首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radio interferometric observations of an H2O maser flare in the Orion Nebula at epoch 1982.9 have been used to determine the flare’s spatial structure. Antennas in the Crimea, Effelsberg, and Onsala were used. The emission region consists of three groups of components. The angular sizes of the components are 0.2–0.9 mas, and the widths of the emitted lines are 0.2–0.7 km/s. The velocities of the components are correlated with their relative positions, which correspond to expanding concentric rings. Assuming a 1 M protostar in a Keplerian approximation, the radius of the inner ring R is 15 AU, the velocity of its rotation Vrot is 8.98 km/s, and the radial component of the velocity Vrad is 1.79 km/s. For the outer ring, R=15.7 AU, Vrot=8.79 km/s, and Vrad=2.61 km/s.  相似文献   

2.
We report H2O maser line observations of the bright-rimmed globule IC 1396 N using a ground-space interferometer with the 10-m RadioAstron radio telescope as the space-based element. The source was not detected on projected baselines >2.3. Earth diameters, which indicates a lower limit on the maser size of L > 0.03 AU and an upper limit on the brightness temperature of 6.25 × 1012 K. Fringe-rate maps are prepared based on data from ground-ground baselines. Positions, velocities and flux densities of maser spots were determined. Multiple low-velocity features from ?4.5 km/s to +0.7 km/s are seen, and two high-velocity features of V LSR = ?9.4 km/s and V LSR = +4.4 km/s are found at projected distances of 157 AU and 70 AU, respectively, from the strongest low-velocity feature at V LSR = ~+0.3 km/s. Maser components from the central part of the spectrum fall into four velocity groups but into three spatial groups. Three spatial groups of low-velocity features detected in the 2014 observations are arranged in a linear structure about ~200 AU in length. Two of these groups were not detected in 1996 and possibly are jets which formed between 1996 and 2014. The putative jet seems to have changed direction in 18 years, which we explain by the precession of the jet under the influence of the gravity of material surrounding the globule. The jet collimation can be provided by a circumstellar protoplanetary disk. There is a straight line orientation in the “V LSR-Right Ascension” diagram between the jet and the maser group at V LSR = ~+0.3 km/s. However, the central group with the same position but at the velocity V LSR ~ ?3.4 km/s falls on a straight line between two high-velocity components detected in 2014. Comparison of the low-velocity positions from 2014 and 1996, based on the same V LSR-Right Ascension diagram for low-velocity features, shows that the majority of the masers maintain their positions near the central velocity V LSR = ~0.3 km/s during the 18 year period.  相似文献   

3.
The components U0 and V0 of the solar motion and the Oort constant A0 are determined using the data of a homogeneous open-cluster catalog with corrected distance moduli. The results are based on a sample of 146 open clusters with known radial velocities located in the Galactic plane (b<7°) within 4 kpc of the Sun. The solar Galactocentric distance R0 is determined using two kinematic methods. The following results are obtained: A0=17.0±0.9 km/s kpc, U0=10.5±1.0 km/s, V0=11.5±1.1 km/s, R0=8.3±0.3 pc.  相似文献   

4.
Based on long-term spectral monitoring with high spectral resolution, the optical spectrum of the weak central star of the IR source RAFGL 5081 has been studied for the first time. The spectral type of the star is close to G5–8 II, and its effective temperature is Teff ≈ 5400 K. An unusual spectral phenomenon was discovered: splitting of the profiles of broad, stationary absorption lines of medium and low intensity. The heliocentric radial velocities V r of all components of metal absorption lines, the Na I D lines, and the Hα line were measured for all the observation epochs. The constancy of the absorption lines rules out the possibility that the line splitting is due to binarity. The radial velocities of the wind components in the profiles of the Na I D and Hα lines reach ?250 and ?600 km/s, respectively. These profiles have narrow components, whose number, depth, and position vary with time. The time variability and multicomponent structure of the profiles of the Na I D and Hα lines indicates inhomogeneity and instability of the circumstellar envelope of RAFGL 5081. The presence of components with velocity V r (IS) = ?65 km/s in the Na I (1) lines provides evidence that RAFGL 5081 is located behind the Perseus arm, i.e, no closer than 2 kpc. It is noted that RAFGL 5081 is associated with the reflection nebula GN 02.44.7.  相似文献   

