首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Petrologic, trace element and Sr-Nd isotopic studies of mantle xenoliths in Quaternary basalts from Huinan, NE China provide constraints on the origin of coarse-grained harzburgites and the nature of lithosphere-asthenosphere interaction during lithospheric thinning. The Huinan harzburgites have a secondary recrystallized texture and their composition deviates from the partial melting trend of residual peridotites. The convex-upward REE pattern and a positive Cr-Yb correlation in clinopyroxene imply an interaction with basaltic melts at a high melt/rock ratio. The Huinan harzburgites are therefore not simple residues of partial melting, but likely resulted from melt-rock interaction during which the percolating melts preferentially dissolved pyroxenes by precipitation of olivine, transforming lherzolite to harzburgite. The melt percolation-reaction enhanced grain boundary diffusion kinetics, and gave rise to the characteristic texture of these mantle rocks. These “reactive” harzburgites were eventually metasomatized by compositionally distinct small volume volatile-rich melts, which may be derived from the main harzburgite-forming event as a result of melt-consuming reaction. Most likely the formation of the Huinan harzburgites was coeval with thermo-tectonic erosion of the continental lithosphere by upwelling asthenospheric melts. Thermometric considerations suggest a relatively long time interval between lithospheric thinning and eruption of the host basalts, consistent with the contention that lithospheric thinning in eastern China may have peaked in the late Cretaceous.  相似文献   

2.
《Chemical Geology》1999,153(1-4):11-35
Anhydrous mantle peridotite xenoliths from a single volcanic vent in the French Massif Central are compositionally varied, ranging from relatively fertile lherzolites to refractory harzburgites. Fertile lherzolites closely resemble previous estimates of undepleted mantle compositions but the average of the Ray Pic xenoliths is much less enriched in LILE and LREE than McDonough's (1990) average mantle [McDonough, W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett., 101, 1–18]. The wide geochemical variation in the bulk rocks reflects significant heterogeneities that can be attributed to two major processes within the shallow lithospheric mantle. The first process is depletion, related to variable degrees of partial melting and melt extraction from an originally near-chondritic mantle. This process has largely controlled the major elements and much of the trace element variation between fertile lherzolites and refractory peridotites. LREE-depleted compositions are also produced by this process. During partial melting, HREE behaved coherently with the major oxides and the moderately incompatible trace elements (Y, V and Sc). A subsequent process of enrichment is indicated by high concentrations of incompatible trace elements in many of the xenoliths. Sr, Ba, K, Th, U, Nb and LREE abundance are independent of major oxide variations and reflect enrichment related to infiltration by alkaline silicate melts/fluids. Both fertile and refractory mantle were enriched but harzburgites were particularly affected. Modal metasomatism occurred only rarely and is indicated by Cr-diopside-rich veins and patches in a few samples. Their chemistry suggests that they were also formed by migration of similar magmas/fluids from the asthenospheric mantle, although the presence of wehrlitic patches may indicate interaction with carbonate melts. In both depleted and enriched xenoliths, trace element patterns for separated clinopyroxenes closely reflect those of the bulk rock, except for Rb, Ba and Nb, which are probably hosted by other phases.  相似文献   

