶解无机碳、钙离子和镁离子在剖面上的分布特征,模拟了3个站位甲烷供给通量及天然气水合物可能的发育特征。计算结果表明,D-5、D-8和D-F站位到达甲烷-硫酸根氧化界面的甲烷通量分别为11.97×10~(–3) mol/(m~2·a)、5.98×10~(–3) mol/(m~2·a)和26.45×10~(–3) mol/(m~2·a),天然气水合物形成的最大温度梯度分别为0.058℃/m、0.020℃/m和0.149℃/m,计算的天然气水合物顶界深度分别为海底之下170~197 m、378~386 m和79~98 m,甲烷通量对天然气水合物顶界影响大,温度对天然气水合物发育顶界影响较小。结合研究区似海底反射层发育特征判断,D-5和D-F站位深部沉积层中可能有天然气水合物,D-8站位应该没有天然气水合物发育。  相似文献   

6.
长江口及其邻近海域孔隙水地球化学特征   总被引:1,自引:0,他引:1  
对长江口沉积物有机碳、总氮、总磷、Fe、Mn、AI及孔隙水和上覆水体中营养盐、Fe、Mn的含量进行了测试,结合早期成岩模型及地球化学热力学分析,探讨了在河口环境中影响孔隙水营养盐和Fe、Mn分布的主要因素,并对沉积物-水界面营养盐扩散通量进行了估算。结果表明,孔隙水中NH4^+、NO3^-、PO3^4、H4SiO4和Fe、Mn的含量显著高于上覆水体。早期成岩过程是控制长江口沉积物孔隙水营养盐和Fe、Mn分布的主要因素。NH^4+剖面暗示长江口近岸和远岸海域存在两类不同的生物地球化学过程。孔隙水Fe、Mn剖面暗示在河口环境中其是有机质降解的重要电子受体。在近岸海域MnO2可能是底部NH4^+ -N移除的重要机制。长江口孔隙水中低磷酸盐与铁及沉积物中磷的形态有关。通量计算结果显示NH4^+、NO3^-、PO4^3-、地SiO4、Fe和Mn向上覆水体扩散的通量分别为356—3074μmol/(m2·d)、-45.3~62.6μmol/(m2·d)、-0.3~1.7μmol/(m^2·d)、323—3172μmol/(m^2·d)、3.0~10.5μmol/(m^2·d)和35.7~439.5μmol/(m^2·d)。N、P、Si界面通量对上覆水体浮游生物所需营养盐的贡献分别为0.19%~1.65%、0.13%~0.14%和1.2%~12.2%,因此在考虑长江口区域浮游生物所需营养的来源时,沉积物-水界面营养盐扩散通量可以忽略。  相似文献   

7.
报道了中国南海北部海区海底沉积物中孔隙水的Cl-和SO42-质量浓度的变化特征, 圈定了孔隙水中Cl-质量浓度的高值异常区。由于水合物形成过程中的排盐效应, 会使其上覆浅表层沉积物中孔隙水的盐度增高, 因此这些氯离子的高值异常区值得进一步的勘查。对孔隙水中SO42-的质量浓度分析表明, 研究区的一些站位表现出随深度增加SO42-的质量浓度梯度发生明显的变化, 计算的硫酸盐甲烷交接带SMI界面深度均在 10m左右, 与ODP164航次和ODP204航次有天然气水合物的钻孔的SMI界面深度基本吻合, 说明这些站位深部有天然气水合物存在的可能性。  相似文献   

8.
东沙海区浅层沉积物中黄铁矿异常及其意义   总被引:1,自引:0,他引:1  
东沙海区浅层沉积物的两个岩心出现大量的黄铁矿。GC10岩心中的黄铁矿在300cm以下含量增加,在700am的区段达到最高,主要为管状、棒状、莓球状;HD319岩心黄铁矿则相对较低,只在最底部730cm的区段突然增加,以莓球状为主。GC10岩心黄铁矿含量异常层位与甲烷含量增加层位一致,而在Corg-Ssulfide^2-含量变化图上,S^2-含量与有机碳含量线性关系不明显,显示了该岩心黄铁矿的形成主要受高甲烷流通量影响;而HD319岩心的有机碳高的层位,S^2-含量也高,表明HD319岩心黄铁矿的形成与沉积物中有机质降解密切相关。GC10岩心黄铁矿的δ^34S(‰)值在-17.149~-33.240CDT之间,显示了非常负的硫同位素比值和宽的区间;HD319的矿S(‰)值-36.363~-39.162CDT之间,相对比较稳定。GC10岩心黄铁矿的δ^34S(‰)值特征,可能与富甲烷环境有关,而HD319受其影响稍弱。  相似文献   

9.
采用GC—MS技术测定了南海东北部东沙海域沉积物柱样HD196A中的有机物,共检测出90多种烃类化合物:正构烷烃、类异戊二烯、支链烷烃、多环芳烃等化合物。正构烷烃分布曲线的形状、碳数范围、主峰位置以及CPI值和0EP值说明,沉积物中的有机质主要来源是大陆高等植物和海洋浮游生物藻类和细菌源,并以陆源高等植物来源占优势。研究还表明,随着深度增加,柱样中重烃减少,而轻烃增加,奇偶优势指数趋近于1,长链烷烃和支链烷烃减少,芳烃的甲基化和甲基重排作用等,均显示出该区沉积物成熟度较高。同时结合该区已有的研究资料(烃类气体——甲烷、重烃组分分布,以及热释光、有机碳等),其高值异常区与本次研究站位相吻合,显示该海区具有烃渗漏来源,是海底油气和天然气水合物找矿的有利地区。  相似文献   

10.
选取贵州百花湖入湖支流麦西河为对象,研究了上覆水—孔隙水—沉积物体系氮的形态差异,结果表明:麦西河上覆水中,以硝态氮(NO-3-N)为主,氨态氮(NH+4-N)次之,亚硝态氮(NO-2-N)最低;孔隙水中,溶解无机氮中以NH+4-N为主, NO-3-N次之, NO-2-N最低;沉积物中,总氮(TN)的含量为1110.67~4413.16mg/kg;固定态铵含量为34.56~170.05mg/kg,占TN的1.47%~6.25%;可交换态氮以NH+4-N为主, NO-3-N次之, NO-2-N最低。孔隙水NH+4-N是上覆水NH+4-N的2.65~19.51倍,上覆水NO-3-N是孔隙水NO-3-N的7.14~20.43倍。沉积物TN与孔隙溶解水无机氮(DIN)、孔隙水NH+4-N、沉积物可交换态氮和沉积物可交换性NH+4-N呈显著正相关;在沉积物中,可交换性NO-3-N与可交换性NH+4-N及可交换态氮呈显著正相关,可交换性NH+4-N与可交换态氮呈极显著正相关;孔隙水溶解无机氮与孔隙水NH+4-N呈极显著正相关。麦西河不同介质中氮的迁移关系则表现为:由于浓度梯度,上覆水中的NO-3-N扩散到孔隙水中,进而累积到沉积物中;沉积物的可交换性NH+4-N,进入孔隙水,最终扩散到上覆水中。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号