5.
The structure of the ejector region in the active star-forming region Orion KL has been studied over a broad dynamic range with a high angular resolution of 0.1 milliarcsec, or 0.05 AU. The line profile of the H2O supermaser emission has broad wings and can be represented as a superposition of two Gaussians with frequency widths Δf1=31 kHz and Δf2=163 kHz. The line intensities are I1≈3×105 Jy/beam and I2≈400 Jy/beam, and the brightness temperatures, Tb1≈5×1016 K and Tb2≈6×1014 K. The broadband ejector emission is determined by a rotating bipolar outflow with a rotational period of 5 months. The ejector emission in the 31-kHz component at a velocity of 7.64 km/s is amplified by more than two orders of magnitude by the surrounding envelope. The maser amplification regime is partially saturated.  相似文献   

6.
Based on high-resolution observations (R = 60 000 and 75 000), we have studied the optical spectral variability of the star BD + 48°1220, identified with the IR source IRAS 05040+4820. We have measured the equivalent widths of numerous absorption lines of neutral atoms and ions at wavelengths from 4500 Å to 6760 Å, as well as the corresponding radial velocities. We use model atmospheres to determine the effective temperature T eff = 7900 K, surface gravity log g = 0.0, microturbulence velocity ξ t = 6.0, and the abundances for 16 elements. The star’s metallicity differs little from the solar value: [Fe/H] = ?0.10 dex. The main peculiarity of the chemical composition of the star is a large helium excess, derived from the Hel λ 5876 Å absorption, [He/H] = +1.04, and the equally large oxygen excess, [O/Fe] = +0.72 dex. The carbon excess is small, [C/Fe] = +0.09 dex, and the ratio [C/O] < 1. We obtained an altered relation for the light-metal abundances: [Na/Fe] = +0.87 dex with [Mg/Fe] = ?0.31 dex. The barium abundance is low, [Ba/Fe] = ?0.84 dex. It is concluded that the selective separation of elements onto dust grains of the envelope is probably efficient. The radial velocity of the star measured from photospheric absorption lines over three years of observations varies in the interval V = ?(7–15) km/s. Time-variable differential line shifts have been revealed. The entire set of available data (the luminosity M v ≈ ?5 m , velocity V lsr ≈ ?20 km/s, metallicity [Fe/H] = ?0.10, and peculiarities of the optical spectrum and chemical composition) confirms the status of BD + 48°1220 as a post-AGB star with He and O excesses belonging to the Galactic disk.  相似文献   

7.
The structure of compact ejections, or bullets, is studied in water-vapor lines at an angular resolution of ~0.1 milliarcsec. A relationship between the ejections and outbursts in the H2O supermaser emission is found. The bullet speeds reach 12–19 km/s. The characteristic ejection time for a bullet, i.e., a matter outflow with enhanced speed and density, can reach several months, and corresponds to the duration of the supermaser outburst. Certain characteristic structures are typical of the bullets, such as compact features corresponding to the ejection of condensed ice granules, cometary structures with tails either preceding or following the heads (depending on the relative velocity), and bullets extending to 4 AU (fragments of a bipolar outflow enriched in water molecules). The cross section of the flow (i.e., of the bullets) is of the order of 0.1 AU and is preserved to distances of about 80 AU. The distribution of the bullets within the cone ~15° is related to the precession of the ejector. The maximum brightness temperatures of the bullets reach T b ~ 1014 K at a speed of 7.65 km/s, which corresponds to the local standard of rest. The increased brightness temperature is due to the “enhancement” of the bullets by one or two orders of magnitude in the surrounding envelope.  相似文献   