3.
FRANCIS  DON 《Journal of Petrology》1987,28(3):569-597
Magmas which have equilibrated with the Earth's upper mantleare generally assumed to be compositionally buffered by spinellherzolite as represented by Cr-diopside series xenoliths foundin alkaline lavas. The fact that the mineral equilibria preservedin such xenoliths typically reflect re-equilibration at sub-solidusmantle conditions, however, has discouraged attempts to usethe compositional variation observed in spinel lherzolite xenolithsto constrain the compositions of melts extracted from the uppermantle. A suite of mantle-derived xenoliths from the AlligatorLake volcanic center in the southern Yukon, Canada, exhibitsa bimodal xenolith population consisting of lherzolites, themost fertile of which approach pyrolite in composition, andrelatively depleted harzburgites. If a source-residue relationshipis assumed between the two, then the extracted melt was a picriticmagma (17 wt. per cent MgO, 23 Mg cation units) with low Febut relatively high Si contents, similar to picritic lavas associatedwith subduction margins. The compositional variation within the lherzolite xenoliths,however, is not towards the majority of the harzburgite xenoliths,but towards relatively rare, Fe-rich harzburgites. Reactionsobserved between the xenoliths and their alkaline host lavasmay provide an analogue for the upper mantle process which producedthis trend. The observed reactions result in the loss of anAl and Si-rich melt associated with the preferential destructionof pyroxene and spinel and a concomitant rise in the Fe contentof residual olivine. The result of such an interaction in theupper mantle would be the development of a Fe and oli vine-richresidue similar to the observed Fe-rich harzburgites. In turn,the magma responsible would be forced to evolve towards moreSi-rich, but Fe-poor compositions than would otherwise be possibleby closed system, crystal fractionation. A comparison with other mantle xenolith suites indicates thatthe compositional spectra of many of those associated with continentalalkaline basalts can be interpreted in terms of the extractionof picritic magmas similar to that calculated for AlligatorLake. Xenolith suites from oceanic islands such as Hawaii, incontrast, contain fertile lherzolites which are considerablymore Fe-rich than pyrolite. The associated refractory xenoliths,however, are similar to those at Alligator Lake and their derivationfrom such fertile lherzolites would require the extraction ofa picritic melt which was both Fe and Si-rich, similar to theobserved tholeiitic picritcs of the shield-building stage ofHawaiian volcanism. Alternately, the Fe-rich lherzolites mayrepresent samples of upper mantle which have reacted extensivelywith the relatively Fe-rich Hawaii magmas. Xenolith suites fromkimberlites, on the otheT hand, are dominated by refractoryharzburgites which are richer in Si but poorer in Fe than theAlligator Lake harzburgites. They suggest that the lower continentallithosphere is both more orthopyroxene-rich and more depletedthan the upper mantle sampled by alkaline basalts. In general,the derivation of depleted harzburgite xenoliths by the partialmelting of a pyrolite mantle source seems to require the extractionof picritic magmas. If the majority of terrestrial basalticmagmas are not derived from picritic parental magmas, they requirethe existence of mantle source regions more Fe-rich than standardpyrolite models.  相似文献   

4.
华北东部中生代晚期-新生代软流圈上涌与岩石圈减薄   总被引:37,自引:3,他引:34  
现今的地幔是由软流圈地幔(热的,主元素饱满、微量元素亏损的,塑性流变性质的)、古老岩石圈地幔(地幔1,冷的,主元素贫瘠、微量元素富集的,刚性的,以方辉橄榄岩为代表)以及现今的岩石圈地幔(地幔2,主元素饱满、微量元素亏损,以二辉橄榄岩为代表,可能包括多时期形成的)组成。古老岩石圈地幔与地幔2样品的共存、100~4·3Ma在地幔内部持续发生的古老岩石圈与软流圈的相互作用以及上述作用的时空不均一性,都表明了岩石圈减薄是软流圈呈“蘑菇云状”大规模上涌的结果。上述事件发生于100Ma以后。软流圈来源的玄武岩大范围喷发并伴随了岩石圈的强烈拉伸是事件发生的主要标志,岩石圈减薄是一个深部地质过程,不像是突发事件。  相似文献   

5.
Mantle xenoliths from Hainan and Qilin, South China have been studied to constrain the nature of the upper mantle and mantle processes beneath a continental margin. The extremely low Ti (160–245 ppm) contents in clinopyroxenes from some spinel lherzolites, indicative of high degrees of partial melting are inconsistent with the relatively high clinopyroxene modes (7.4–13%) in these samples. This inconsistency could be due to polybaric melting that started in the garnet stability field, then, after the breakdown of garnet to pyroxene and spinel, continued in the spinel stability field. Polybaric melting, due to adiabatic decompression of upwelling mantle, would leave a residual mantle in which the degree of depletion decreases with depth. The predicted stratified lithospheric mantle is evidenced by the negative correlation between the forsterite content in olivine and the equilibration temperature, proportional to the depth in the lithosphere from which the xenolith was derived. The lower part of the lithospheric mantle beneath South China consists predominantly of fertile and moderately depleted peridotites, which are either devoid of LREE enrichment, or show the trace element signature of incipient metasomatism, and plot within the Phanerozoic mantle domain. In contrast, the upper part of the mantle contains harzburgite and cpx-poor lherzolite, which are strongly affected by metasomatism of melt/fluid of highly variable composition. The anomalously high orthopyroxene mode (up to 47%) makes some of these refractory samples compositionally similar to the Proterozoic/Archean mantle. Their low equilibrium temperature (800–900 °C) points to the presence of old lithospheric relicts in the uppermost mantle beneath South China. Such lithosphere architecture may have resulted from partial replacement of Archean–Proterozoic lithosphere by asthenosphere that rose adiabatically subsequent to lithospheric thinning during the Cenozoic.  相似文献   

