首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three wells in New Hampshire were sampled bimonthly over three years to evaluate the temporal variability of arsenic concentrations and groundwater age.All samples had measurable concentrations of arsenic throughout the entire sampling period and concentrations in individual wells had a mean variation of more than 7 μg/L.The time series data from this sampling effort showed that arsenic concentrations ranged from a median of 4 μg/L in a glacial aquifer well(SGW-65)to medians of 19μg/L and37 μg/L in wells(SGW-93 and KFW-87)screened in the bedrock aquifer,respectively.These high arsenic concentrations were associated with the consistently high pH(median≥8)and low dissolved oxygen(median0.1 mg/L)in the bedrock aquifer wells,which is typical of fractured crystalline bedrock aquifers in New Hampshire.Groundwater from the glacial aquifer often has high dissolved oxygen,but in this case was consistently low.The pH also is generally acidic in the glacial aquifer but in this case was slightly alkaline(median = 7.5).Also,sorption sites may be more abundant in glacial aquifer deposits than in fractured bedrock which may contribute to lower arsenic concentrations.Mean groundwater ages were less than 50 years old in all three wells and correlated with conservative tracer concentrations,such as chloride;however,mean age was not directly correlated with arsenic concentrations.Arsenic concentrations at KFW-87 did correlate with water levels,in addition,there was a seasonal pattern,which suggests that either the timing of or multiple sampling efforts may be important to define the full range of arsenic concentrations in domestic bedrock wells.Since geochemically reduced conditions and alkaline pHs are common to both bedrock and glacial aquifer wells in this study,groundwater age correlates less strongly with arsenic concentrations than geochemical conditions.There also is evidence of direct hydraulic connection between the glacial and bedrock aquifers,which can influence arsenic concentrations.Correlations between arsenic concentrations and the age of the old fraction of water in SGW-65 and the age of the young fraction of water in SGW-93 suggest that water in the two aquifers may be mixing or at least some of the deeper,older water captured by the glacial aquifer well may be from a similar source as the shallow young groundwater from the bedrock aquifer.The contrast in arsenic concentrations in the two aquifers may be because of increased adsorption capacity of glacio-fluvial sediments,which can limit contaminants more than fractured rock.In addition,this study illustrates that long residence times are not necessary to achieve more geochemically evolved conditions such as high pH and reduced conditions as is typically found with older water in other regions.  相似文献   

2.
Exposure to arsenic and fluoride through contaminated drinking water can cause serious health effects. In this study, the sources and occurrence of arsenic and fluoride contaminants in groundwater are analyzed in Dawukou area, northwest China, where inhabitants rely on groundwater as the source of drinking water. The triangular fuzzy numbers approach is adopted to assess health risk. The fuzzy risk assessment model incorporates the uncertainties that are caused by data gaps and variability in the degree of exposure to contaminants. The results showed that arsenic and fluoride in groundwater were mainly controlled by the dissolution–precipitation of Ca-arsenate and fluorite under weakly alkaline conditions. The arsenic and fluoride concentrations were higher in the shallow groundwater. The most probable risk values for arsenic and fluoride were 4.57 × 10?4 and 0.4 in the shallow groundwater, and 1.58 × 10?4 and 0.3 in the deep groundwater. Although the risks of fluoride were almost within the acceptable limit (<1.0), the risk values of arsenic were all beyond the acceptable levels of 10?6 for drinking water. Further, the local administration should pay more attention to the potential health risk through dietary intake and to the safety of deep water by ensuring it is not contaminated under prolonged pumping conditions. The fuzzy risk model treats the uncertainties associated with a quantitative approach and provides valuable information for decision makers when uncertainties are explicitly acknowledged, particularly for the variability in contaminants. This study can provide a new insight for solving data uncertainties in risk management.  相似文献   