8.
The space velocities from the catalog of Nordstr?m et al. (2004) are used to trace variations of a number of kinematic parameters of single F and G dwarfs as a function of their age. The vertex deviation of disk stars increases from 7° ± 1° to 15° ± 2° as the mean age decreases from 4.3 to 1.5 Gyr. The two-dimensional velocity distributions in the UV, UW, and VW planes are analyzed. The evolution of the main peaks in the velocity distributions can be followed to an average age of ≈9 Gyr. We find that: (1) in the distributions of the UV velocity components, stars of different types are concentrated toward several stable peaks (the Hyades, Pleiades, and Sirius Cluster), suggesting that the stars belonging to these formations did not form simultaneously; (2) the peak associated with the Hyades Cluster dominates in all age intervals; and (3) the Hyades peak is strongest for stars with an average age of 1.5 Gyr, suggesting that this peak contains a considerable fraction of stars from the Hyades cluster. The age dependences of the kinematic parameters exhibit a break near ≈4–5 Gyr, which can be explained as an effect of the different contributions of stars of the thin and thick disks. The Stromberg relation yields a solar LSR velocity of V ⊙LSR = (8.7, 6.2, 7.2) ± (0.5, 2.2, 0.8) km/s.  相似文献   

9.
We obtained the photometric distances and radial velocities for the molecular gas for 270 star-forming regions and estimated the distance to the Galactic center from ten tangent points to be R0 = 8.01 ± 0.44 kpc. Estimates of R0 derived over the last decade are summarized and discussed; the average value is R0 = 7.80 ± 0.33 kpc. We analyze deviations from axial symmetry of the gas motion around the Galactic center in the solar neighborhood. Assuming a flat rotation curve, we obtain Θ0 ~ 200 km/s for the circular velocity of the Sun from regions beyond the Perseus arm. We used these Galactic constants to construct the Galactic rotation curve. This rotation curve is flat along virtually its total extent from the central bar to the periphery. The velocity jump in the corotation region of the central bar in the first quadrant is 20 km/s. We present analytical formulas for the rotation curves of the Northern and Southern hemispheres of the Galaxy for R0 = 8.0 kpc and Θ0 = 200 km/s.  相似文献   

10.
We have used spectrograms taken with a dispersion of 8–12 Å per mm and Kurucz model atmospheres to study the supergiant 89 Her (F2Ibe).We find the effective temperature and gravity T eff = 6300 ± 150 K and log g = 0.5 ± 0.2. We have analyzed the microturbulence in the star’s atmosphere based on FeI, FeII, and TiII lines, deriving ξ t = 7.0 ± 0.5 km/s for the FeI and TiII lines and ξ t = 8.0 ± 0.5 km/s for the FeII lines. Abundances were determined for 23 elements. The elemental abundances in the atmosphere of 89 Her show deficiencies compared to the solar chemical composition, except for sodium, which is overabundant relative to the Sun.  相似文献   

11.
Results of a study of the shell of Nova V2659 Cyg based on spectrophotometric observations carried out over a year and a half after its eruption are presented. The physical conditions in the nova shell have been studied. The electron temperature (9000 K) and density (5 × 106 cm?3) in the nebular stage have been estimated, together with the abundances of helium, oxygen, nitrogen, neon, argon, and iron. The abundances of nitrogen, oxygen, neon, and argon are enhanced relative to the solar values. The relative abundances are [N/H] = 2.26 ± 0.25 dex, [O/H] = 1.66 ± 0.35 dex, [Ne/H] = 0.78 ± 0.25 dex, and [Ar/H] = 0.32 ± 0.38 dex. The estimated mass of oxygen and total mass of the emitting shell are ≈1 × 10?4M and ≈3 × 10?4M, respectively. In the period of chaotic brightness oscillations, the maximum velocity of the shell expansion derived from the radial velocities of the absorption components of the HI and FeII line profiles increased by ≈400 km/s 41 days after the maximum, and by ≈200 km/s 101 days after the maximum, reaching 1600 km/s in both cases.  相似文献   

