首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
塔里木盆地是我国的重要油气勘探区和产区,但是到目前为止,对塔河油田碳酸盐岩缝洞系统还认识不足,因而严重地影响了塔河油田的勘探开发。通过研究发现,塔河油田奥陶系碳酸盐岩油藏中的裂缝系统非常复杂,主要有两类裂缝:一种是构造裂缝;另一种是缝合线。前人认为前者重要,而忽略后者;而笔者等认为后者比前者更加重要。塔河油田奥陶系碳酸盐岩油藏中的缝合线非常发育,其频度是与石油成藏有一定关系的非构造裂缝所能及。 根据缝合线与层面的关系,可以将塔河油田的奥陶系碳酸盐岩油藏中的缝合线 分为三种:顺层缝合线、倾斜缝合线和竖直缝合线。这三种缝合线彼此交织成复杂的网络系统,构成了储层内部油气运移的最初级良好通道,同时与裂缝一起构成了有效的油气运移通道和压裂的弱结构面,为油气成藏和后期的开发创造了良好的条件。  相似文献   

2.
塔里木盆地和田河气田周缘构造演化、成藏与勘探领域   总被引:6,自引:1,他引:5  
以寻找塔里木盆地碳酸盐岩油气勘探接替领域为目的,在和田河气田周缘采用古构造演化的方法,结合和田河气田单井油气水分析,建立了玛南奥陶系潜山准层状成藏模式和玛北台缘带古油藏成藏模式;指出和田河气田周缘存在玛南奥陶系潜山、玛北奥陶系台缘带和玛东奥陶系推覆构造带三大油气勘探领域,区带资源量约1万亿m 3,是塔里木盆地碳酸盐岩勘探的重要接替领域。玛南奥陶系潜山暴露时间长,风化、淋滤作用强,形成良好的岩溶型储层,上覆石炭系泥岩和上倾位置的致密灰岩作为盖层,形成良好的储盖组合,同时处于有效生烃范围之内,是有利勘探领域。玛北发育奥陶系台缘带,而且与构造圈闭相叠置,可以捕获早期运移的油气,是较有利勘探领域。玛东奥陶系推覆带潜山披覆圈闭发育,规模较大,是潜在勘探领域。  相似文献   

3.
魏国齐  贾承造 《沉积学报》2000,18(3):408-413
奥陶系碳酸盐岩是塔中地区油气勘探的重要目的层。本文在讨论塔中地区奥陶纪区域构造背景和奥陶系岩性段划分的基础上,建立了塔中地区奥陶系构造 -沉积模式,并用三维有限元数值模拟方法对塔中地区有利碳酸盐岩裂缝储层发育区进行了预测,以期指导塔中地区碳酸盐岩的油气勘探。  相似文献   

4.
奥陶系碳酸盐岩是塔中地区油气勘探的重要目的层。本文在讨论塔中地区奥陶纪区域构造背景和奥陶系岩性段划分的基础上,建立了塔中地区奥陶系构造-沉积模式,并用三维有限元数值模拟方法对塔中地区有利碳酸盐岩裂缝储层发育区进行了预测,以期指导塔中地区碳酸盐岩的油气勘探。  相似文献   

5.
塔里木盆地塔北隆起哈拉哈塘地区奥陶系由于现今构造位置低,埋深在6500~8000m,长期以来一直将其作为塔北隆起的一个次级凹陷单元,并认为是一个海相油气的生烃凹陷,制约了哈拉哈塘的油气勘探。本文通过对哈拉哈塘构造解析和沉降演化过程恢复,发现哈拉哈塘地区是从石炭纪才开始转为负向构造单元,加里东-早海西期,它属于轮南大型古潜山的西斜坡部位;奥陶系鹰山组-一间房组碳酸盐岩经历了多期岩溶的叠加改造,风化岩溶缝洞体储层发育。通过最新钻井资料及油气地球化学分析数据,证实哈拉哈塘奥陶系沉积时期不是生烃凹陷,不发育烃源岩,哈拉哈塘及其以北地区的油气是来自南部满西地区的中、上奥陶统烃源岩。油气藏解剖表明,哈拉哈塘地区在晚海西期成藏;三叠系沉积前北部构造抬升,导致奥陶系油藏遭受局部破坏和降解。自三叠纪沉积以来,奥陶系油藏一直处于持续深埋过程,盖层不断加厚,油藏基本保持了晚海西期成藏时的形态,因此,哈拉哈塘地区是一个古老的油气系统。油气成藏条件分析表明,哈拉哈塘地区油气成藏条件优越,生储盖条件配置良好,奥陶系碳酸盐岩岩溶储层广泛分布,并处在油气向古隆起高部位运移的有利路径上,具有大面积、准层状富集油气的特征。  相似文献   