3.
The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.  相似文献   

4.
李典  邓娅敏  杜尧  颜港归  孙晓梁  范红晨 《地球科学》2021,46(12):4492-4502
近年来陆续有报道发现长江中游河湖平原广泛分布着高砷地下水,鄱阳湖平原与江北平原(古彭蠡泽)作为长江中游南北两岸典型的河湖平原,其地下水资源丰富,但砷的空间分布规律尚不清楚,区域供水安全存在风险.本研究在两个区域系统采集98个浅层地下水(< 40 m)样品和8个地表水样品,通过水化学、氢氧稳定同位素分析,查明地下水中砷的空间分布异质性及其影响因素.研究发现江北平原浅层地下水砷含量为0.65~956.72 μg/L(平均值210.78 μg/L),高砷地下水集中分布于长江古河道;鄱阳湖平原浅层地下水砷含量为0.09~267.45 μg/L(平均值11.85 μg/L),高砷地下水仅分布于赣江三角洲局部地区.江北平原地下水δD与δ18O值相对鄱阳湖平原更偏负,且与地表水的差异更大.地下水化学及主成分分析结果表明物源和含水层结构差异是影响鄱阳湖平原和江北平原砷空间分布异质性的关键因素,来自长江物源的古彭蠡泽区域沉积物为高砷含水层的形成提供了物质来源,湖相含水层中含砷铁氧化物的还原性溶解是地下水砷富集的主要过程.地下水氢氧稳定同位素指示江北平原较鄱阳湖平原地下水赋存环境更封闭,地下水循环交替速度缓慢,有利于砷的富集.   相似文献   

5.
高砷地下水研究的热点及发展趋势   总被引:4,自引:0,他引:4  
全球范围内广泛分布的高砷地下水给人们的健康造成了极大的威胁.高砷地下水的形成机理是一项世界性的科学问题.介绍了高砷地下水的分布特点、富集机理,阐明了溶解性有机物、地下水流动特征对高砷地下水形成的影响机制.现今的研究揭示了有机物和微生物协同作用下高砷地下水的形成过程,并且在高砷地下水的空间分布、时间变化特征以及人类活动对高砷地下水形成的影响等方面取得了一些创新性成果.这3方面的研究也逐渐成为近些年高砷地下水研究的热点.这些研究不仅丰富了砷迁移转化的理论成果,而且有助于开辟低砷水源,保障水资源的可持续利用,具有重要的理论和现实意义.  相似文献   

6.
At present,due to shortage of water resources,especially in arid and semiarid areas of the world such as Iran,exploitation of groundwater resources with suitable quality for drinking is of high importance.In this regard,contamination of groundwater resources to heavy metals,especially arsenic,is one of the most important hazards that threaten human health.The present study aims to develop an approach for presenting the groundwater quality of Sirjan city in Kerman Province,based on modern tools of spatial zoning in the GIS environment and a fuzzy approach of evaluating drinking water in accordance with the standards of world health organization(WHO).For this purpose,qualitative data related to 22 exploitation wells recorded during 2002 to 2017 were used.In addition,fuzzy aggregate maps were prepared in two scenarios by neglecting and considering arsenic presence in groundwater resources.The results showed a decrease in groundwater quality over time.More specifically,neglecting the presence of arsenic,in 2002,all drinking wells in the area were located in an excellent zone,while in 2017 a number of operation wells were located in the good and medium zone.Also,the final map,considering the presence of arsenic as a limiting factor of drinking water,indicated that parts of the southern regions of the plain would be the best place to dig wells for drinking water.Therefore,the use of new methods can contribute significantly to the usage of groundwater aquifers and provide a good view of the aquifer water quality.  相似文献   

7.
Detailed geochemical analysis of groundwater beneath 1223 km2 area in southern Bengal Basin along with statistical analysis on the chemical data was attempted, to develop a better understanding of the geochemical processes that control the groundwater evolution in the deltaic aquifer of the region. Groundwater is categorized into three types: ‘excellent’, ‘good’ and ‘poor’ and seven hydrochemical facies are assigned to three broad types: ‘fresh’, ‘mixed’ and ‘brackish’ waters. The ‘fresh’ water type dominated with sodium indicates active flushing of the aquifer, whereas chloride-rich ‘brackish’ groundwater represents freshening of modified connate water. The ‘mixed’ type groundwater has possibly evolved due to hydraulic mixing of ‘fresh’ and ‘brackish’ waters. Enrichment of major ions in groundwater is due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater of Rajarhat New Town (RNT) and adjacent areas in the north and southeast is contaminated with arsenic. Current-pumping may induce more arsenic to flow into the aquifers of RNT and Kolkata cities. Future large-scale pumping of groundwater beneath RNT can modify the hydrological system, which may transport arsenic and low quality water from adjacent aquifers to presently unpolluted aquifer.  相似文献   