12.
Our analysis of many years of infrared photometry of the unique object FG Sge indicates that the dust envelope formed around the supergiant in August 1992 is spherically symmetrical and contains compact, dense dust clouds. The emission from the spherically symmetrical dust envelope is consistent with the observed radiation from the star at 3.5–5 µm, and the presence of the dust clouds can explain the radiation observed at 1.25–2.2 µm. The mean integrated flux from the dust envelope in 1992–2001 was ~(1.0±0.2)×10?8 erg s?1cm?2. The variations of its optical depth in 1992–2001 were within 0.5–1.0. The maximum density of the dust envelope was recorded in the second half of 1993 and corresponded to mean optical depths as high as unity. Several times in the interval from 1992 to 2001, the dusty material of the envelope partially dissipated and was then replenished. For example, the optical depth of the dust cloud at λ=1.25 µm during the last brigthness minimum in the J band was τ1.25≈4.3, which is much higher than the optical depth of the dust envelope of FG Sge. During maxima of the J brightness, the mean spectral energy distribution at 0.36–5 µm can be represented as a combination of radiation from a G0 supergiant that is attenuated by a dust envelope with a mean optical depth of 0.65±0.15 and emission from the spherically symmetrical dust envelope itself, with the temperature of the graphite grains being 750±150 K. At minima of the J brightness, only radiation from the dust envelope is observed at 1.65–5 µm, with the radiation from the supergiant barely detectable at 1.25 µm. As a result, the integrated flux during J minima is almost half that during J maxima. The mean mass of the spherically symmetrical dust envelope of FG Sge in 1992–2001 was (3 ± 1) × 10?7M. This envelope’s mass varied by nearly a factor of two during 1992–2001, in the range (2 – 4) × 10?7M. In Autumn 1992, the mass-loss rate from the supergiant exceeded 2 × 10?7M/yr. The average rate at which matter was injected into the envelope during 1993–2001 was 10?8M/yr. The mean rate of dissipation of the dust envelope was about 1 × 10?8M/yr. During 1992–2001, the supergiant lost about 8.7 × 10?7M. The parameters of the dust envelope were relatively constant from 1999 until the middle of 2001.  相似文献   

13.
Observations of the molecular cloud G1.6-0.025 in the 2K-1K and J0-J?1E series and 5?1-40E line of CH3OH, the (2-1) and (3-2) lines of SiO, and the 7?7-6?6 line of HNCO are described. Maps of the previously observed extended cloud with Vlsr~50 km/s and high-velocity clump with Vlsr~160 km/s, as well as a newly detected clump with Vlsr~0 km/s, have been obtained. The extended cloud and high-velocity clump have a nonuniform structure. The linewidths associated with all the objects are between 20 and 35 km/s, as is typical of clouds of the Galactic center. In some directions, emission at velocities from 40 to 160 km/s and from ?10 to +75 km/s is observed at the clump boundaries, testifying to a connection between the extended cloud and the high-velocity clump and clump at Vlsr~0 km/s. Compact maser sources are probaby contributing appreciably to the emission of the extended cloud in the 5?1-40E CH3OH line. Non-LTE modeling of the methanol emission shows that the extended cloud and high-velocity clump have a relatively low hydrogen density (<104 cm?3). The specific column density of methanol in the extended cloud exceeds 6×108 cm?3s, and is 4×108?6×109 cm?3s in the high-velocity clump. The kinetic temperatures of the extended cloud and high-velocity clump are estimated to be <80 K and 150–200 K, respectively. Possible mechanisms that can explain the link between the extended cloud with Vlsr~50 km/s and the clumps with Vlsr~0 km/s and ~160 km/s are briefly discussed.  相似文献   

