首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rivers in the Liaohe River Estuary area have been seriously polluted by discharges of wastewater containing petroleum pollutants and nutrients. In this paper, The Enhanced Stream Water Quality Model (QUAL2K) and its revised model as well as One-dimensional Tide Mean Model (1D model) were applied to predict and assess the water quality of the tidal river reach of the Liaohe River Estuary. Dissolved oxygen (DO), biochemical oxygen demand (BOD5), ammonia nitrogen (NH3-N) and total phosphorus (TP) were chosen as water quality indices in the two model simulations. The modelled results show that the major reasons for degraded rivers remain petroleum and non-point source pollution. Tidal water also has a critical effect on the variation of water quality. The sensitivity analysis identifies that flow rate, point load and diffuse load are the most sensitive parameters for the four water quality indices in the revised QUAL2K simulation. Uncertainty analysis based on a Monte Carlo simulation gives the probability distribution of the four water quality indices at two locations (6.50 km and 44.84 km from the river mouth). The statistical outcomes indicate that the observed data fall within the 90% confidence intervals at all sites measured, and show that the revised QUAL2K gives better results in simulating the water quality of a tidal river.  相似文献   

2.
This paper proposed a semi-supervised regression model with co-training algorithm based on support vector machine, which was used for retrieving water quality variables from SPOT5 remote sensing data. The model consisted of two support vector regressors (SVRs). Nonlinear relationship between water quality variables and SPOT5 spectrum was described by the two SVRs, and semi-supervised co-training algorithm for the SVRs was established. The model was used for retrieving concentrations of four representative pollution indicators—permanganate index (CODmn), ammonia nitrogen (NH3-N), chemical oxygen demand (COD) and dissolved oxygen (DO) of the Weihe River in Shaanxi Province, China. The spatial distribution map for those variables over a part of the Weihe River was also produced. SVR can be used to implement any nonlinear mapping readily, and semi-supervised learning can make use of both labeled and unlabeled samples. By integrating the two SVRs and using semi-supervised learning, we provide an operational method when paired samples are limited. The results show that it is much better than the multiple statistical regression method, and can provide the whole water pollution conditions for management fast and can be extended to hyperspectral remote sensing applications.  相似文献   

3.
Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin. It is difficult to identify the sources and to quantify the load, especially in modeling nonpoint source. In this study a revised model was established by integrating point and nonpoint sources into one-dimensional Streeter-Phelps (S-P) model on the basis of real-time hydrologic data and surface water quality monitoring data in the Jilin Reach of the Songhua River Basin. Chemical oxygen demand (COD) and ammonia nitrogen (NH_3-N) loads were estimated. Results showed that COD loads of point source and nonpoint source were 134 958 t/yr and 86 209 t/yr, accounting for 61.02% and 38.98% of total loads, respectively. NH_3-N loads of point source and nonpoint source were 16 739 t/yr and 14 272 t/yr, accounting for 53.98% and 46.02%, respectively. Point source pollution was stronger than nonpoint source pollution in the study area at present. The water quality of upstream was better than that of downstream of the rivers and cities. It is indispensable to treat industrial wastewater and municipal sewage out of point sources, to adopt the best management practices to control diffuse pollutants from agricultural land and urban surface runoff in improving water quality of the Songhua River Basin. The revised S-P model can be successfully used to identify pollution source and quantify point source and nonpoint source loads by calibrating and validating.  相似文献   

4.
Guan River Estuary and adjacent coastal area (GREC) suffer from serious pollution and eutrophicational problems over the recent years. Thus, reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system, including longitudinal and lateral variations in nutrient and COD concentrations, is a matter of urgency. In this study, a three-dimensional, hydrodynamic, water quality model was developed in GREC, Northern Jiangsu Province. The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid, finite-volume, free-surface, primitive equation coastal ocean circulation model (FVCOM). The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments: dissolved inorganic nitrogen, soluble reactive phosphorus (SRP), phytoplankton, zooplankton, detritus, dissolved organic nitrogen (DON), dissolved organic phosphorus (DOP), and chemical oxygen demand. The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013. A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality. The model can be used for total load control management to improve water quality in this area.  相似文献   