6.
The diamondiferous Letlhakane kimberlites are intruded into the Proterozoic Magondi Belt of Botswana. Given the general correlation of diamondiferous kimberlites with Archaean cratons, the apparent tectonic setting of these kimberlites is somewhat anomalous. Xenoliths in kimberlite diatremes provide a window into the underlying crust and upper mantle and, with the aid of detailed petrological and geochemical study, can help unravel problems of tectonic setting. To provide relevant data on the deep mantle under eastern Botswana we have studied peridotite xenoliths from the Letlhakane kimberlites. The mantle-derived xenolith suite at Letlhakane includes peridotites, pyroxenites, eclogites, megacrysts, MARID and glimmerite xenoliths. Peridotite xenoliths are represented by garnet-bearing harzburgites and lherzolites as well as spinel-bearing lherzolite xenoliths. Most peridotites are coarse, but some are intensely deformed. Both garnet harzburgites and garnet lherzolites are in many cases variably metasomatised and show the introduction of metasomatic phlogopite, clinopyroxene and ilmenite. The petrography and mineral chemistry of these xenoliths are comparable to that of peridotite xenoliths from the Kaapvaal craton. Calculated temperature-depth relations show a well-developed correlation between the textures of xenoliths and P-T conditions, with the highest temperatures and pressures calculated for the deformed xenoliths. This is comparable to xenoliths from the Kaapvaal craton. However, the P-T gap evident between low-T coarse peridotites and high-T deformed peridotites from the Kaapvaal craton is not seen in the Letlhakane xenoliths. The P-T data indicate the presence of lithospheric mantle beneath Letlhakane, which is at least 150 km thick and which had a 40mW/m2 continental geotherm at the time of pipe emplacement. The peridotite xenoliths were in internal Nd isotopic equilibrium at the time of pipe emplacement but a lherzolite xenolith with a relatively low calculated temperature of equilibration shows evidence for remnant isotopic disequilibrium. Both harzburgite and lherzolite xenoliths bear trace element and isotopic signatures of variously enriched mantle (low Sm/Nd, high Rb/Sr), stabilised in subcontinental lithosphere since the Archaean. It is therefore apparent that the Letlhakane kimberlites are underlain by old, cold and very thick lithosphere, probably related to the Zimbabwe craton. The eastern extremity of the Proterozoic Magondi Belt into which the kimberlites intrude is interpreted as a superficial feature not rooted in the mantle. Received: 19 March 1996 / Accepted: 16 October 1996  相似文献   

7.
The mineral chemistry, major and trace element, and Sr–Nd isotopic composition of Cr-diopside, spinel peridotite xenoliths from the Estancia Lote 17 locality in southern Patagonia document a strong carbonatitic metasomatism of the backarc continental lithosphere. The Lote 17 peridotite xenolith suite consists of hydrous spinel lherzolite, wehrlite, and olivine websterite, and anhydrous harzburgite and lherzolite. Two-pyroxene thermometry indicates equilibration temperatures ranging from 870 to 1015 °C and the lack of plagioclase or garnet suggests the xenoliths originated from between ˜40 and 60 km depth. All of the xenoliths are LILE- and LREE-enriched, but have relatively low 87Sr/86Sr (0.70294 to 0.70342) and high ɛNd (+3.0 to +6.6), indicating recent trace element enrichment (∼25 Ma, based on the low 87Sr/86Sr and high Rb concentrations of phlogopite separates) in the long-term, melt-depleted Patagonian lithosphere. Lote 17 peridotite xenoliths are divided into two basic groups. Group 1 xenoliths consist of fertile peridotites that contain hydrous phases (amphibole ± phlogopite ± apatite). Group 1 xenoliths are further subdivided into three groups (a, b, and c) based on distinctive textures and whole-rock chemistry. Group 1 xenolith mineralogy and chemistry are consistent with a complex metasomatic history involving variable extents of recent carbonatite metasomatism (high Ca/Al, Nb/La, Zr/Hf, low Ti/Eu) that has overprinted earlier metasomatic events. Group 2 xenoliths consist of infertile, anhydrous harzburgites and record cryptic metasomatism that is attributed to CO2-rich fluids liberated from Group 1 carbonatite metasomatic reactions. Extremely variable incompatible trace element ratios and depleted Sr–Nd isotopic compositions of Lote 17 peridotite xenoliths indicate that the continental lithosphere was neither the primary source nor an enriched lithospheric contaminant for Neogene Patagonian plateau lavas. Neogene plateau magmatism associated with formation of asthenospheric slab windows may have triggered this occurrence of “intraplate-type” carbonatite metasomatism in an active continental backarc setting. Received: 26 January 2000 / Accepted: 1 March 2000  相似文献   

