首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
In a recently published paper, Scherer and Fahr (1995) claimed that the departures of sky L emission measured by Prognoz 5 and 6 from an optically thin model can be attributed entirely to deficiencies of the optically thin approximation, and are not due to variations of solar wind ionization rate with latitude, as advocated since many years by our research group. They base their claim on the result of their new sophisticated model of L radiation transport.It is shown here that their new model, in the simple case of isotropic solar wind, predicts a distribution of intensity in a simple geometry which is completely contradicted by the observations: they find a minimum of intensity near the upwind direction, where a maximum has been observed consistently by all L instruments. Therefore, their conclusion based on an erroneous model must be rejected.  相似文献   

2.
In this work we have modelled the solar wind proton flux which varies as a function of distance to the heliomagnetic equator and its effects on the interplanetary Lyman α radiation. The results imply that a groove observed in Lyman α intensity patterns toward the upwind direction Bertaux et al. disappears when the tilt angle of the heliomagnetic equator is larger than 20°.The observations by Bertaux et al. were measured during the solar wind minimum when the tilt angle of the streamer belt is low. During the solar wind maximum when the tilt angle of the streamer belt is large the Lyman α groove should disappear according to our results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
H. J. Fahr 《Solar physics》1973,30(1):193-206
The effect of a new energy source due to energies transferred from supra-thermal secondary ions on the temperature profile of the solar wind has been considered. For this purpose a solution of a tri-fluid model of the solar wind including solar electrons, protons, and -particles, and starting with the boundary conditions of Hartle and Barnes at 0.5 AU is given. On the base of the assumption that suprathermal He+-ions which have four times the temperature of suprathermal protons are predominantly coupled to solar -particles by Alfvén waves, it is shown that the temperature T of solar -particles should be appreciably higher than those T p of solar protons beyond the orbit of the Earth. For 1 AU a temperature excess T over T p according to that which has been found in some solar wind ion spectrograms can only be explained for a small part of the orbit of the earth which is inside the cone of enhanced helium densities. Around 1 AU the temperatures T and T p are found to decrease much slighter with solar distance than given in the two-fluid model of Hartle and Barnes. Beyond 1.7 and 2.2 AU the temperatures T and T p even start increasing with solar distance and come up to about 105 at about 10 AU. These predictions should lend some support to future temperature measurements with deep-space probes reaching Solar distances of some AU.Forschungsberichte des Astronomischen Institutes, Bonn, 72-10.  相似文献   

4.
As a sequel to our recent identification of the high-speed stream as the candidate structure in the solar wind at 1 AU, that is primarily responsible for the geomagnetic disturbances occasionally noticed after disparition brusques (DBs) of solar filaments (Sastri et al., 1985), we report here that the streams, inferred to be recurrent in our earlier study, were consistently preceded by a stream interface, as expected of corotating streams. This observation substantiates the role of corotating streams of coronal hole origin in the apparent link between DBs and geomagnetic activity, and strengthens the view that DBs are not a unique source of geomagnetic activity.  相似文献   

5.
The structure of the region of interaction between the solar wind and the interstellar medium in the two-shocks model (TSM), first suggested by Baranovet al. (1970), is numerically calculated.For this problem our model is true only for charged particles of the interstellar medium interacting with the solar wind, since the free paths of neutral particles are very long and any hydrodynamical approximation would be incorrect.The shapes of the outer and inner shocks, the shape of the contact surface and the distribution of the parameters inside the interaction region are calculated, and are universal and correct for other astrophysical applications such as interstellar bubbles (Weaveret al., 1977), the stellar wind flow around a globule (Dyson, 1975), the interaction of stellar winds in binaries (Prilutzky and Usov, 1976), and so on.The problem of the effect of the charge exchange of H atoms with interstellar gas protons decelerated by an outer shock on H atoms penetrating the solar system is considered using the calculated results (Wallis, 1975). This effect is shown to influence essentially the estimate of H-atom concentration in the interstellar medium based on theL -scattering data.  相似文献   