14.
Three-dimensional numerical hydrodynamical modeling of a radiative wind and accretion disk in a close binary system with a compact object is carried out, using the massive X-ray binary LMC X-3 as an example. This system contains a precessing disk, and may have relativistic jets. These computations show that an accretion disk with a radius of about 0.20 (in units of the component separation) forms from the radiative wind from the donor when the action of the wind on the central source is taken into account, when the accretion rate is equal to the observed value (about 3.0 × 10?8 M /year, which corresponds to the case when the donor overflows its Roche lobe by nearly 1%). It is assumed that the speed of the donor wind at infinity is about 2200 km/s. The disk that forms is geometrically thick and nearly cylindrical in shape, with a low-density tunnel at its center extending from the accretor through the disk along the rotational axis. We have also modeled a flare in the disk due to short-term variations in the supply of material through the Lagrange point L1, whose brightnesses and durations are able to explain flares in cataclysmic variables and X-ray binaries. The accretion disk is not formed when the donor underfills its Roche lobe by 0.5%, which corresponds to an accretion rate onto the compact object of 2.0 × 10?9 M /year. In place of a disk, an accretion envelope with a radius of about 0.03 forms, within which gas moves along very steep spiral trajectories before falling onto the compact object. As in the accretion-disk case, a tunnel forms along the rotational axis of the accretion envelope; a shock forms behind the accretor, where flares occur in a compact region a small distance from the accretor at a rate of about six flares per orbital period, with amplitudes of about 10 m or more. The flare durations are two to four minutes, and the energies of individual particles at the flare maximum are about 100–150 keV. These flares appear to be analogous to the flares observed in gamma-ray and X-ray burst sources. We accordingly propose a model in which these phenomena are associated with massive, close X-ray binary systems with component-mass ratios exceeding unity, in which the donor does not fill its Roche lobe. Although no accretion disk forms around the compact object, an accretion region develops near the accretor, where the gamma-ray and X-ray flares occur.  相似文献   

15.
The results of infrared observations of the two Be stars X Per and V725 Tau, which are the optical components of X-ray binary systems, obtained in 1994–2016 are presented. The observations cover Be-star phases as well as shell phases. The data analysis shows that the radiation observed from the binaries at 1.25, 3.5, and 5 μm can be explained as the combined radiation from the optical components and variable sources (shells/disks) that emit as blackbodies (BBs). Emission from a source with the color temperature T c ~1000?1500 K was detected for X Per at λ ≥ 3.5 μm. The highest IR-brightness variation amplitudes for X Per were 0.9?1.2 m (JHK magnitudes) and ~1.45 m (LM magnitudes); for V725 Tau, they were 1.1?1.4 m and ~1.7 m (L magnitudes). The parameters of the optical components and interstellar extinction during the Be phases were estimated: the color excesswasE(B?V) = 0.65±0.08 m and 0.77 ± 0.03 m for X Per and V725 Tau, respectively. Light from the variable sources (disks/shells) was distinguished and their color temperatures, radii, and luminosities estimated for different observation epochs in a BB model. The variations of the binaries’ IR brightness and colors are shown to be due to changing parameters of the variable sources. The mean color temperature of the cool source (disk/shell) and the mean radius and mean luminosity of X Per are 9500± 2630 K, (35 ± 10) R, and (9100± 540) L. For V725 Tau, these parameters are 6200 ± 940 K, (27 ± 6) R, and (980 ± 420) L. The 1.25–5 μm radiation from X Per at different epochs can be represented as a sum of contributions from at least three sources: the optical component and two objects emitting as BBs. To reproduce the 1.25–3.5 μm radiation from V725 Tau, two components are sufficient: the optical component and a single variable BB object. For both binary systems, orbital variations of the IR brightness can be noted near the Be-star phase. The amplitudes of the J-band variations of X Per and V725 Tau are about 0.3 m and 0.1 m , respectively.  相似文献   

16.
The distribution of the directions of the space velocities of 67 radio pulsars is shown to be strongly anisotropic. This anisotropy cannot be explained by the structure of our Galaxy or by various types of solar motions. Pulsars with stronger surface magnetic fields B have higher velocities V. The mean value of V for B < 1010 G is 108 km/s, while 〈V〉 = 340 km/s for B > 1010 G. These results must be taken into account when identifying a mechanism to explain the observed pulsar velocities and their anisotropy.  相似文献   

