首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that dissolved carbohydrates would be large components of the labile dissolved organic carbon (DOC) pool and would support much bacterial growth in Antarctic waters, especially the Ross Sea, since previous work had observed extensive phytoplankton blooms with potentially high production rates of carbohydrates in Antarctic seas. These hypotheses were tested on cruises in the Ross Sea and Antarctic Polar Front Zone as part of the US JGOFS program. Concentrations and fluxes of free glucose (the only free sugar detected) were very low, but dissolved polysaccharides appeared to be important components of the DOC pool. Concentrations of dissolved combined neutral sugars increased >3-fold during the phytoplankton bloom in the Ross Sea and were a large fraction (ca. 50%) of the semi-labile fraction of DOC. The relatively high concentrations of dissolved combined neutral sugars, which are thought to be quite labile, appear to explain why DOC accumulated during the phytoplankton bloom was degraded so quickly once the bloom ended. Some of the polysaccharides appeared to be more refractory, however, since dissolved combined neutral sugars were observed in deep waters (>550 m) and in early spring (October) in the Ross Sea, apparently having survived degradation for >8 months. The molecular composition of these refractory polysaccharides differed from that of polysaccharides sampled during the phytoplankton bloom. Fluxes of DOC were low in the Ross Sea compared to standing stocks and fluxes of particulate material, but the DOC that did accumulate during the phytoplankton bloom appeared to be sugar-rich and relatively labile.  相似文献   

2.
Response of phytoplankton to increasing CO2 in seawater in terms of physiology and ecology is key to predicting changes in marine ecosystems. However, responses of natural plankton communities especially in the open ocean to higher CO2 levels have not been fully examined. We conducted CO2 manipulation experiments in the Bering Sea and the central subarctic Pacific, known as high nutrient and low chlorophyll regions, in summer 2007 to investigate the response of organic matter production in iron-deficient plankton communities to CO2 increases. During the 14-day incubations of surface waters with natural plankton assemblages in microcosms under multiple pCO2 levels, the dynamics of particulate organic carbon (POC) and nitrogen (PN), and dissolved organic carbon (DOC) and phosphorus (DOP) were examined with the plankton community compositions. In the Bering site, net production of POC, PN, and DOP relative to net chlorophyll-a production decreased with increasing pCO2. While net produced POC:PN did not show any CO2-related variations, net produced DOC:DOP increased with increasing pCO2. On the other hand, no apparent trends for these parameters were observed in the Pacific site. The contrasting results observed were probably due to the different plankton community compositions between the two sites, with plankton biomass dominated by large-sized diatoms in the Bering Sea versus ultra-eukaryotes in the Pacific Ocean. We conclude that the quantity and quality of the production of particulate and dissolved organic matter may be altered under future elevated CO2 environments in some iron-deficient ecosystems, while the impacts may be negligible in some systems.  相似文献   

3.
In three sections in the Kara Sea, the contents of the dissolved and particulate organic carbon (the DOC and POC, respectively), as well as of the organic carbon of the bottom sediments (Corg) were determined. The contents of varied from 6.3 to 2400 μg/l for the DOC and from 0.84 to 12.2 mg of C/l for the POC. The average concentrations for all the samples tested amounted to 200 μg/l for the DOC (n = 78, σ = 368) and 2.7 mg/l for the POC (n = 92, σ = 2.7). The concentrations of Corg in the samples of the upper layer of the bottom sediments of the area treated varied from 0.13 to 2.10% of the dry substance at an average value of 0.9% (n = 21, σ= 0.49%). It is shown that the distribution of the different forms of organic matter (OM) is an indicator of the supply and spreading of the particulate matter in the Kara Sea and that the DOC and POC of the Kara Sea are formed under the impact of the runoff of the Ob and Yenisei river waters. It is found that the distribution of the OM of the bottom sediments in the surveyed area of the Kara Sea is closely related to their grain-size composition and to the structure of the currents in the area studied. The variations in the Corg content in the bottom sediment cores from the zone of riverine and marine water mixing represent the variability of the OM burial.  相似文献   