8.
由于地表水资源稀缺,地下水是塔里木盆地南缘绿洲带重要用水水源,因此,系统查明该区地下水砷氟碘的分布及成因至关重要。基于塔里木盆地南缘绿洲带233组地下水水样检测结果,分析不同含水层中高砷、高氟和高碘地下水的空间分布及水化学特征,结合研究区地质、水文地质条件和地下水赋存环境进一步揭示影响地下水砷氟碘的来源、迁移与富集的水文地球化学过程。结果表明:地下水砷、氟、碘浓度变化范围分别为1.091.2 μg/L、0.0128.31 mg/L、10.02 637.0 μg/L。地下水高砷、高氟和高碘水样分别占总水样的7.3%、47.2%和11.6%,砷氟碘共富集占比为3.0%。砷氟碘共富集地下水主要分布于研究区中部的民丰县,水化学类型主要为Cl·SO4-Na型。自补给区至过渡区再至蒸发区,地下水氟、碘浓度明显增大,砷浓度在过渡区和蒸发区均较大;砷氟碘共富集地下水取样点主要分布于36.060.0 m深度的浅层承压含水层中。浅层地下水受蒸发作用和矿物溶解沉淀作用的影响,随砷氟碘富集项的增多而增大。第四纪成因类型中风积物对氟浓度的影响较大,洪积-湖积物对砷和碘浓度的影响较大。细粒岩性、平缓的地形、地下水浅埋条件、偏碱性的地下水环境、微生物降解作用下有机质介导的矿物溶解是利于砷氟碘共富集的主要机制。  相似文献   

9.
Based on the large scale land and resources survey project--groundwater contamination survey in southeast China, a certain polluted river and its typical sites along its bank were selected as research objectives. Such river is a comprehensive sewage channel for certain provincial capital city, with complicated types of pollutants. Based on the analysis on water level of horizonal and vertical hydrogeologic profile and water quality monitoring data, the impact and range of the polluted river on local groundwater were evaluated. Data show that the polluted river supplies water to underground aquifers throughout the year, which has great impact on groundwater horizontally, but different ions have different responses. Major influential indexes such as inorganic component 3-nitrogen, sulphate, chloride etc. present an obvious relevance, while iron, manganese, fluoride, arsenic and heavy metal and so on are less impacted. The first four indexes in groundwater are less impacted by the surface sewage because of their protogenesis, and heavy metal components become less due to sediment filtration. Data also show that deep groundwater is less influenced, on the contrary, ammonia nitrogen ion is obviously impacted. On the basis of influence degree as well as range of evaluation, some factors that caused the existing influence were discussed and proposes feasible study direction.  相似文献   

10.
金戈  邓娅敏  杜尧  陶艳秋  范红晨 《地球科学》2022,47(11):4161-4175
高砷地下水不仅直接危害供水安全,还可通过与湿地之间的交互作用,影响湿地水质进而威胁湿地生态安全.长江中游河湖平原已被报道广泛分布有高砷地下水,而位于长江中游故道区域的天鹅洲湿地地下水中砷的空间分布特征尚不明确,湿地与地下水的交互作用对地下水中砷季节性动态的控制机理尚不明确.本研究在天鹅洲湿地采集2个水文地质钻孔的35件沉积物样品、12个分层监测井不同季节的共72组地下水样和18组地表水样,通过水位-水化学监测、沉积物地球化学组成分析和砷、铁形态表征探究天鹅洲湿地地下水中砷的时空分布规律及控制机理.研究发现天鹅洲湿地地下水砷含量为1.08~147 μg/L,牛轭湖外侧浅井(10 m)地下水砷含量普遍高于深井(25 m)和牛轭湖内侧浅井(10 m)、深井(25 m)地下水,枯水期和平水期的砷含量高于丰水期.牛轭湖外侧浅层地下水系统具有更厚的粘土、亚粘土沉积,沉积物中总砷、强吸附态砷和易还原的铁氧化物的含量更多,吸附砷的水铁矿等无定形铁氧化物还原性溶解导致砷释放进入地下水中.枯水期天鹅洲湿地底部向牛轭湖外侧浅层含水层输送不稳定的有机质,使天鹅洲湿地地下水-地表水界面成为砷释放的热点区域.丰水期时牛轭湖外侧含水层受长江补给的影响,还原环境发生改变使地下水中的砷和铁被氧化固定从而不利于砷向地下水释放.   相似文献   