6.
塔中地区油气成藏主控因素及成藏规律研究   总被引:2,自引:1,他引:1  
塔中地区油气成藏复杂, 影响因素较多。通过对已钻井油气藏的分析, 认为该区影响油气成藏的控制因素有①烃源岩; ②运移通道(断层控制油气纵横向分布、运载层对油气的横向运移作用、不整合面对油气的横向运移控制); ③构造类型(圈闭类型、构造样式、成油期古隆起); ④构造演化; ⑤储层物性及展布; ⑥储盖组合; ⑦火成岩对油气藏的影响。成藏规律为①圈闭和油源断层是东河组成藏的必要条件; ②构造与储层控油、多期成藏、后期充注是志留系成藏的基本特征; ③储层发育程度是奥陶系成藏的关键; ④油气多期充注造成多层系含油、南北分异的成藏特点。该区油气成藏条件好, 勘探程度较高。尤其奥陶系碳酸盐岩油气藏以类型多、含油气井段长, 其形态受不规则孔、缝、洞储层的控制, 非均质性极强, 储层发育程度是奥陶系油气富集的主控因素。   相似文献   

7.
碳酸盐岩岩溶缝洞型油气藏是受构造—岩溶旋回作用控制、由多个缝洞单元在空间上叠合形成的复合油气藏,勘探开发难度比较大。塔河油田是我国第一个以奥陶系碳酸盐岩岩溶缝洞型油气藏为主的古生界海相大油气田,勘探开发有其特殊性和复杂性。目前已初步形成了一套勘探与开发的思想和方法体系,具体介绍了已经形成的七个主要技术系列,包括碳酸盐岩岩溶缝洞型油藏评价技术、超深碳酸盐岩储层预测技术等。应用这些技术系列,在塔河油田取得了良好效果,提高了油藏采收率及开发井的建产率,增加了油气藏的可采储量。  相似文献   

8.
近年来取得的油气勘探突破多与古构造活动区密切相关,如渤海湾盆地大港油田千米桥潜山凝析气藏、鄂尔多斯盆地靖边气田、塔里木盆地和田河气田及塔河油田的发现等。多年来的勘探实践证明,适时的古构造隆起对油气运移、聚集和成藏起着十分关键的作用。研究认为构造活动还直接控制着古风化壳岩溶裂缝—洞穴型、裂缝型等多种类型储层或储集体的发育。提出了岩石构造相的概念及分类体系;指出岩石构造相是岩石固结成岩后在不同时期所受构造作用的物质体现,可以按照岩石地层单元、构造运动期次及构造运动方式对其进行分类。分别以冀中坳陷任丘雾迷山组古潜山油藏及四川盆地赤水地区须家河组气藏为例,分析了抬升岩溶构造相及节理构造相储层的特征;认为前者多见于碳酸盐岩,各种溶蚀孔、洞、缝为储集空间,而后者见于不同岩类,构造裂缝及其伴生孔隙为储集空间,它们的物性特征都比较复杂。建议加强储层岩石构造相的研究,开展相关识别技术的开发。  相似文献   