4.
Experiments were conducted using seawater from the Oregon continental shelf to determine: (1) rates of phytoplankton-derived particulate organic matter (POM) and dissolved organic matter (DOM) degradation by natural microbial communities, and (2) whether inorganic nutrients or flagellate grazing limit the bacterial response to, and subsequent degradation of, the DOM. In the initial seawater samples, nutrients were depleted and organic matter concentrations were elevated above concentrations found in upwelled water, indicative of recent bloom conditions. In whole water treatments incubated for 3 d, an average of 24% of the total organic C and 33% of the POC was degraded, with some portion of the POC being converted to DOC. In treatments incubated after POM was removed by filtration, DOC degradation was initially rapid and then proceeded at a slower rate. After 3 d, an average of 41% of the DOC was degraded. Selective degradation of the C-component of both the POM and DOM relative to the N-component was observed. Reductions in flagellate grazing resulted in increases in bacterial abundance and enhanced DOC degradation, while inorganic nutrient amendments had little effect. Overall, these results suggest that a fraction of the phytoplankton-derived POM and DOM can be rapidly degraded, contributing to oxygen consumption on the continental shelf. The long degradation time of a less labile DOC fraction relative to potential offshelf transport mechanisms suggests that Oregon's coastal waters may be a source of DOC to adjacent offshore waters of the North Pacific.  相似文献   

5.
As part of the Western Arctic Shelf–Basin Interactions (SBI) project, the production and fate of organic carbon and nitrogen from the Chukchi and Beaufort Sea shelves were investigated during spring (5 May–15 June) and summer (15 July–25 August) cruises in 2002. Seasonal observations of suspended particulate organic carbon (POC) and nitrogen (PON) and large-particle (>53 μm) size class suggest that there was a large accumulation of carbon (C) and nitrogen (N) between spring and summer in the surface mixed layer due to high phytoplankton productivity. Considerable organic matter appeared to be transported from the shelf into the Arctic Ocean basin in an elevated POC and PON layer at the top of the upper halocline. Seasonal changes in the molar carbon:nitrogen (C:N) ratio of the suspended particulate organic matter (POM) pool reflect a change in the quality of the organic material that was present and presumably being exported to the sediment and to Arctic Ocean waters adjacent to the Chukchi and Beaufort Sea shelves. In spring, low particulate C:N ratios (<6; i.e., N rich) were observed in nitrate-replete surface waters. By the summer, localized high particulate C:N ratios (>9; i.e., N-poor) were observed in nitrate-depleted surface waters. Low POC and inorganic nutrient concentrations observed in the surface layer suggest that rates of primary, new and export production are low in the Canada Basin region of the Arctic Ocean.  相似文献   

6.
Meteorological and oceanographic conditions in the Northern Adriatic Sea in a year notable for massive mucilage formation (2004) were compared with those in years where this phenomenon did not occur (2003, 2005 and 2006) to suggest possible links. The months preceding the mucilage event in 2004 were considered the ‘incubation period’ and were characterized by a strong freshet in May which increased the water column stability. Winter cooling and scarcity of freshwater inputs from the Po River triggered the dense water formation and intrusion in the northern basin. Weak southeasterly winds and an increase in surface seawater temperatures contributed to maintain and reinforce the water column stability, and at the same time an intense diatom spring bloom created the conditions for accumulation of organic matter. The interplay of climatological forcings and biological processes caused temporal variations of dissolved organic carbon (DOC) and particulate organic carbon (POC) in the basin, with POC playing an important role in the aggregation process, as suggested by its increase relative to DOC before massive mucilage formation. We therefore suggest that high POC/total particulate nitrogen ratios in the suspended particulate organic fraction, a steep increase of POC/Chlorphyll a, and the decreased DOC/POC ratios represent ‘early warning’ signals of the main processes that lead to mucilage events in the Northern Adriatic Sea.  相似文献   