5.
【目的】分析评价2010-2017年嵊泗马鞍列岛保护区海域的水质状况。【方法】采用水质有机污染指数(A)法进行水质有机污染评价,采用富营养化指数(E)法和营养状态质量指数(INQ)法进行水质富营养化评价。【结果】该保护区海域水质化学需氧量(COD)和溶解氧(DO)符合第一类海水水质标准,无机磷(DIP)含量有3个年份符合第一类海水水质标准,其余年份超过第一类但符合第二类海水水质标准,无机氮(DIN)质量浓度超标严重,2015年达到0.674 mg/L;叶绿素a(Chl-a)本底含量较高,适宜条件下使得浮游植物大量繁殖,Chl-a含量急剧上升,并容易诱发赤潮;有机污染指数评价显示,2012-2015年水质有机污染状况达到中度污染以上,并且有3年达到严重污染级别,最大A值为2014年和2015年的4.10,2016年污染最轻,为开始受到污染级别;富营养化指数和营养状态质量指数评价显示,最大E值和INQ值分别为2012年的4.29和2010年的8.59,DIN含量高是富营养化的主要贡献因子。【结论】该保护区海域水质主要污染因子为DIN,水质有机污染状况呈现年度波动状态,水质富营养化较严重。  相似文献   

6.
For the Pinang River, originating in the western highlands of Penang Island, the nature, sources and extent of pollution were studied. The river water samples collected at five selected sites were analyzed for various physical and chemical parameters, namely temperature, DO, BOD, COD, SS, pH, ammoniac nitrogen (AN), and conductance. Long-term data of rainfall and temperature were analyzed to determine the seasonal variations of the streamflow.The streamflow during the dry season is extremely low compared to the wet season, thus concentrations of contaminants derived from point pollution source increase due to lack of rainfall and runoff events. On the contrary, in the predominantly urban and agricultural catchments, non-point pollution source increases during rainy season through seepage and runoff. Effects of seasonal variations consequently deterrnine the quantity and quality of the water parameters.The Jelutong River, the Dondang River and the Air Itam River carry the seepage from widely urban and residential areas to the main Pinang River systems. Water quality of the Pinang River at different points assessed by the water quality indices was compared. According to the quality indices during the study period, water quality in the upper reaches of the river is medium to good. It dwindled in the plains, due to the seepage from urban areas and discharges from the industrial and agricultural lands.  相似文献   

7.
Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of runoff pollution in a rural township,a catchment(2.32 ha) in Linshan Township,Sichuan,China was selected to examine runoff and quality parameters including precipitation,flow rate,and total nitrogen(TN),dissolved nitrogen(DN),total phosphorus(TP),dissolved phosphorus(DP),particulate phosphorus(PP),chemical oxygen demand(COD) and suspended solid(SS) in 12 rainfall events occurring between June 2006 and July 2007.Results show that the annual pollutant loads were 47.17 kg ha-1 for TN,6.64 kg ha-1 for TP,1186 kg ha-1 for COD,and 4297 kg ha-1 for SS.DN and PP were the main forms of nitrogen and phosphorus in stormwater runoff.TP,COD and SS showed medium mass first flushes,in which nearly 40% of the total pollutant masses were transported by the first 30% of total flow volume.The peak of pollutant concentration appeared before the peak of runoff due to the first flush of accumulative pollutants in impervious areas and drainage ditches.The EMC values of TN,TP,DN and PP were negatively correlated to the maximum rainfall intensity,precipitation,total flow volume,and runoff duration(P<0.05,n=12),while EMC of COD and SS were not related to any rainfall characteristics.The FF30(FF,First Flush) for TN,TP,COD and SS were positively correlated to the maximum rainfall intensity(P<0.05,n=12),and TP was also positively correlated to the average rainfall intensity(P<0.05,n=12),indicating that the magnitude of first flush increased with the rainfall intensity in the Linshan Township.  相似文献   

