首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data are considered on samples taken during the 2006–2008 expeditions from the water and bottom sediments in the areas where chemical weapon was dumped in the Bornholm basin. Arsenic concentration is detected with the X-ray fluorescence analysis and inversion voltammetry. Results are under consideration of the enhanced arsenic content and their relation to arsenic-bearing toxic agents. It is pointed out that arsenic contamination is local in character and at present is of no serious hazard to the natural environment.  相似文献   

2.
During slightly unstable but still very close to neutral conditions new results from two previous investigations have shown a significant increase of sensible and latent heat fluxes over the sea. The vertical heat transport during these conditions is dominated by detached eddies originating at the top of the boundary layer, bringing relatively cold and dry air to the surface. This effect can be described in numerical models by either enhanced heat transfer coefficients for sensible and latent heat (Stanton and Dalton numbers respectively) or with an additional roughness length, added to the original roughness lengths for heat and humidity. Such new expressions are developed using turbulence measurements from the Baltic Sea valid for wind speeds up to 14 m s−1. The effect of including the increased heat fluxes is investigated using two different numerical models: a regional three-dimensional climate model covering northern Europe, and a process-oriented ocean model for the Baltic Sea. During periods of several days, the latent heat flux can be increased by as much as 100 W m−2. The increase in sensible heat flux is significantly smaller since the process is only of importance in the very near-neutral regime where the sensible heat flux is very small. The long-term average effect over the Baltic Sea is of the order of several W m−2.  相似文献   

3.
A regional ocean circulation model was used to project Baltic Sea climate at the end of the twenty-first century. A set of four scenario simulations was performed utilizing two global models and two forcing scenarios. To reduce model biases and to spin up future salinity the so-called Δ-change approach was applied. Using a regional coupled atmosphere–ocean model 30-year climatological monthly mean changes of atmospheric surface data and river discharge into the Baltic Sea were calculated from previously conducted time slice experiments. These changes were added to reconstructed atmospheric surface fields and runoff for the period 1903–1998. The total freshwater supply (runoff and net precipitation) is projected to increase between 0 and 21%. Due to increased westerlies in winter the annual mean wind speed will be between 2 and 13% larger compared to present climate. Both changes will cause a reduction of the average salinity of the Baltic Sea between 8 and 50%. Although salinity in the entire Baltic might be significantly lower at the end of the twenty-first century, deep water ventilation will very likely only slightly change. The largest change is projected for the secondary maximum of sea water age within the halocline. Further, the average temperature will increase between 1.9 and 3.2°C. The temperature response to atmospheric changes lags several months. Future annual maximum sea ice extent will decrease between 46 and 77% in accordance to earlier studies. However, in contrast to earlier results in the warmest scenario simulation one ice-free winter out of 96 seasons was found. Although wind speed changes are uniform, extreme sea levels may increase more than the mean sea level. In two out of four projections significant changes of 100-year surge heights were found.  相似文献   

4.
The peculiarities are studied of variations of average annual and extreme levels in the Russian sector of the Vistula Lagoon situated in the southeastern part of the Baltic Sea. The main regularity of interannual variations of averaged characteristics of the lagoon level is a steady trend towards their increase: the mean level increase is characterized by the linear trend increasing depending on the length of the series, from 1.7–1.9 mm/year (Baltiisk, 1860–2006; Kaliningrad, 1901–2006) to 3.6–3.7 mm/year (Kaliningrad, Baltiisk, Krasnoflotskoe, 1959–2006). On the sea coast (Pionerskii, 1959–2006), this trend in the second half of the 20th century amounted to 2.6 mm/year only. The obtained results illustrate the response of level variations in the Baltic Sea lagoons to the global climate warming and indicate that the long-term evolution of average characteristics of the Vistula Lagoon level cannot be explained only by the increase in the level of the World Ocean and adjacent seas intensified in recent decades but is caused by the changes in the wind load and precipitation in the catchment basin.  相似文献   

5.
Global North Atlantic Oscillation (NAO) oceanic precipitation features in the latter half of the twentieth century are documented based on the intercomparison of multiple state-of-the-art precipitation datasets and the analysis of the NAO atmospheric circulation and SST anomalies. Most prominent precipitation anomalies occur over the ocean in the North Atlantic, where in winter a “quadrupole-like” pattern is found with centers in the western tropical Atlantic, sub-tropical Atlantic, high-latitude eastern Atlantic and over the Labrador Sea. The extent of the sub-tropical and high-latitude center and the amount of explained variance (over 50%) are quite remarkable. However, the tropical Atlantic center is probably the most intriguing feature of this pattern apparently linking the NAO with ITCZ variability. In summer, the pattern is “tripole-like” with centers in the eastern Mediterranean Sea, the North Sea/Baltic Sea and in the sub-polar Atlantic. In the eastern Indian Ocean, the correlation is positive in winter and negative in summer, with some link to ENSO variability. The sensitivity of these patterns to the choice of the NAO index is minor in winter while quite important in summer. Interannual NAO precipitation anomalies have driven similar fresh water variations in these “key” regions. In the sub-tropical and high-latitude Atlantic in winter precipitation anomalies have been roughly 15 and 10% of climatology per unit change of the NAO, respectively. Decadal changes of the NAO during the last 50 years have also influenced precipitation and fresh water flux at these time-scales, with values lower (higher) than usual in the high-latitude eastern North Atlantic (Labrador Sea) in the 1960s and the late 1970s, and an opposite situation since the early 1980s; in summer the North Sea/Baltic region has been drier than usual during the period 1965–1975 when the NAO was generally positive.  相似文献   