11.
High As contents in groundwater were found in Rayen area and chosen for a detailed hydrogeochemical study. A total of 121 groundwater samples were collected from existing tube wells in the study areas in January 2012 and analyzed. Hydrogeochemical data of samples suggested that the groundwater is mostly Na–Cl type; also nearly 25.62 % of samples have arsenic concentrations above WHO permissible value (10 μg/l) for drinking waters with maximum concentration of aqueous arsenic up to 25,000 μg/l. The reducing conditions prevailing in the area and high arsenic concentration correlated with high bicarbonate and pH. Results show that arsenic is released into groundwater by two major phenomena: (1) through reduction of arsenic-bearing iron oxides/oxyhydroxides and Fe may be precipitated as iron sulfide when anoxic conditions prevail in the aquifer sediments and (2) transferring of As into the water system during water–acidic volcanic rock interactions.  相似文献   

12.
Anatolia region is one of the most seismically active regions in the world and has a considerably high level of geothermal energy potential. Some of these geothermal resources have been used for power generation and direct heating. Most of the high enthalpy geothermal systems are located in western part of Turkey. Alasehir is the most important geothermal site in western part of Turkey. Many geothermal wells have been drilled in Alasehir Plain to produce the geothermal fluid from the deep reservoir in the last 10 years. A blowout accident happened during a geothermal well drilling operation in Alasehir Plain, and significant amount of geothermal fluid surfaced out along the fault zone in three locations. When drilling string entered the reservoir rock about 1000 m, blowout occurred. As the well head preventer system was closed because of the blowout, high-pressure fluid surfaced out along the fault zone cutting the Neogene formation. In order to understand the geothermal fluid effects on groundwater chemistry, physical and chemical compositions of local cold groundwater were monitored from May 2012 to September 2014 in the study area. The geothermal fluid was found to be of Na–HCO3 water type, and especially, arsenic and boron concentrations reached levels as high as 3 and 127 mg/L, respectively. The concentrations of arsenic and boron in the geothermal fluid and groundwater exceeded the maximum allowable limits given in the national and international standards for drinking water quality. According to temporally monitored results, geothermal fluid has extremely high mineral content which influenced the quality of groundwater resources of the area where water resource is commonly used for agricultural irrigation.  相似文献   

13.
【研究目的】 全世界有70多个国家的上亿人口面临高砷地下水的威胁,长期饮用高砷地下水会导致慢性砷中毒,诱发癌症,严重危害身体健康。地下水中砷的浓度分布和变化是受到沉积环境、气象水文、矿物环境、人类活动影响等多种因素共同作用的结果,因此需要从砷的不同理化性质特征进行着手,选择适当且有针对性的治理技术。【研究方法】 基于现阶段含砷地下水的污染现状,综合考虑去除量、处理成本、修复速率、可逆性等多种因素,分析含砷地下水的治理现状与进展。【研究结果】 本文全面地介绍含砷地下水治理技术,涵盖了化学氧化、混凝沉淀、吸附、离子交换、膜技术和生物修复等修复方式的研究成果,展现了不同类型处理方式对地下水中砷的去除效果,总结各技术发挥除砷效果的内在机理及最新优化措施,并对含砷地下水治理技术的发展趋势进行了展望,以期为含砷地下水的综合整治提供有意义的参考。【结论】 目前的砷污染水处理技术存在诸多缺陷,产生的废物或污泥可能成为二次污染的潜在来源。因此,为了更好地保护环境免受As的影响,需要新的混合技术以及对 As 负载废物/污泥的安全处置方法。缺乏饮用水安全意识和偏远地区的适用性也给砷的治理带来了挑战,因此需要一种价格合理、易于构建、在社区或家庭层面运行的技术来解决这个问题。  相似文献   