17.
We analyze possible origins of the observed high rotational and spatial velocities of radio pulsars. In particular, these can be understood if all radio pulsars originate in close binary systems with orbital periods of 0.1–100 days, with the neutron star being formed by a type Ib,c supernova. The high spatial velocities of pulsars (v p up to 1000 km/s) reflect the high Keplerian velocities of the components of these binaries, while their short periods of rotation (P p < 4 s) are due to the rapid rotation of the presupernova helium-star components with masses of 2.5–10 M, which is synchronous with their orbital rotation. Single massive stars or components in wide binaries are likely to produce only slowly rotating (P p > 4 s) neutron stars or black holes, which cannot be radio pulsars. As a result, the rate of formation of radio pulsars should be a factor of a few lower than the rate of type II and type Ib,c supernovae estimated from observations. This scenario for the formation of radio pulsars is supported by (i) the bimodal spatial velocity distribution of radio pulsars; (ii) the coincidence of the observed spatial velocities of radio pulsars with the orbital velocities of the components of close binaries with nondegenerate helium presupernovae; (iii) the correlation between the orbital and rotational periods for 22 observed radio pulsars in binaries with elliptical orbits; and (iv) the similarity of the observed rate of formation of radio pulsars and the rate of type Ib,c supernovae.  相似文献   

18.
Photometric observations of the variable star ASASSN-13cx acquired in the course of a program of studies of cataclysmic variables and their parameters recently carried out at the Sternberg Astronomical Institute (SAI) are presented. The star was observed with the 50-cm and 60-cm telescopes of the SAI Crimean Astronomical Station and a CCD photometer (~1800 images in the V and Rc filters) during the variable’s outburst of August–September 2014 and in a period of quiescence in October–November 2016. The ASASSN-13cx system is confirmed to be a SU UMa variable. Parameters of the system are derived from eight light curves using a “composite” model that takes into account the presence of a hot spot on the lateral surface of the geometrically thick disk and of a region of enhanced energy release near the disk edge, at the base of the gas flow (the so-called “hot line”). Parameters of the system for three light curves during the outburst were obtained in the framework of a “spiral” model that additionally takes into account the presence of geometric perturbations on the accretion-disk surface. The parameters of ASASSN-13cx determined using these models provide good accuracy in reproducing the system’s light curves in both states. The basic parameters of the system have been determined for the first time: the component mass ratio q = M1/M2 = 7.0 ± 0.2, the orbital inclination i = 79.9°?80.1°, the distance between the components’ centers of mass a0 = 0.821(1) R?, and the sizes and temperatures of the stars: R1 = 0.0124(5)a0 = 0.0102(4) R?, T1 = 12 500 ± 280 K, 〈R2〉 = 0.236(4)a0 = 0.194(3) R?, T2 = 2550 ± 400 K, corresponding to M4–9V for the spectral type of the secondary. Parameters of the accretion disk have been derived for both activity states. The mass of matter in the accretion disk increased by almost a factor of two during ~400 orbital periods in quiescence.  相似文献   

19.
Spectroscopic and photometric data for the two rapidly rotating members of the α Persei cluster He 373 and AP 225 are analyzed. Improved estimates have been obtained for the projected equatorial rotation velocities: v sin i = 164 km/s for He 323 and v sin i = 129 km/s for AP 225. Multi-band photometric mapping is used to map the spot distributions on the surfaces of the two stars. The fractional spotted areas S and mean temperature difference ΔT between the unspotted photosphere and the spots are estimated (S = 7% and ΔT = 1000 K for He 373; S = 9% and ΔT = 800 K for AP 225). The H α line profiles of both stars have variable emission components whose widths are used to deduce the presence of extended regions of emission reaching the corotation radius.  相似文献   

20.
We present the results of studies of the superfine structure of H2O maser sources in the Orion Nebula. Powerful, low-velocity, compact maser sources are distributed in eight active zones. Highly organized structures in the form of chains of compact components were revealed in two of these, in the molecular cloud OMC-1. The component sizes are ~0.1 AU and their brightness temperatures are T b =1012?1016 K. The structures correspond to tangential sections of concentric rings viewed edge-on. The ring emission is concentrated in the azimuthal plane, decreasing the probability of their discovery. The formation of protostars is accompanied by the development of accretion disks and bipolar flows, with associated H2O maser emission. The accretion disks are in the stage of fragmentation into protoplanetary rings. In a Keplerian approximation, the protostars have low masses, possibly evidence for instability of the systems. Supermaser emission of the rings is probably triggered by precession of the accretion disk. The molecular cloud’s radial velocity is V LSR=7.74 km/s and its optical depth is τ≈5. The emission from components with velocities within the maser window is additionally amplified. The components’ emission is linearly polarized via anisotropic pumping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号