6.
For the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC), the recent version of the coupled atmosphere/ocean general circulation model (GCM) of the Max Planck Institute for Meteorology has been used to conduct an ensemble of transient climate simulations These simulations comprise three control simulations for the past century covering the period 1860–2000, and nine simulations for the future climate (2001–2100) using greenhouse gas (GHG) and aerosol concentrations according to the three IPCC scenarios B1, A1B and A2. For each scenario three simulations were performed. The global simulations were dynamically downscaled over Europe using the regional climate model (RCM) REMO at 0.44° horizontal resolution (about 50 km), whereas the physics packages of the GCM and RCM largely agree. The regional simulations comprise the three control simulations (1950–2000), the three A1B simulations and one simulation for B1 as well as for A2 (2001–2100). In our study we concentrate on the climate change signals in the hydrological cycle and the 2 m temperature by comparing the mean projected climate at the end of the twenty-first century (2071–2100) to a control period representing current climate (1961–1990). The robustness of the climate change signal projected by the GCM and RCM is analysed focussing on the large European catchments of Baltic Sea (land only), Danube and Rhine. In this respect, a robust climate change signal designates a projected change that sticks out of the noise of natural climate variability. Catchments and seasons are identified where the climate change signal in the components of the hydrological cycle is robust, and where this signal has a larger uncertainty. Notable differences in the robustness of the climate change signals between the GCM and RCM simulations are related to a stronger warming projected by the GCM in the winter over the Baltic Sea catchment and in the summer over the Danube and Rhine catchments. Our results indicate that the main explanation for these differences is that the finer resolution of the RCM leads to a better representation of local scale processes at the surface that feed back to the atmosphere, i.e. an improved representation of the land sea contrast and related moisture transport processes over the Baltic Sea catchment, and an improved representation of soil moisture feedbacks to the atmosphere over the Danube and Rhine catchments.  相似文献   

7.
Phenological data have shown an increase of ca. 10 days in European growing season length in the latter part of the twentieth century. In general, these changes have been associated with global warming. Here we present a study of thermal growing season (GS) trends in the Greater Baltic Area, northern Europe. Yearly dates for the start, end and length of the GS were computed for 49 stations in the studied area, using daily mean temperature measurements. Trends and tendencies of the GS parameters were analysed within the twentieth century. We also examined GS trends in long records (starting before 1850) from the region. The results show a general increase of the length of the GS of ca one week since 1951 in the area, where the most considerable change has occurred in spring (starting ∼6 days earlier). The largest increases were found at stations adjacent to the Baltic Sea and North Sea, where some Danish stations showed significant increasing trends in the length of the GS of more than 20 days. The only tendency for a shorter GS was found in Archangelsk, north western Russia. The three longest records displayed large inter-annual and decadal variability, with tendencies for increased frequencies of longer growing seasons since the 1950s.  相似文献   

8.
Two weeks of measurements of the boundary-layer height over a small island (Christiansø) in the Baltic Sea are discussed. The meteorological conditions are characterised by positive heat flux over the sea. The boundary-layer height was simulated with two models, a simple applied high-resolution (2 km × 2 km) model, and the operational numerical weather prediction model HIRLAM (grid resolution of 22.5 km × 22.5 km). For southwesterly winds it was foundthat a relatively large island (Bornholm) lying 20-km upwind of the measuring site influences the boundary-layer height. In this situation the high-resolution simple applied model reproduces the characteristics of the boundary-layer height over the measuring site. Richardson-number based methods using data from simulations with the HIRLAM model fail, most likely because the island and the water fetch to the measuring site are about the size of the grid resolution of the HIRLAM model and therefore poorly resolved. For northerly winds, the water fetch to the measuring site is about 100 km. Both models reproduce the characteristics of the height of the marine boundary layer. This suggests that the HIRLAM model adequately resolves a water fetch of 100 km with respect to predictions of the height of the marine boundary layer.  相似文献   