8.
In order to explore the effect of carbon and nitrogen (C/N) ratio on the performance of anoxic/aerobic-moving bed biofilm reactor (A/O-MBBR) process for treating mariculture wastewater,a laboratory-scale A/O-MBBR was conducted.The results showed that the reduction of C/N ratio was conducive to improving the removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH_4~+-N),while inhibiting that of nitrite nitrogen (NO_2~--N) and nitrate nitrogen (NO_3~--N).The extracellular polymeric substances (EPS) in anoxic zone were significantly higher in concentration than that in aerobic zone although they both declined with decrease of C/N ratio.The result provides solid support for better controlling the pollution of mariculture wastewater.  相似文献   

9.
A three-dimensional ecosystem model, using a PIC (Particle-In-Cell) method, is developed to reproduce the annual cycle and seasonal variation of nutrients and phytoplankton biomass in Laizhou Bay. Eight state variables, i.e., DIN (dissolved inorganic nitrogen), phosphate, DON (dissolved organic nitrogen), DOP (dissolved organic phosphorus), COD (chemical oxygen demand), chlorophyll-a (Chl-a), detritus and the zooplankton biomass, are included in the model. The model successfully reproduces the observed temporal and spatial variations of nutrients and Chl-a biomass distributions in the bay. The nutrient concentrations are at high level in winter and at low level in summer. Double-peak structure of the phytoplankton (PPT) biomass exists in Laizhou Bay, corresponding to a spring and an autumn bloom respectively. Several numerical experiments are carried out to examine the nutrient limitation, and the importance of the discharges of the Yellow River and Xiaoqinghe River. Both DIN limitation and phosphate limitation exist in some areas of the bay, with the former being more significant than the latter. The Yellow River and Xiaoqinghe River are the main pollution sources of nutrients in Laizhou Bay. During the flood season, the algal growth is inhibited in the bay with the Yellow River discharges being excluded in the experiment, while in spring, the algal growth is enhanced with the Xiaoqinghe River excluded.  相似文献   

10.
研究了人工湿地循环处理哈氏仿对虾(Parapenaeopsis hardwickii)高盐度(21.1-23.3)养殖废水的净化效果。人工湿地对高盐度养殖废水中各水质指标去除率为:总氨氮66.7%,亚硝酸盐80.0%,化学需氧量12.5%,浊度69.1%,硝酸盐-12.1%,总氮3.5%,总磷0.0%。养殖池水质状况良好。在试验负载范围内,湿地对总氨氮、亚硝酸盐、浊度的去除量随进水污染负载量的增加而增加。研究表明:人工湿地能持续有效降低哈氏仿对虾养殖废水中的主要水质因子浓度。  相似文献   

11.
I.INTRODUCTION“Agenda21”recognizestheimportanceoflandbasedsourcepolutantstomarinepolution.Coastalwaterisofgreatsignificance...  相似文献   

12.
1INTRODUCTIONSeverewaterpolutionandwaterresourcesshortageshavebecometwokeyobstructionstorealizesustainableutilizationofwate...  相似文献   

13.
The influence of land-based source pollutants to marine ecological environment is principally in coastal or enclosed sea wates. Flux of land-based source pollutants into the sea will be effected due to social and economic development in the Tumen River basin. Pollutant type and primary pollution factor of the Tumen River in Northeast China is described by weighted coefficient method in this paper. The results indicate that the river is organic pollution type and primary pollution factor is COD. Fresh water fraction proves that the estuary is not affected by tide cycle. COD annual flux entering the Sea of Japan calculated by zero-dimension model in 1993 was 90.50 × 103 tons. It is estimated with emission coefficient method that the COD will be 176.4 × 103 and 458.6 × 103 tons for the years of 2000 and 2010 respectively. This work is sponored by the Open Fund of State Key Laboratory on Environmental Aquatic Chemistry.  相似文献   