7.
Concurrent distributions of dissolved and suspended particulate organic carbon (DOC and POCsusp), nitrogen (DON and PONsusp) and phosphorus (DOP and POPsusp), and of suspended particulate inorganic phosphorus (PIPsusp), are presented for the open ocean water column. Samples were collected along a three-station transect from the upper continental slope to the abyssal plain in the eastern North Pacific and from a single station in the Southern Ocean. The elemental composition of surface sedimentary organic matter (SOM) was also measured at each location, and sinking particulate organic matter (POMsink) was measured with moored sediment traps over a 110-d period at the abyssal site in the eastern North Pacific only. In addition to elemental compositions, C : N, C : P and N : P ratios were also calculated. Surface and deep ocean concentrations of dissolved organic matter (DOM) and inorganic nutrients between the two sites displayed distinct differences, although suspended POM (POMsusp) concentrations were similar. Concentrations of DOM and POMsusp displayed unique C, N and P distributions, with POMsusp concentrations generally about 1–2 orders of magnitude less than the corresponding DOM concentrations. These differences were likely influenced by different biogeochemical factors: whereas the dissolved constituents may have been influenced more by the physical regime of the study site, suspended particulate matter may have been controlled to a greater extent by biological and chemical alteration. Up to 80% of total particulate P in POMsusp, POMsink and SOM consisted of PIP. For all organic matter pools measured, elemental ratios reveal that organic P is preferentially remineralized over organic C and organic N at both sites. Increases in C : P and N : P ratios with depth were also observed for DOM at both sites, suggesting that DOP is also preferentially degraded over C and N as a function of depth. A simple one-dimensional vertical eddy diffusion model was applied to estimate the contributions of dissolved and suspended particulate organic C, N and P fluxes from the upper mixed layer into the permanent thermocline. Estimated vertical DOM fluxes were 28–63% of the total organic matter fluxes; POMsusp and POMsink fluxes were 8–20 and 28–52% of the total.  相似文献   

8.
In January–February 2001, we measured microbial biomass as ATP and community respiration as ETS activity of organisms < 200 μm in the aphotic zone of the Ross Sea. Microbial respiration amounted to 2.14 mmol C m− 2 day− 1 in the depth range 200–1000 m. Our daily estimates of carbon export are close to the daily percentage of net community production (NCP), removed as sinking biogenic particles from the upper 100 m in the entire Ross Sea, but lower than those of other oceanic systems. Comparing remineralization determined in this study with that obtained by sediment traps in the Ross Sea, it appeared that about 63% of organic carbon remineralized by respiration derived from POC pool. Such evidence highlighted POC source as the main organic fuel of the biological pump in the Ross Sea.  相似文献   

9.
A new method of evaluating the rate of mineralization of photoassimilated organic matter is described. This method enables us to compare the rate of direct mineralization of particulate organic carbon (POC) to CO2 with the rate of solubilization of photoassimilated organic carbon followed by the mineralization of the resultant dissolved organic carbon (DOC) under the same conditions. The direct mineralization of photoassimilated carbon from POC to CO2 is a more significant process compared with the mineralization of extracellular released organic carbon. The first-order rate coefficients range from 0.132 to 0.434 day–1 for direct mineralization and 0.034 to 0.189 day–1 for solubilization.  相似文献   