8.
Protogranular spinel-peridotite mantle xenoliths and their host sodic alkaline lavas of Cretaceous to Paleogene age occur at the same latitude ≈26°S in central eastern Paraguay and Andes. Na- alkaline lavas from both regions display similar geochemical features, differing mainly by higher Rb content of the Paraguayan samples. Sr, Nd, and Pb isotope ratios are also similar with predominant trends from depleted to enriched mantle components. The mantle xenoliths are divided into two main suites, i.e. relatively low in potassium and incompatible elements, and high in potassium and incompatible elements. The suite high in potassium occurs only in Paraguay. Compositions of both suites range from lherzolite to dunite indicating variable “melt extraction”. Clinopyroxenes from the xenoliths display variable trace element enrichment/depletion patterns compared with the pattern of average primitive mantle. Enrichment in LREE and Sr coupled with depletion of Nb, Ti and Zr in xenoliths from both areas are attributed to asthenospheric metasomatic fluids affecting the lithospheric mantle. Metasomatism is apparent in the sieve textures and glassy drops in clinopyroxenes, by glassy patches with associated primary carbonates in Paraguayan xenoliths. Trace element geochemistry and thermobarometric data indicate lack of interaction between xenoliths and host lavas, due to their rapid ascent. Sr and Nd isotope signatures of the Andean and Paraguayan xenoliths and host volcanic rocks plot mainly into the field of depleted mantle and show some compositional overlap. The Andean samples indicate a generally slightly more depleted mantle lithosphere. Pb isotope signatures in xenoliths and host volcanic rocks indicate the existence of a radiogenic Pb source (high U/Pb component in the source) in both areas. In spite of the distinct tectonic settings, generally compressive in the Central Andes (but extensional in a back-arc environment), and extensional in Eastern Paraguay (rifting environment in an intercratonic area), lavas and host xenoliths from both regions are similar in terms of geochemical and isotopic characteristics.  相似文献   

9.
Mantle xenoliths in alkaline lavas of the Kerguelen Islandsconsist of: (1) protogranular, Cr-diopside-bearing harzburgite;(2) poikilitic, Mg-augite-bearing harzburgite and cpx-poor lherzolite;(3) dunite that contains clinopyroxene, spinel phlogopite, andrarely amphibole. Trace element data for rocks and mineralsidentify distinctive signatures for the different rock typesand record upper-mantle processes. The harzburgites reflectan initial partial melting event followed by metasomatism bymafic alkaline to carbonatitic melts. The dunites were firstformed by reaction of a harzburgite protolith with tholeiiticto transitional basaltic melts, and subsequently developed metasomaticassemblages of clinopyroxene + phlogopite ± amphiboleby reaction with lamprophyric or carbonatitic melts. We measuredtwo-mineral partition coefficients and calculated mineral–meltpartition coefficients for 27 trace elements. In most samples,calculated budgets indicate that trace elements reside in theconstituent minerals. Clinopyroxene is the major host for REE,Sr, Y, Zr and Th; spinel is important for V and Ti; orthopyroxenefor Ti, Zr, HREE, Y, Sc and V; and olivine for Ni, Co and Sc. KEY WORDS: mantle xenoliths; mantle metasomatism; partition coefficients; Kerguelen Islands; trace elements  相似文献   