14.
High arsenic water has been a global focus of both scientists and water supply managers because of its serious adverse impact on human health and wide distribution in the world. Processes of redox, sorption, precipitation, and dissolution release arsenic in both natural systems and in environments intensely modified by human activities. In natural systems, groundwater arsenic is controlled by lithologic geochemistry, sedimentation conditions, hydrogeologic setting and groundwater chemistry. However, in the intensely human-affected systems (such as mining and tilling areas), arsenic mobilization is dependent on the composition of the primary materials, treatment methods, storage design, and local climate. Well-designed experimental systems aid in characterizing sorption, precipitation, and redox processes associated with arsenic dynamics during water-rock interaction. Continued investigations of field sites will further refine understanding of the processes favoring arsenic mobility in the range of natural and man-made systems. The combination of field and experimental studies will lead to better understanding of arsenic cycling in all systems and sustainable management of water resources in arsenic-affected areas.  相似文献   

15.
The study area covers an about 100 km2 of the middle Ganga plain in Uttar Pradesh, experiencing intensive groundwater extraction. In order to recognize the arsenic contamination zones of the Varanasi environs, sixty eight groundwater samples have been collected and analyzed for major ions, iron and arsenic. Twenty one sediment samples in the four boreholes were also collected to deduce the source of arsenic in the groundwater. The preliminary survey reports for the first time indicates that part of rural and urban population of Varanasi environs are drinking and using for irrigation arsenic contaminated water mostly from hand tube wells (<70 m). The study area is a part of middle Ganga plain which comprises of Quaternary alluvium consists of an alternating succession of clay, clayey silt and sand deposits. The high arsenic content in groundwater samples of the study area indicates that 14% of the samples are exceeding the 10 μg/l and 5% of the samples are exceeding 50 μg/l. The high arsenic concentration is found in the villages such as Bahadurpur, Madhiya, Bhojpur, Ratanpur, Semra, Jalilpur, Kateswar, Bhakhara and Kodupur (eastern side of Ganga River in Varanasi), situated within the newer alluvium deposited during middle Holocene to Recent. The older alluvial aquifers situated in the western side of the Ganga River are arsenic safe (maximum As concentration of 9 μg/l) though the borehole sediments shows high arsenic (mean 5.2 mg/kg) and iron content (529 mg/kg) in shallow and medium depths. This may be due to lack of reducing conditions (i.e organic content) for releasing arsenic into the groundwater. Rainfall infiltration, organic matter from recently accumulated biomass from flood prone belt in the newer alluvium plays a critical role in releasing arsenic and iron present in sediments. The main mechanism for the release of As into groundwater in the Holocene sandy aquifer sediments of Varanasi environs may be due to the reductive dissolution of Fe oxyhydroxide present as coatings on sand grains as well as altered mica content. The high societal problems of this study will help to mitigate the severity of arsenic contamination by providing alternate drinking water resources to the people in middle Ganga plain and to arrange permanent arsenic safe drinking water source by the authorities.  相似文献   

16.
黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响   总被引:1,自引:0,他引:1  
黄河冲积扇平原浅层地下水砷含量超标情况严重,豫北平原的主体是黄河冲洪积扇平原.全面了解豫北平原浅层地下水氮循环驱动下砷的富集模式,对地下水资源的可持续利用和居民健康至关重要.本文采集豫北平原513组浅层地下水样品,采用原子荧光光谱法测定砷含量,原子吸收光谱和离子色谱等方法进行全分析及微量元素分析,对该地区高砷地下水的水...  相似文献   