10.
Repeated measurements of depth profiles of 234Th (dissolved, 1–70 and >70 μm particulate) at three stations (Orca, Minke, Sei) in the Ross Sea have been used to estimate the export of Th and particulate organic carbon (POC) from the euphotic zone. Sampling was carried out on three JGOFS cruises covering the period from October 1996 (austral early spring) to April 1997 (austral fall). Deficiencies of 234Th relative to its parent 238U in the upper 100 m are small during the early spring cruise, increase to maximum values during the summer, and decrease over the course of the fall. Application of a non-steady-state model to the 234Th data shows that the flux of Th from the euphotic zone occurs principally during the summer cruise and in the interval between summer and fall. Station Minke in the southwestern Ross Sea appears to sustain significant 234Th removal for a longer period than is evident at Orca or Sei. Particulate 234Th activities and POC are greater in the 1–70 μm size fraction, except late in the summer cruise, when the >70 μm POC fraction exceeds that of the 1–70 μm fraction. The POC/234Th ratio in the >70 μm fraction exceeds that in the 1–70 μm fraction, likely due in part to the greater availability of surface sites for Th adsorption in the latter. Particulate 234Th fluxes are converted to POC fluxes by multiplying by the POC/234Th ratio of the >70 μm fraction (assumed to be representative of sinking particles). POC fluxes calculated from a steady-state Th scavenging model range from 7 to 91 mmol C m−2 d−1 during late January–early February, with the greatest flux observed at station Minke late in the cruise. Fluxes estimated with a non-steady-state Th model are 85 mmol C m−2 d−1 at Minke (1/13–2/1/97) and 50 mmol C m−2 d−1 at Orca (1/19–2/1/97). The decline in POC inventories (0–100 m) is most rapid in the southern Ross Sea during the austral summer cruise (Smith et al., 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3119–3140. Gardner et al., 2000. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3423–3449), and the 234Th-derived POC fluxes indicate that the sinking flux of POC is 30–50% of the POC decrease, depending on whether steady-state or non-steady-state Th fluxes are used. Rate constants for particle POC aggregation and disaggregation rates are calculated at station Orca by coupling particulate 234Th data with 228Th data on the same samples. Late in the early spring cruise, as well as during the summer cruise, POC aggregation rates are highest in near-surface waters and decrease with depth. POC disaggregation rates during the same time generally increase to a maximum and are low at depth (>200 m). Subsurface aggregation rates increase to high values late in the summer, while disaggregation rates decrease. This trend helps explain higher values of POC in the >70 m fraction relative to the 1–70 m fraction late in the summer cruise. Increases in disaggregation rate below 100 m transfer POC from the large to small size fraction and may attenuate the flux of POC sinking out of the euphotic zone.  相似文献   

11.
Data is presented for the concentrations of organic carbon and nitrogen, and C:N ratios, in marine particulate matter, and for POC and PN, from surface waters collected in the northeastern Atlantic, South Atlantic, Indian Ocean and China Sea.The organic carbon content of this particulate matter varies between 4.6% and 29.9%, and has an average of 17.8%. The average organic carbon content of particulate matter from the various oceans decreases in the order: Northeastern Atlantic > South Atlantic > Indian Ocean > China Sea.The nitrogen content of the particulate matter varies between 1.0% and 3.9%, with an average of 2.2%, and in general follows the same trend as that of organic carbon.C:N ratios vary between 5.1 and 10.6, and have an average of 7.9.The POC contents of the oceanic waters vary between 6.6 and 211 μg/l, with an average of 52 μg/l. The concentrations in the surface waters decrease in the following order: Northeastern Atlantic τ China Sea > South Atlantic > Indian Ocean.The concentrations, and compositions, of particulate matter from various coastal localities are given for comparison with the oceanic values.  相似文献   