10.
Peridotitic clinopyroxene (cpx) and pyrope garnet xenocrysts from four kimberlite pipes in the Kaavi–Kuopio area of Eastern Finland have been studied using major and trace element geochemistry to obtain information on the vertical compositional variability of the underlying mantle. The xenocryst data, when combined with the petrological constraints provided by peridotite xenoliths, yield a relatively complete section through the lithospheric mantle. Single-grain cpx thermobarometry fits with a 36-mW/m2 geotherm calculated using heat flow constraints and xenolith modes and geophysical properties. Ni thermometry on pyrope xenocrysts gives 700–1350 °C and, based on the cpx xenocryst/xenolith geotherm, indicates a wide sampling interval, ca. 80–230 km. Plotting pyrope major and trace element compositions as a function of temperature shows there are three distinct layers in the local lithospheric mantle:
(1) A low-temperature (<850 °C) harzburgite layer distinguished by Ca-rich but Ti-, Y- and Zr-depleted pyropes. The xenoliths originating from this layer are all fine-grained garnet-spinel harzburgites with secondary cpx.
(2) A variably depleted lherzolitic, harzburgitic and wehrlitic horizon from 950 to 1150 °C or 130 to 180 km.
(3) A deep layer from 180 to 240 km composed largely of fertile material.
The peridotitic diamond window at Kaavi–Kuopio stretches from the top of the diamond stability field at 140 km to the base of the harzburgite-bearing mantle at about 180 km, implying a roughly 40-km-wide prospective zone.  相似文献   

11.
The petrology and geochemistry of peridotite xenoliths in the Cenozoic basalts from Fanshi, the central North China Craton (NCC), provide constraints on the evolution of sub-continental lithospheric mantle. These peridotite xenoliths are mainly spinel-facies lherzolites with minor harzburgites. The lherzolites are characterized by low forsterite contents in olivines (Fo < 91) and light rare earth element (LREE) enrichments in clinopyroxenes. In contrast, the harzburgites are typified by high-Fo olivines (> 91), high-Cr# spinels and clinopyroxenes with low abundances of heavy REE (HREE). These features are similar to those from old refractory lithospheric mantle around the world, and thus interpreted to be relics of old lithospheric mantle. The old lithospheric mantle has been chemically modified by the influx of melts, as evidenced by the Sr–Nd isotopic compositions of clinopyroxenes and relatively lower Fo contents than typical Archean lithospheric mantle (Fo > 92.5). The Sr–Nd isotopic compositions of harzburgites are close to EM1-type mantle, and of the lherzolites are similar to bulk silicate earth. The latter could be the result of recent modification of old harzburgites by asthenospheric melt, which is strengthened by fertile compositions of minerals in the lherzolites. Therefore, the isotopic and chemical heterogeneities of the Fanshi peridotite xenoliths reflect the refertilization of ancient refractory lithospheric mantle by massive addition of asthenospheric melts. This may be an important mechanism for the lithospheric evolution beneath the Central NCC.  相似文献   

12.
本文对华北克拉通三个不同地区(河北汉诺坝、内蒙古集宁三义堂、河南鹤壁)新发现的含金云母尖晶石二辉橄榄岩和尖晶石橄榄单斜辉石岩捕虏体进行了详细的矿物组成、单斜辉石的微量元素和 Sr-Nd 同位素研究。通过与相同地区不含金云母尖晶石二辉橄榄岩捕虏体的系统对比发现通常含金云母的地幔橄榄岩比不含金云母的地幔橄榄岩岩富 Al_2O_3、CaO、NaO、K_2O、TiO_2,但相对贫镁;其单斜辉石的 LREE 更为富集,但 Sr、Nd 同位素组成则相对亏损。这说明地幔交代作用不仅能够造成地幔橄榄岩的玄武质组分和稀土元素的富集,而且亦能够造成全岩和橄榄石 Mg~#的降低和同位素组成的相对亏损。捕虏体的 Rb-Sr 等时线年龄暗示地幔交代作用发生在中、新生代;其交代熔体来源于软流圈。同时说明华北新生代岩石圈地慢普遍存在的主、微量元素和同位素组成类似于"大洋型"岩石圈地幔的特征很可能是岩石圈地幔橄榄岩与软流圈来源的熔体的大规模反应的结果,而非真正意义上的新增生的岩石圈地幔。  相似文献   