14.
A study on quality of aquatic environment in Tumen River Area   总被引:3,自引:0,他引:3  
ASTUDYONQUALITYOFAQUATICENVIRONMENTINTUMENRIVERAREA①ZhuYanming(朱颜明)ChangchunInstituteofGeography,theChineseAcademyofSciences,...  相似文献   

15.
节水型斑节对虾养殖池环境质量监测与评价   总被引:1,自引:0,他引:1  
用质量指数法评价节水型斑节对虾养殖池的环境质量.将对照池海水平均质量指数与微生物调控的试验池比较,硫化物、DO、磷酸盐、COD分别高71%、43%、24%、8.3%,但非离子氨、无机氮分别低229%、122%.综合来看,试验池的水质优于对照池,对照池水质有轻微污染,污染因子是磷酸盐、COD、BOD;底质环境未受有机物和硫化物的污染,对照池有机物含量高于试验池,对照池硫化物含量低于试验池.  相似文献   

16.
淮河流域是水体遭受营养盐污染较严重的地区,本研究选择淮河上游的淮滨流域(淮滨站以上,流域面积1.6万km2)为研究对象,首先构建了淮滨流域SWAT水文水质模型,然后利用2011—2017年淮滨站实测的月径流和月氨氮浓度对SWAT模型进行了校正与验证,最后基于全球气候模型(GCM)气象数据,预测了未来30年(2020—2029年、2030—2039年、2040—2049年)不同气候变化情境(RCP2.6、RCP4.5、RCP6.0、RCP8.5)下的径流、氨氮浓度和非点源总氮负荷。结果发现,径流在校正期和验证期的Nash-Suttcliffe系数均为0.79,氨氮在校正期和验证期的Nash-Suttcliffe系数均高于0.5,表明模型的适用性良好。研究发现本研究区施肥量与土地利用类型是非点源氮负荷空间分异的主导因素。2020—2049年,不同气候变化情景下,本研究区的降水量和气温均为增长趋势。假如保持基准期(2011—2016年)污染排放强度,仅考虑气候变化影响,流域内非点源污染总氮负荷将比基准期最多增加31.8%,流域出水口淮滨站的年均氨氮浓度将最多减小42.6%。本研究可以为气候变化下淮滨流域的水文水质管理提供科学支撑。  相似文献   

17.
Currently the deteriorated water quality for Huaihe River Basin(HRB) in China was still serious because of the negative influence multiple pollution sources including animal manure. However, little attention was paid to the potential risk of animal manure for farmland and water quality of HRB. This study was quantified and forecasted animal manure risk and its spatiotemporal variations in HRB from 2008 to 2018, through pollution discharge coefficient method and pollution load calculation, combined with kriging interpolation method of ArcGIS technology, based on statistics principle. All the data were originated from livestock and poultry breeding in HRB from 2008 to 2018. The future risk of farmland and water environment in HRB was further forecasted. The results indicated that the livestock and poultry manure has become a key pollution source causing a negative influence on farmland and water quality owing to a large amount of animal manure production without efficient recycle utilization. The chemical oxygen demand(COD) and total nitrogen(TN) discharge of animal manure in HRB almost accounted for 17.00% and 39.00% of the whole COD and TN discharge in China. The diffusion concentration of TN and TP in those regions of Shangqiu, Zhoukou, Heze, Zhumadian, Luohe, Jining, Xuchang,Kaifeng, Taian and Zhengzhou of HRB has exceeded the threshold value 10.00 mg/L of TN and 0.08 mg/L of TP, causing water eutrophication and cancer villages. The assessment of farmland and water quality risk revealed that Zhumadian, Zhoukou, Shangqiu, Taian, Jining, Heze, Linyi and Rizhao belonged to high risk areas in HRB, which were still obtained high farmland and water quality risk index in 2030. The results provided insight into an important significance of sustainable balance of livestock and poultry development and ecosystem in HRB.  相似文献   