9.
塔里木盆地和田河气田成藏条件及控制因素   总被引:1,自引:0,他引:1  
和田河气田位于巴楚凸起南侧,晚加里东期以来始终处于构造高部位。主要烃源岩为寒武系、奥陶系及石炭系,天然气主要来源于寒武系古油藏的原油裂解气和干酪根裂解气,凝析油来源于石炭系烃源岩。主要储集层为石炭系生屑灰岩段、奥陶系古潜山碳酸盐岩、石炭系砂泥岩段和砂砾岩段碎屑岩,发育三套区域性盖层和多套区带性盖层,形成良好的储盖组合。成藏控制因素包括六个方面:①发育寒武系优质烃源岩,二叠纪火山活动使寒武系油源的古油藏裂解为干气,成为气田的主要气源。②构造运动使该区长期成为油气指向区并造成两侧的断裂发育,有利于形成断背斜圈闭;伴随断裂发育了裂缝系统,改善了储集物性。③断裂构成油气垂向运移的通道;奥陶系潜山不整合面成为油气横向长距离运移的通道。④三套区域性盖层和若干区带性盖层是和田河气田保存的关键因素之一。⑤溶蚀作用使缝洞系统发育,大大改善了碳酸盐岩的储集物性。⑥气田的构造形成期为早—中喜马拉雅期,晚期抬升运动只造成气田内山体出露,对主体构造没有造成影响,使气田得以保存完好。  相似文献   

10.
和田河气田位于巴楚凸起南侧,晚加里东期以来始终处于构造高部位。主要烃源岩为寒武系、奥陶系及石炭系,天然气主要来源于寒武系古油藏的原油裂解气和干酪根裂解气,凝析油来源干石炭系烃源岩。主要储集层为石炭系生屑灰岩段、奥陶系古潜山碳酸盐岩、石炭系砂泥岩段和砂砾岩段碎屑岩,发育三套区域性盖层和多套区带性盖层,形成良好的储盖组合。成藏控制因素包括六个方面:①发育寒武系优质烃源岩,二叠纪火山活动使寒武系油源的古油藏裂解为干气,成为气田的主要气源。②构造运动使该区长期成为油气指向区并造成两侧的断裂发育,有利于形成断背斜圈闭;伴随断裂发育了裂缝系统,改善了储集物性。③断裂构成油气垂向运移的通道;奥陶系潜山不整合面成为油气横向长距离运移的通道。④三套区域性盖层和若干区带性盖层是和田河气田保存的关键因素之一。⑤溶蚀作用使缝洞系统发育,大大改善了碳酸盐岩的储集物性。⑥气田的构造形成期为早—中喜马拉雅期,晚期抬升运动只造成气田内山体出露,对主体构造没有造成影响,使气田得以保存完好。  相似文献   

11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

13.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

14.
The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources.  相似文献   

15.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

16.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

17.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

18.
19.
20.
The Samchampi-Samteran alkaline igneous complex (SAC) is a near circular, plug-like body approximately 12 km2 area and is emplaced into the Precambrian gneissic terrain of the Karbi Anglong district of Assam. The host rocks, which are exposed in immediate vicinity of the intrusion, comprise granite gneiss, migmatite, granodiorite, amphibolite, pegmatite and quartz veins. The SAC is composed of a wide variety of lithologies identified as syenitic fenite, magnetite ± perovskite ± apatite rock, alkali pyroxenite, ijolite-melteigite, carbonatite, nepheline syenite with leucocratic and mesocratic variants, phonolite, volcanic tuff, phosphatic rock and chert breccia. The magnetite ± perovskite ± apatite rock was generated as a cumulus phase owing to the partitioning of Ti, Fe at a shallow level magma chamber (not evolved DI = O1). The highly alkaline hydrous fluid activity indicated by the presence of strongly alkalic minerals in carbonatites and associated alkaline rocks suggests that the composition of original melt was more alkalic than those now found and represent a silica undersaturated ultramafic rock of carbonated olivine-poor nephelinite which splits with falling temperature into two immiscible fractions—one ultimately crystallises as alkali pyroxenite/ijolite and the other as carbonatite. The spatial distribution of varied lithotypes of SAC and their genetic relationships suggests that the silicate and carbonate melts, produced through liquid immiscibility, during ascent generated into an array of lithotypes and also reaction with the country rocks by alkali emanations produced fenitic aureoles (nephelinisation process). Isotopic studies (δ18O and δ13C) on carbonatites of Samchampi have indicated that the δ13C of the source magma is related to contamination from recycled carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号