12.
Dissolved organic matter (DOM) composition and dynamics in temperate shallow coastal bays are not well described although these bays may be important as local sources of organic carbon to ocean waters and are often sites of economically-important fisheries and aquaculture. In this study surface water samples were collected on a monthly to bi-monthly basis over two years from a mid-Atlantic coastal bay (Chincoteague Bay, Virginia and Maryland, USA). Dissolved organic carbon (DOC) concentrations and light absorbance characteristics were measured on sterile-filtered water, and high-molecular weight (> 1 kDa) dissolved OM (DOM) was isolated to determine stable isotope composition and molecular-level characteristics. Our time series encompassed both a drought year (2002) and a year of above-average rainfall (2003). During the dry year, one of our sites developed a very intense bloom of the brown tide organism Aureococcus anophagefferens while during the wet year there were brown tide bloom events at both of our sampling sites. During early spring of the wet year, there were higher concentrations of > 1 kDa DOC; this fraction represented a larger proportion of overall DOC and appeared considerably more allochthonous. Based upon colored dissolved organic matter (CDOM) and high-molecular weight DOM analyses, the development of extensive phytoplankton blooms during our sampling period significantly altered the quality of the DOM. Throughout both years Chincoteague Bay had high DOC concentrations relative to values reported for the coastal ocean. This observation, in conjunction with the observed effects of phytoplankton blooms on DOM composition, indicates that Chincoteague Bay may be a significant local source of “recently-fixed” organic carbon to shelf waters. Estimating inputs of DOC from Chincoteague Bay to the Mid-Atlantic Bight suggests that shallow productive bays should be considered in studies of organic carbon on continental shelves.  相似文献   

13.
The variation of dissolved organic matter (DOM) and fluorescence characteristics during the phytoplankton bloom were investigated in Yashima Bay, at the eastern part of the Seto Inland Sea, Japan. We found significant accumulations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), chromophoric dissolved organic matter (CDOM) fluorescence, and UV260 during the phytoplankton bloom period in 2005, although lower accumulations of DOC and DON and only increases of CDOM fluorescence were observed during the bloom period in 2006. Little or no correlation between DOM and phytoplankton abundance might be due to the composition of DOM, which is a complex mixture of organic materials. The 3D-EEM results revealed that the DOM produced around the phytoplankton bloom period contained tyrosine, tryptophan, and humic-like substances. Our results showed that the occurrence of phytoplankton bloom contributed to the production of DOM in coastal water but the DOM accumulation depended on the type of phytoplankton bloom, the phytoplankton species in particular. From our results, we concluded that phytoplankton have a great role in the dynamics of DOM as a producer in a coastal environment.  相似文献   

14.
The organic matter (OM) pool has been studied in two sub-arctic north Norwegian fjords, Balsfjord and Ullsfjord, in July 2001 and June 2003. Besides general OM parameters such as dissolved organic carbon (DOC), particulate organic carbon and nitrogen (POC and PON), the distribution of specific compounds such as folic acid and surface active substances (SAS) was followed. The results are supported with data of salinity, temperature, and chlorophyll a (Chl a). This approach allowed assessment of the fate of the OM pool, and its distinct vertical, spatial, and seasonal variations. Fjord waters could be vertically divided into two layers: the upper mixed layer (UML), until 40 m depth, and the deep aphotic layer. Spatial variability between the two fjords is a consequence of different influences of shelf waters on the fjords. Significant enrichment of POC and PON concentrations (3–5 times), as well as those of particulate SAS and folic acid (up to 3.2 times) in the UML was recorded during the period of new production, in early June. Depletion of particulate OM in deep waters was ascribed to fast dissolution or remineralization in the UML or upper part of aphotic layer. OM in July 2001 was characterized with 15.9% higher DOC pool compared to June 2003, and had refractory properties, suggesting the fjords to be an important source of organic matter for the continental shelf ecosystem. The DOC pool in these subarctic fjords represents the major component of the OM pool. The DOC concentrations in fjords are lower than those in previously studied warmer seas (e.g. the Adriatic Sea), whereas the concentrations of folic acid and SAS are comparable to those in the Adriatic Sea.  相似文献   