6.
An experimental study of the propagation of solar electrons with energyE e > 30 keV was carried out. Measurements were made during the period 1972-1974 using the Prognoz satellite-borne instruments.A two-component structure of electron fluxes was found. The fast component, rather well-observed after solar flares of minor importance, consists of a compact beam of electrons propagating without scattering inside a narrow cone with an opening 10° along interplanetary magnetic field lines. Characteristics of this component are given.Peculiarities of the slow or diffusive component of electron fluxes are compared with the diffusive component of solar protons. It is shown that the diffusion coefficient for non-relativistic electrons is the function of the number of particles injected in the event. A model of coherent propagation of non-relativistic electrons is offered, which takes into account the presence of the fast and slow components and their interaction with solar wind plasma oscillations.  相似文献   

7.
We use H, X-ray, and kilometric radio data to examine the solar coronal activity associated with energetic (1 MeV/nucl–1) 3He-rich particle events observed near Earth. The basis of the study is the 12 3He-rich events observed in association with impulsive 2 to 100 keV electron events reported by Reames et al. (1985). We find that when H and X-ray brightenings can be associated with 3He/electron events, they have onsets coinciding to within 1 min of that of the associated metric type III bursts. In three or four events we found no associated H or X-ray flares, and in two events even the metric type III bursts were weak or absent. The measured low-energy (2 keV) electron spectra for these events show no evidence of a flattening due to Coulomb collisional losses. These results and several other recent findings are consistent with the idea that the 3He/electron events are due to particle acceleration in the corona well above the associated H and X-ray flares.  相似文献   

8.
C. K. Ng 《Solar physics》1988,114(1):165-179
Two new forms of a simplified Fokker-Planck equation are derived for the transport of low-energy solar energetic particles in an evolving interplanetary magnetic field, carried by a variable radial solar wind. An idealised solution suggests that the invariant anisotropy direction reported by Allum et al. (1974) may be explained within the conventional theoretical framework. The equations may be used to relate studies of solar particle propagation to solar wind transients, and vice versa.  相似文献   

9.
We present a study of the outflow velocity of the fast wind in the northern polar coronal hole observed on 21 May 1996, during the minimum of solar activity, in the frame of a joint observing program of the SOHO (Solar Heliospheric Observatory) mission. The outflow velocity is inferred from an analysis of the Doppler dimming of the intensities of the Ovi 1032, 1037 and Hi L 1216 lines observed between 1.5 R and 3.5 R with the Ultraviolet Coronagraph Spectrometer (UVCS), operating onboard SOHO. The analysis shows that for a coronal plasma characterized by low density, as derived for a polar hole at solar minimum by Guhathakurta et al. (1999), and low temperature, as directly measured at the base of this coronal hole by David et al. (1998), the oxygen outflow speed derived spectroscopically is consistent with that implied by the proton flux conservation. The hydrogen outflow is also consistent with flux conservation if the deviation from isotropy of the velocity distribution of the hydrogen atoms is negligible. Hence, for this cool and tenuous corona, the oxygen ions and neutral hydrogen atoms flow outward roughly at the same speed, which increases from 40 km s–1 at 1.5 R to 360 km s–1 at 3.1 R , with an average acceleration of the order of 4.5×103 cm s–2. The highly anisotropic velocity distributions of the Ovi ions found in the analysis confirm that the process which is heating the oxygen ions acts preferentially across the magnetic field.  相似文献   

10.
On board the SOHO spacecraft poised at L1 Lagrange point, the SWAN instrument is mainly devoted to the measurement of large scale structures of the solar wind, and in particular the distribution with heliographic latitude of the solar wind mass flux. This is obtained from an intensity map of the sky Lyman emission, which reflects the shape of the ionization cavity carved in the flow of interstellar H atoms by the solar wind. The methodology, inversion procedure and related complications are described. The subject of latitude variation of the solar wind is shortly reviewed: earlier Lyman results from Prognoz in 1976 are confirmed by Ulysses. The importance of the actual value of the solar wind mass flux for the equation of dynamics in a polar coronal hole is stressed. The instrument is composed of one electronic unit commanding two identical Sensor Units, each of them allowing to map a full hemisphere with a resolution of 1°, thanks to a two-mirrors periscope system. The design is described in some details, and the rationale for choice between several variants are discussed. A hydrogen absorption cell is used to measure the shape of the interplanetary Lyman line and other Lyman emissions. Other types of observations are also discussed : the geocorona, comets (old and new), the solar corona, and a possible signature of the heliopause. The connexion with some other SOHO instruments, in particular LASCO, UVCS, SUMER, is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号