18.
The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthropogenic activities.Monthly water quality measurements of eight water quality variables were analyzed for two years at 16 sites of the Tianmuhu watershed.The variables were examined using hierarchical cluster analysis(HCA) and factor analysis/principal component analysis(FA/PCA) to reveal the spatiotemporal variations in riverine nutrients and to identify their potential sources.HCA revealed three geographical groups and three periods.Two drainages comprising towns and large villages were the most polluted, six drainages comprising widely distributed tea plantations and orchards were moderately polluted, and eight drainages without the factors were the least polluted.The river was most polluted in June when the first heavy rain(daily rainfall 50 mm) occurs after fertilization and the number of rainy days is most(monthly number of rainy days 20 days).Moderate pollution was observed from October to May, during which morethan 60% of the total nitrogen fertilizer and all of the phosphorus fertilizer are applied to the cropland, the total manure is applied to tea plantations and orchards, and a monthly rainfall ranging from 0 mm to 164 mm occurs.The remaining months were characterized by frequent raining(i.e., number of rainy days per month ranged from 5 to 24) and little use of fertilizers, and were thus least polluted.FA/PCA identified that the greatest pollution sources were the runoff from tea plantations and orchards,domestic pollution and the surface runoff from towns and villages, and rural sewage, which had extremely high contributions of riverine nitrogen, phosphorus,and chemical oxygen demand, respectively.The tea plantations and orchards promoted by the agricultural comprehensive development(ACD) were not environmentally friendly.Riverine nitrogen is a major water pollution parameter in hilly watersheds affected by ACD, and this parameter would not be reduced unless its loss load through the runoff from tea plantations and orchards is effectively controlled.  相似文献   

19.
Non-point source(NPS) pollution is considered to be one of the main threats of the aquatic environment. Mountainous regions are particularly important water sources for urban areas. The various driving factors of NPS pollution such as terrain, precipitation, and vegetation type in mountainous regions show clear spatial heterogeneity. Consequently, the management systems required for NPS pollution in mountainous regions are complex. In this study, we developed a framework to estimate and map the treatment costs for NPS pollution in mountainous regions and applied this method in Baoxing County, a typical mountainous county in Sichuan Province of southwest China. The export levels of total nitrogen(TN) and total phosphorus(TP) in Baoxing County were estimated using the water purification model in InVEST(Itegrated Valuation of Ecosystem Services and Tradeoffs) tool. NPS pollutant treatment costs were calculated based on the level of pollutants exports, water yield, water quality targets, and treatment costs of NPS pollutants per unit mass. The results show that at the watershed level the amounts of TN and TP exported in Baoxing County were below threshold limits. However, at the sub-watershed level, TN and TP excesses of 291.64 and 2.96 tons per year were found, respectively, with mean TN and TP treatment costs of 6.58 US$/hm~2 and 0.35 US$/hm~2. Appraising pollution treatment cost intuitively reflects the overall expenditure in NPS pollution reduction from an economic perspective. This study provides a foundation for the implementation of Payment for Ecosystem Service(PES) and the prevention and control of NPS pollution.  相似文献   

20.
1 HYDROLOGIC FEATURES Lingdingyang Estuary, located at the middle south of Guangdong Province, is a bell-shaped estuary with a north-south direction. Its area is about 2100km2. The north of Qi′ao Island and Inner-Lingding Island, and the south of Humen are grouped as Neilingdingyang Estuary, having an area of 1041km2. Affected by topography, runoff and tide, its dynamic condition is very complicated. Different water areas have different hydrologic features. The topography under …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号