首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the winter EASAT and East Asian minimum SAT(EAmSAT)display strong in-phase fluctuations and a significant 60-80-year multidecadal variability,apart from a long-term warming trend.The winter EASAT experienced a decreasing trend in the last two decades,which is consistent with the occurrence of extremely cold events in East Asia winters in recent years.The winter NAO leads the detrended winter EASAT by 12-18 years with the greatest significant positive correlation at the lead time of 15 years.Further analysis shows that ENSO may affect winter EASAT interannual variability,but does not affect the robust lead relationship between the winter NAO and EASAT.We present the coupled oceanic-atmospheric bridge(COAB)mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of~15 years on the Atlantic Multidecadal Oscillation(AMO)and Africa-Asia multidecadal teleconnection(AAMT)pattern.An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism,with good hindcast performance.The winter EASAT for 2020-34 is predicted to keep on fluctuating downward until~2025,implying a high probability of occurrence of extremely cold events in coming winters in East Asia,followed by a sudden turn towards sharp warming.The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.  相似文献   

2.
Three striking and impactful extreme cold weather events successively occurred across East Asia and North America during the mid-winter of 2020/21.These events open a new window to detect possible underlying physical processes.The analysis here indicates that the occurrences of the three events resulted from integrated effects of a concurrence of anomalous thermal conditions in three oceans and interactive Arctic-lower latitude atmospheric circulation processes,which were linked and influenced by one major sudden stratospheric warming(SSW).The North Atlantic warm blob initiated an increased poleward transient eddy heat flux,reducing the Barents-Kara seas sea ice over a warmed ocean and disrupting the stratospheric polar vortex(SPV)to induce the major SSW.The Rossby wave trains excited by the North Atlantic warm blob and the tropical Pacific La Nina interacted with the Arctic tropospheric circulation anomalies or the tropospheric polar vortex to provide dynamic settings,steering cold polar air outbreaks.The long memory of the retreated sea ice with the underlying warm ocean and the amplified tropospheric blocking highs from the midlatitudes to the Arctic intermittently fueled the increased transient eddy heat flux to sustain the SSW over a long time period.The displaced or split SPV centers associated with the SSW played crucial roles in substantially intensifying the tropospheric circulation anomalies and moving the jet stream to the far south to cause cold air outbreaks to a rarely observed extreme state.The results have significant implications for increasing prediction skill and improving policy decision making to enhance resilience in“One Health,One Future”.  相似文献   

3.
1引言伊春自动气象站是国家基本站(现改为一级站),每天担负8次天气报,资料参加全球交换。当计算机出现故障时,天气报是否能在规定的时间内准确的编发出是至关重要的。出现故障时,在短时间内准确的手工编发出报文难度很大,容易出现错情或造成迟报等重大错情。为了避免这种情况的发生,总结了以下几种方法进行编发报,降低了出错的几率。  相似文献   

4.
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.  相似文献   

5.
The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours,the NCCV processes during the early summer(June)seasons from 1979 to 2018 were objectively identified.Then,the NCCV processes were classified using a machine learning method(k-means)according to the characteristic parameters of the activity path information.The rationality of the classification results was verified from two aspects,as follows:(1)the atmospheric circulation configuration of the NCCV on various paths;and(2)its influences on the climate conditions in the NEC.The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin,movement direction,and movement velocity of the NCCV.These included the generation-eastward movement type in the east of the Mongolia Plateau(eastward movement type or type A);generation-southeast longdistance movement type in the upstream of the Lena River(southeast long-distance movement type or type B);generationeastward less-movement type near Lake Baikal(eastward less-movement type or type C);and the generation-southward less-movement type in eastern Siberia(southward less-movement type or type D).There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths,which indicated that the classification results were reasonable.  相似文献   

6.
In this paper, several sets of observing system simulation experiments (OSSEs) were designed for three typhoon cases to determine whether or not the additional observation data in the sensitive regions identified by conditional nonlinear optimal perturbations (CNOPs) could improve the short-range forecast of typhoons. The results show that the CNOPs capture the sensitive regions for typhoon forecasts, which implies that conducting additional observation in these specific regions and eliminating initial errors could reduce forecast errors. It is inferred from the results that dropping sondes in the CNOP sensitive regions could lead to improvements in typhoon forecasts.  相似文献   

7.
秋天     
风就那么轻轻地扇了一下,整个荒原就着了火,不停奔忙的救火人却面带微笑。站在垄上,我的心在随着他们的韵律激动地博跳。金黄色玉米,黄金样水稻,所有的稼禾都积极地  相似文献   

8.
9.
Phase Two of the Integrative Monsoon Frontal Rainfall Experiment(IMFRE-II)was conducted over the middle and lower reaches of the Yangtze River during the period 16 June to 19 July 2020.This paper provides a brief overview of the IMFRE-II field campaign,including the multiple ground-based remote sensors,aircraft probes,and their corresponding measurements during the 2020 mei-yu period,as well as how to use these numerous datasets to answer scientific questions.The highlights of IMFRE-II are:(1)to the best of our knowledge,IMFRE-II is the first field campaign in China to use ground-based,airborne,and spaceborne platforms to conduct comprehensive observations over the middle and lower reaches of the Yangtze River;and(2)seven aircraft flights were successfully carried out,and the spectra of ice particles,cloud droplets,and raindrops at different altitudes were obtained.These in-situ measurements will provide a“cloud truth”to validate the ground-based and satellite-retrieved cloud and precipitation properties and quantitatively estimate their retrieval uncertainties.They are also crucial for the development of a warm(and/or cold)rain conceptual model in order to better understand the cloud-to-rain conversion and accretion processes in mei-yu precipitation events.Through an integrative analysis of ground-based,aircraft,and satellite observations and model simulations,we can significantly improve our cloud and precipitation retrieval algorithms,investigate the microphysical properties of cloud and precipitation,understand in-depth the formation and dissipation mechanisms of mei-yu frontal systems,and improve cloud microphysics parameterization schemes and model simulations.  相似文献   

10.
精细农业研究进展   总被引:2,自引:2,他引:2  
精细农业是随着全球定位系统、遥感技术和农业新技术、地理信息系统、计算机技术的发展而兴起的现代农业管理方法,它将给农业生产带来深刻的变革.从农业资源的利用现状出发,分析了精细农业概念产生的必然性及其核心指导思想,并阐述了精细农业的技术组成、形成过程、国内外现状、发展趋势和成功应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号