13.
Don Francis   《Lithos》2003,71(2-4):135-152
The Earth's continents are cored by Archean cratons underlain by seismically fast mantle roots descending to depths of 200+ km that appear to be both more refractory and colder than the surrounding asthenospheric mantle. Low-temperature mantle xenoliths from kimberlite pipes indicate that the shallow parts of these cratonic mantle roots are dominated by refractory harzburgites that are very old (3+ Ga). A fundamental mass balance problem arises, however, when attempts are made to relate Archean high-Mg lavas to a refractory restite equivalent to the refractory lithospheric mantle roots beneath Archean cratons. The majority of high-Mg Archean magmas are too low in Al and high in Si to leave behind a refractory residue with the composition of the harzburgite xenoliths that constitute the Archean mantle roots beneath continental cratons, if a Pyrolitic primitive mantle source is assumed. The problem is particularly acute for 3+ Ga Al-depleted komatiites and the Si-rich harzburgites of the Kaapvaal and Slave cratons, but remains for cratonic harzburgites that are not anomalously rich in orthopyroxene and many Al-undepleted komatiites. This problem would disappear if fertile Archean mantle was richer in Fe and Si, more similar in composition to chondritic meteorites than the present Pyrolitic upper mantle of the Earth. Accepting the possibility that the Earth's convecting upper mantle has become poorer in Fe and Si over geologic time not only provides a simpler way of relating Archean high-Mg lavas to the lithospheric mantle roots that underlie Archean cratons, but could lead to new models for the nature Archean magmatism and the lower mantle sources of modern hot-spot volcanism.  相似文献   

14.
Lithospheric thinning beneath the eastern North China Craton is widely recognized, but the mechanism and timing of the thinning are contentious. New data on peridotitic xenoliths from the Cretaceous (∼100 Ma) Fuxin basalts at the northern edge of the craton have been integrated with data from other localities across the craton, to provide an overview of the processes involved. The Fuxin peridotite xenoliths can be subdivided into three types, which can also be recognized in other xenolith suites across the craton. The dominant Type 1, lherzolites with olivine Mg# ∼90, represents fertile mantle (5-12% partial-melt extraction) that makes up much of the Late Mesozoic-Cenozoic lithosphere beneath the craton. Type 2 consists of magnesian (olivine Mg# >92) harzburgites, interpreted as shallow relics of the Archean cratonic mantle. Type 3, minor lherzolite xenoliths with olivine Mg# ∼86 reflect the interaction of the lithosphere with magmas similar to the host basalts. In-situ Re-Os data on sulfides in xenoliths from Hebi (4 Ma, interior of the craton) and Hannuoba (22 Ma, northern edge of the Trans-North China Orogen within the craton) basalts give model ages of 3.1-3.0, 2.5, 2.2-2.1, 1.4 and 0.8 Ga, These correspond to the U-Pb ages of zircons from early Mesozoic (178 Ma) peridotitic xenoliths at the southern margin of the craton, and record events during which the Archean lithospheric mantle was modified. The dominance of fertile peridotite xenoliths in the 100 Ma Fuxin basalts indicates that the mantle replacement beneath the eastern North China Craton at least partly took place before that time. The regional synthesis suggests that Mesozoic-Cenozoic lithospheric thinning and mantle replacement was heterogeneously distributed across the North China Craton in space and time. Lateral spreading of the lithosphere, accompanied by asthenospheric upwelling and melt-peridotite interaction, is the most probable mechanism for the lithospheric thinning beneath the eastern part of the craton. Subsequent cooling of the upwelled asthenosphere caused some re-thickening of the lithosphere; this overall more fertile and hence denser lithosphere resulted in widespread basin formation.  相似文献   

15.
Abundant spinel peridotite xenoliths occur in late Cenozoic alkali basaltic rocks in the Sikhote-Alin region at the Pacific margin of the Asian continent. Major- and trace-element compositions of representative peridotite xenolith are documented for four occurrences located in different structural units of the continental margin. In each locality, the majority of xenoliths have distinctive microstructures, modal and chemical compositions that are typical for a given xenolith suite. Significant textural and compositional differences between the four xenolith suites suggest that the upper mantle beneath the Sikhote-Alin consists of distinct domains with contrasting composition. The inferred large-scale mantle heterogeneities may be due to juxtaposition of lithospheric blocks of different provenance during accretion of the Sikhote-Alin to the Asian continent.