15.
2016年夏季黄、渤海颗粒有机碳的分布特征及影响因素   总被引:2,自引:1,他引:1  
本文根据2016年6-7月黄、渤海航次获得的调查数据,分析了黄、渤海海域颗粒有机碳(POC)的浓度变化、空间分布特征并结合盐度、叶绿素a、POC/PON、POC/Chl a平面分布特征和相关性分析,探讨了黄、渤海海域POC的来源和影响因素。结果表明:2016年夏季渤海海域POC平均浓度(500.2±226.5)μg/L,北黄海POC平均浓度(358.2±101.5)μg/L,南黄海POC平均浓度(321.0±158.1)μg/L,渤海海域POC浓度高于黄海,整个海域POC浓度表层高于底层。POC的平面分布特征为近岸高,外海低。调查海域表层POC/PON均值为8.89,POC/Chl a均值为182.52;中层POC/PON均值为8.87,POC/Chl a均值为179.56;底层POC/PON均值为9.41,POC/Chl a均值为178.80。黄海海域浒苔衰败对POC/PON与POC/Chl a影响较大。相关性分析结果表明渤海海域盐度、总悬浮物和叶绿素a与POC存在显著的相关性,是影响POC分布的主要控制因素。南黄海除表层POC浓度与盐度、总悬浮物和叶绿素a浓度有很好的相关性外,中层和底层POC浓度与盐度、总悬浮物和叶绿素a浓度不存在显著的相关性。渤海海域POC主要受陆源和浮游植物共同影响,浮游植物是POC的主要贡献者,而黄海海域POC受长江冲淡水、黄海暖流、苏北沿岸流、生物活动和底层沉积物等多种因素影响,其中苏北近岸和青岛外海,有机碎屑为POC的主要贡献者。  相似文献   

16.
The distribution of dissolved organic carbon (DOC) and nitrogen (DON) and particulate organic carbon (POC) and nitrogen (PON) was studied on a transect perpendicular to the Catalan coast in the NW Mediterranean in June 1995. The transect covered a hydrographically diverse zone, including coastal waters and two frontal structures (the Catalan and the Balear fronts). The cruise was conducted during the stratified period, characterized by inorganic nutrient depletion in the photic zone and a well established deep chlorophyll a maximum. DOC concentrations were measured using a high-temperature catalytic oxidation method, and DON was determined directly, with an update of the Kjeldahl method, after removal of inorganic nitrogen.The ranges of DOC and DON concentrations were 44–95 μM-C and 2.8–6.2 μM-N. The particulate organic matter ranged between 0.9 and 14.9 μM-C and from 0.1 to 1.7 μM-N. The DOC : DON molar ratio averaged 15.5±0.4, and the mean POC : PON ratio was 8.6±0.6. The distribution of dissolved organic matter (DOM) was inverse to that of the salinity. The highest concentrations of DOM were found in coastal waters and in the stations affected by the Catalan front, located at the continental shelf break.It was estimated that recalcitrant DOM constituted 67% of the DOM pool in the upper 50 m. The data suggest that accumulation of DOC due to the decoupling of production and consumption may occur in the NW Mediterranean during stratification and that the organic matter exported from the photic layer is dominated by C-rich material.  相似文献   

17.
The carbon to nitrogen (C:N) stoichiometry of phytoplankton production varied significantly during the spring–summer bloom in the North Water Polynya (NOW), from April through July 1998. The molar ratio of particulate organic carbon (POC) to nitrogen (PON) production by phytoplankton (ΔPOC:ΔPON) increased from 5.8 during April through early June to 8.9 in late June and July. The molar dissolved inorganic carbon (DIC) to nitrate+nitrite (NO3) drawdown ratio (ΔDIC: ΔNO3) increased from 6.7 in April and May, to 11.9 in June (no estimate for July because of ice melting). The discrepancy between ΔPOC:ΔPON and ΔDIC:ΔNO3 was likely due to dissolved organic carbon (DOC) production. Increased ΔPOC:ΔPON of phytoplankton and surface water ΔDIC:ΔNO3 throughout the phytoplankton blooms resulted from changes in physical properties of the upper water column, such as reduced thickness of the surface mixed layer that exposed phytoplankton to increased photosynthetically available radiation (PAR), accompanied by NO3 depletion. This is expected to have significant effects on the cycling of carbon (C) and nitrogen (N) in pelagic ecosystems, as the increased C:N ratio of organic matter decreases its quality as substrate for grazers and microbial communities. Based on ΔPOC:ΔPON, the ratio of POC to chlorophyll a (Chl) production (ΔPOC:ΔChl) and the relationship between Chl yields and NO3 depletion, we estimate that 71±17% and 46±20% of the depleted NO3 went to PON production in the euphotic zone over the polynya from April to early June, and late June to July, respectively. The remaining NO3 was likely channelled to dissolved organic nitrogen (DON) and heterotrophic bacteria, which were not returned to the dissolved inorganic nitrogen (DIN) pool through recycling during the course of the study. Hence, the autotrophic production of organic N and its recycling by the microbial food web were not coupled temporally.  相似文献   