17.
Evaluation of the shallow groundwater quality in Central and Southern Jiangsu Province (CSJ) in China is important not only to public health but also to sustainable development and utilization of groundwater resources. In this work, 968 groundwater samples were collected by field surveys during 2006 to 2010 to investigate spatial distribution and extent of pollution. The single factor pollution standard index method, considering the values of both the natural groundwater background and the standard of safe drinking water, was used to assess the groundwater quality in the study area. Results showed that the shallow groundwater was severely polluted with Grade V and VI (i.e., severe and extremely severe pollution) groundwater covered about 1/3 and 1/4 of the study area, respectively. The main groundwater contaminants that cause the severe and extremely severe pollutions were manganese, iron, arsenic, and nitrogen. Findings from this work showed that natural hydrogeochemical processes were the main causes of the iron and manganese pollution, however, human activities (e.g., industrial, agricultural, and domestic pollutions) mainly contributed to the nitrogen pollution in the study area.  相似文献   

18.
Geochemical characterization of groundwater from an arid region in India   总被引:3,自引:1,他引:2  
A study on the geochemical processes in arid region of western India (Kachchh district) was carried out using major, minor, trace metal data and isotopic composition (δ2H, δ18O) of groundwaters. Results indicate that the distribution of chemical species in groundwater of this district is controlled by leaching of marine sediments, dissolution of salts in root zone and incongruent dissolution of carbonate minerals. Common inorganic contaminants such as fluoride, nitrate and phosphate are within drinking water permissible limits. However, most of the samples analyzed contain total dissolved salts more than desirable limits and fall in doubtful to unsuitable category with regard to irrigational purpose. Trace metal data indicates no contamination from toxic elements such as arsenic and lead. An increased salt content is observed in groundwater at shallower depths indicating mixing with surface water sources. The chemical characteristics of the groundwater have found to be strongly dependent on the local lithological composition. Environmental isotopic data indicates that the groundwater is of meteoric origin and has undergone limited modification before its recharge. The processes responsible for observed brackishness are identified using chemical and isotope indicators, which are in agreement with subsurface lithology and hydrochemistry. These data though represent hydrochemical scenario of 2001 can still be used for understanding the long-term fluctuations in water chemistry and would be quite useful for the planners in validating groundwater quality models.  相似文献   

19.
In this study, combining interpretations of conservative dissolved ions and environmental isotopes in water were used to investigate the main factors and mechanisms controlling groundwater salinization and hydrogeochemical processes in the Eastern Nile Delta, Egypt. Hydrogeochemical and isotopic study has been carried out for 61 water samples from the study area. Total dissolved solid (TDS) contents of groundwater are highly variable rising along flowpath from the south (410 mg/L) to the north (14,784 mg/L), implying significant deterioration and salinization of groundwater. Based on TDS and ionic ratios, groundwater samples were classified into three groups. In low-saline groups, water chemistry is greatly influenced by cation exchange, mineral dissolution/precipitation, anthropogenic pollutants and mixing with surface water. Whilst, in high-saline groups, water chemistry is affected by salt-water intrusion, reverse cation exchange and evaporation. The chemical constituents originating from saline water sources, reverse ion exchange and mineral dissolution are successfully differentiated using ionic delta and saturation index approaches. The δ18O–δ2H relationship plots on a typical evaporation line, suggesting potential evaporation of the recharging water prior to infiltration. Isotope evidence concludes that the groundwater have been considerably formed by mixing between depleted meteoric water recharged under different climatic conditions and recently infiltrating enriched surface water and excess of irrigation water. The δ18O data in conjunction with chloride concentrations provide firm evidence for impact of dissolution of marine-origin evaporite deposits, during past geologic periods, on groundwater salinity in the northern region. Moreover, the relation between 14C activities and Cl? concentration confirms this hypothesis.  相似文献   

20.
The risk of groundwater contamination following the infiltration of waste surface water, is of great interest, particularly in areas experiencing water shortage. In this study, the distribution characteristics of contaminants along the Cihe River, in the piedimont plain of the Taihang Mountains, China, was investigated by measuring the soil and water samples. The main organic contaminants detected in different media include hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, and pesticides. The main contaminants found in different media are mostly derived from the river water, which can be seen from the results of waste water from the river and groundwater, from the soil samples from different depth and distance of the profiles along the river. The distribution characteristics showed that there has been a natural attenuation of the contaminants from the river during their transportation through the soils and groundwater. The sorption of organic compounds to soil organic matter is thought to be a main mechanism of natural attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号