Trace-element patterns of the xenoliths and their minerals obtained ICP-MS technique provide evidence of depletion and enrichment events and indicate contrasting behaviour of REE, HFSE and other incompatible trace elements. The HFSE behave non-concordantly, in particular, some xenoliths have highly fractionated Zr/Hf, Ti/Zr, Nb/Ta, La/Nb and U/Th ratios relative to their values in the primitive mantle. The fractionated compositions may be related to the interaction of evolved subduction-related fluids and melts with lithospheric mantle at the Mesozoic-early Cenozoic active continental margin or to metasomatism during later continental rifting.  相似文献   


16.
The assumption that mafic alkaline magmas are derived from mantle sources with a lherzolite mineralogy has become entrenched in the petrologic literature. Although it is commonly assumed that highly alkaline magmas require metasomatised mantle sources, there is little understanding of the spatial relation of such sources with respect to those of associated more Si-rich transitional magmas. Glasses developed in mantle xenoliths represent natural experiments which may provide some insight on this problem. Highly silica undersaturated glasses developed in the amphibole-garnet clinopyroxenite portion of a composite xenolith from Nunivak Island, Alaska, become quartz normative where they penetrate adjacent spinel lherzolite. A comparison of glass compositions in mantle pyroxenite and lherzolite xenoliths reveals that glasses developed in amphibole pyroxenite xenoliths are in general more silica undersaturated than those in lherzolite xenoliths. This suggests that some highly silica undersaturated magmas such as nephelinites may in fact be derived by the preferential melting of amphibole or amphibole-garnet pyroxenite veins and that the spectrum from nephelinite to transitional alkaline basalt that characterizes many individual alkaline volcanic suites is produced by mixing with melt derived from the host lherzolite as the degree of partial melting increases.  相似文献   

17.
Low-Ca garnet harzburgite xenoliths contain garnets that are deficient in Ca relative to those that have equilibrated with diopside in the iherzolite assemblage. Minor proportions of these harzburgites are of wide-spread occurrence in xenolith suites from the Kaapvaal craton and are of particular interest because of their relation to diamond host rocks. The harzburgite xenoliths are predominantly coarse but one specimen from Jagersfontein and another from Premier have deformed textures similar to those of high-temperature peridotites. Analyses for many elements in the harzburgites and associated iherzolites form concordant overlapping trends. On the average, however, the harzburgites are deficient in Si, Ca, Al and Fe but enriched in Mg and Ni relative to the lherzolites. Both the harzburgites and lherzolites are enstatite-rich with mg numbers [100.Mg/(Mg+Fetotal)] greater than 92 and in these respects differ markedly from residues generated by extraction of MORB. Equilibration temperatures and depths calculated for the harzburgites have the ranges 600–1,400°C and 50–200 km. Those of deepest origin overlap the interval between low-and high-temperature lherzolites that commonly is observed in temperature-depth plots for the Kaapvaal craton, suggesting that some harzburgites may be concentrated relative to lherzolites at the base of the lithosphere. The low-Ca harzburgites and lherzolite xenoliths have overlapping depths of origin, gradational bulk chemical characteristics and similar textures, and therefore both are believed to have formed as residues of Archaen melting events. The harzburgites differ from the lherzolites only in that they are more depleted. Garnets and associated minerals in harzburgite xenoliths differ from minerals of the same assemblage that are included in diamonds in that the latter are more Cr-rich, Mg-rich and Ca-poor. Coarse crystals of low-Ca garnet with the compositional characteristics of diamond inclusions commonly occur as disaggregated grains in diamondiferous kimberlites. Their host rocks are presumed to have been harzburgites and dunites. The differences in composition between the disaggregated grains that are similar to diamond inclusions and those comprising xenoliths imply some differences in origin. Possibly the disaggregated harzburgites with diamond-inclusion mineralogy have undergone repeated partial melting and depletion near the base of the lithosphere subsequent to their primary depletion and aggregation in the craton. Equilibration with magnesite may have reduced the Ca contents of their garnets and decomposition of the magnesite during eruption may have caused their disaggregation.  相似文献   