18.
Upper-ocean fluxes of particulate organic carbon (POC) and biogenic silica (bSi) are calculated from four US JGOFS cruises along 170°W using a thorium-234 based approach. Both POC and bSi fluxes exhibit large variability vs. latitude during the seasonal progression of diatom dominated blooms. POC fluxes at 100 m of up to 50 mmol C m−2 d−1 are found late in the bloom, and farthest south near the Ross Sea Gyre. Biogenic Si fluxes also peak late in the bloom as high as 15 mmol Si m−2 d−1, but this flux peak occurs at a different latitude, just south of the Antarctic Polar Front (APF), which is centered around 60°S along this cruise track. The ratios of both POC and bSi export relative to their production rates are large, suggesting an efficient biological pump at these latitudes. The highest relative bSi/POC flux ratios at 100 m are found just south of the APF, coincident with a bSi/POC flux peak seen in 1000 m traps during this same program by Deep-Sea Research II (Honjo et al., Deep-Sea Research II 47, 3521–3548). These data suggest that efficient export at these latitudes can support the high accumulation rates of bSi found in the sediments under and south of the APF, despite the generally low biomass and productivity levels in this region.  相似文献   

19.
Incorporation of 14C-depleted (old) dissolved organic carbon (DOC) on/into particulate organic carbon (POC) has been suggested as a possible mechanism to explain the low Δ14C-POC values observed in the deep ocean [Druffel, E.R.M., Williams, P.M., 1990. Identification of a deep marine source of particulate organic carbon using bomb 14C. Nature, 347, 172–174.]. A shipboard incubation experiment was performed in the Sargasso Sea to test this hypothesis. Finely ground dried plankton was incubated in seawater samples from the deep Sargasso Sea, both with and without a biological poison (HgCl2). Changes in parameters such as biochemical composition and carbon isotopic signatures of bulk POC and its organic compound classes were examined to study the roles of sorptive processes and biotic activity on POC character. Following a 13-day incubation, the relative abundance of the acid-insoluble organic fraction increased. Abundances of extractable lipids and total hydrolyzable amino acids decreased for both treatments, but by a greater extent in the non-poisoned treatment. The Δ14C values of POC recovered from the non-poisoned treatment were significantly lower than the value of the unaltered plankton material used for the incubation, indicating incorporation of 14C-depleted carbon, most likely DOC. The old carbon was present only in the lipid and acid-insoluble fractions. These results are consistent with previous findings of old carbon dominating the same organic fractions of sinking POC from the deep Northeast Pacific [Hwang, J., Druffel, E.R.M., 2003. Lipid-like material as the source of the uncharacterized organic carbon in the ocean? Science, 299, 881–884.]. However, the Δ14C values of POC recovered from the poisoned treatment did not change as much as those from the non-poisoned treatment suggesting that biological processes were involved in the incorporation of DOC on/into POC.  相似文献   

20.
Dissolved organic carbon (DOC), stable carbon isotopic (δ13C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. δ13C values of both POC (−23.8‰ to −26.8‰) and DOC (−25.0‰ to −29.0‰) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in δ13C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-δ13C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-δ13C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10–30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号