18.
吉林省蛟河市境内大石河新生代玄武岩中含有丰富的地幔橄榄岩包体,详细的岩石学与矿物学研究显示,这些包体的主要岩石类型为尖晶石二辉橄榄岩-方辉橄榄岩,未发现石榴石橄榄岩。岩相学及地球化学资料显示它们都是经历过熔体抽取而形成的岩石圈地幔残留。矿物平衡温度计算发现,本区的这些地幔橄榄岩包体来自地下40~60km 深度,且下部以二辉橄榄岩为主,而上部以贫单斜辉石的二辉橄榄岩和方辉橄榄岩为主,显示明显的岩石圈地幔分层现象。Sr-Nd-Hf 同位素资料反映这些地幔包体均表现为亏损性质,而 Re-Os 同位素资料确定上述岩石圈地幔形成于中元古代,明显老于上覆地壳的新元古宙时代,反映壳幔年龄上的解耦。因此我们推测,该区曾经历过华北克拉通类似的早期岩石圈地幔的整体丢失事件,然后形成于其它地区的中元古宙岩石圈地幔在本区增生。  相似文献   

19.
Interaction between basaltic melts and peridotites has played an important role in modifying the lithospheric and asthenospheric mantle during magma genesis in a number of tectonic settings. Compositions of basaltic melts vary considerably and may play an important role in controlling the kinetics of melt–peridotite interaction. To better understand the effect of melt composition on melt–peridotite interaction, we conducted spinel lherzolite dissolution experiments at 2 GPa and 1,425 °C using the dissolution couple method. The reacting melts include a basaltic andesite, a ferro-basalt, and an alkali basalt. Dissolution of lherzolite in the basaltic andesite and the ferro-basalt produced harzburgite–lherzolite sequences with a thin orthopyroxenite layer at the melt–harzburgite interface, whereas dissolution of lherzolite in the alkali basalt produced a dunite–harzburgite–lherzolite sequence. Systematic variations in mineral compositions across the lithological units are observed. These mineral compositional variations are attributed to grain-scale processes that involve dissolution, precipitation, and reprecipitation and depend strongly on reacting melt composition. Comparison of mineral compositional variations across the dissolution couples with those observed in mantle xenoliths from the North China Craton (NCC) helps to assess the spatial and temporal variations in the extent of siliceous melt and peridotite interaction in modifying the lithospheric mantle beneath the NCC. We found that such melt–rock interaction mainly took place in Early Cretaceous, and is responsible for the enrichment of pyroxene in the lithospheric mantle. Spatially, siliceous melt–peridotite interaction took place in the ancient orogens with thickened lower crust.  相似文献   

20.
位于安徽省境内的女山新生代碱性玄武岩中含有大量而且类型丰富的地幔橄榄岩包体,主要类型有尖晶石相、石榴石相、尖晶石-石榴子石过渡相二辉橄榄岩以及少量的方辉橄榄岩,其中部分尖晶石二辉橄榄岩样品中出现富含挥发分的角闪石、金云母和磷灰石。本文选择该区的尖晶石二辉橄榄岩和方辉橄榄岩包体进行了较为详细的岩石学、矿物学、地球化学研究工作。结果显示,除2个方辉橄榄岩表现难熔特征外,其它25件尖晶石相二辉橄榄岩均具有饱满的主量元素组成。二辉橄榄岩样品的Sr-Nd-Hf同位素均表现为亏损地幔的性质,不同于古老克拉通型难熔、富集的岩石圈地幔。富含挥发份交代矿物的出现以及轻稀土元素不同程度的富集,表明女山岩石圈地幔经历了较为强烈的交代作用,然而Re-Os同位素及PGE分析结果表明交代作用并没有显著改变Os同位素组成。二辉橄榄岩样品均具有较高的Os同位素组成,结合其饱满的主量元素组成,亏损的同位素特征,表明女山地区岩石圈地幔整体为新生岩石圈地幔。但1个方辉橄榄岩样品给出了较低的Os同位素比值0.1184,其Re亏损年龄为1.5Ga,它可能来自于软流圈中残留的古老难熔地幔。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号