9.
Summary This paper will introduce the Baltex research programme and summarize associated numerical modelling work which has been undertaken during the last five years. The research has broadly managed to clarify the main mechanisms determining the water and energy cycle in the Baltic region, such as the strong dependence upon the large scale atmospheric circulation. It has further been shown that the Baltic Sea has a positive water balance, albeit with large interannual variations. The focus on the modelling studies has been the use of limited area models at ultra-high resolution driven by boundary conditions from global models or from reanalysis data sets. The programme has further initiated a comprehensive integration of atmospheric, land surface and hydrological modelling incorporating snow, sea ice and special lake models. Other aspects of the programme include process studies such as the role of deep convection, air sea interaction and the handling of land surface moisture. Studies have also been undertaken to investigate synoptic and sub-synoptic events over the Baltic region, thus exploring the role of transient weather systems for the hydrological cycle. A special aspect has been the strong interests and commitments of the meteorological and hydrological services because of the potentially large societal interests of operational applications of the research. As a result of this interests special attention has been put on data-assimilation aspects and the use of new types of data such as SSM/I, GPS-measurements and digital radar. A series of high resolution data sets are being produced. One of those, a 1/6 degree daily precipitation climatology for the years 1996–1999, is such a unique contribution. The specific research achievements to be presented in this volume of Meteorology and Atmospheric Physics is the result of a cooperative venture between 11 European research groups supported under the EU-Framework programmes. Received December 15, 2000 Revised March 28, 2001  相似文献   

10.
Summary  Three cyclones developing between 28 August and 6 September 1995 were studied with respect to the temporal evolution of their water budget components. The cyclones were simulated with the regional model REMO. Water budget values were determined from hourly model output for circle areas with 500 km radius around the pressure minimum. The results show a maximum liquid water path of about 0.12 kg m−2 and a maximum ice water path of 0.16 kg m−2. In the vertical cloud structure the medium cloud layer disappears at the end of the life cycle for all three cyclones. The release of precipitation onto the Baltic Sea drainage basin is different for each cyclone. It lies between 13 and 22 · 1012 kg. This is about 50% of the total precipitation in the whole area for the strongest cyclone and 65% for the others. The P — E (precipitation minus evaporation) is 15 · 1012 kg for two of the cyclones and 10 · 1012 kg for the third one. Received August 7, 2000 Revised March 19, 2001  相似文献   

11.
Here we investigate simulated changes in the precipitation climate over the Baltic Sea and surrounding land areas for the period 2071–2100 as compared to 1961–1990. We analyze precipitation in 10 regional climate models taking part in the European PRUDENCE project. Forced by the same global driving climate model, the mean of the regional climate model simulations captures the observed climatological precipitation over the Baltic Sea runoff land area to within 15% in each month, while single regional models have errors up to 25%. In the future climate, the precipitation is projected to increase in the Baltic Sea area, especially during winter. During summer increased precipitation in the north is contrasted with a decrease in the south of this region. Over the Baltic Sea itself the future change in the seasonal cycle of precipitation is markedly different in the regional climate model simulations. We show that the sea surface temperatures have a profound impact on the simulated hydrological cycle over the Baltic Sea. The driving global climate model used in the common experiment projects a very strong regional increase in summertime sea surface temperature, leading to a significant increase in precipitation. In addition to the common experiment some regional models have been forced by either a different set of Baltic Sea surface temperatures, lateral boundary conditions from another global climate model, a different emission scenario, or different initial conditions. We make use of the large number of experiments in the PRUDENCE project, providing an ensemble consisting of more than 25 realizations of climate change, to illustrate sources of uncertainties in climate change projections.  相似文献   

12.
The combined future impacts of climate change and industrial and agricultural practices in the Baltic Sea catchment on the Baltic Sea ecosystem were assessed. For this purpose 16 transient simulations for 1961–2099 using a coupled physical-biogeochemical model of the Baltic Sea were performed. Four climate scenarios were combined with four nutrient load scenarios ranging from a pessimistic business-as-usual to a more optimistic case following the Baltic Sea Action Plan (BSAP). Annual and seasonal mean changes of climate parameters and ecological quality indicators describing the environmental status of the Baltic Sea like bottom oxygen, nutrient and phytoplankton concentrations and Secchi depths were studied. Assuming present-day nutrient concentrations in the rivers, nutrient loads from land increase during the twenty first century in all investigated scenario simulations due to increased volume flows caused by increased net precipitation in the Baltic catchment area. In addition, remineralization rates increase due to increased water temperatures causing enhanced nutrient flows from the sediments. Cause-and-effect studies suggest that both processes may play an important role for the biogeochemistry of eutrophicated seas in future climate partly counteracting nutrient load reduction efforts like the BSAP.  相似文献   

13.
In this study, turbulent heat flux data from two sites within the Baltic Sea are compared with estimates from two models. The main focus is on the latent heat flux. The measuring sites are located on small islands close to the islands of Bornholm and Gotland. Both sites have a wide wind direction sector with undisturbed over-water fetch. Mean parameters and direct fluxes were measured on masts during May to December 1998.The two models used in this study are the regional-scale atmospheric model HIRLAM and the ocean model PROBE-Baltic. It is shown that both models overestimate the sensible and latent heat fluxes. The overestimation can, to a large extent, be explained by errors in the air-water temperature and humidity differences. From comparing observed and modelled data, the estimated 8-month mean errors in temperature and humidity are up to 1 °C and 1 g kg-1, respectively. The mean errors in the sensible and latent heat fluxes for the same period are approximately 15 and 30 W m-2, respectively.Bulk transfer coefficients used for calculating heat and humidity fluxes at the surface were shown to agree rather well with the measurements, at least for the unstable data. For stable stratification, the scatter in data is generally large, and it appears that the bulk formulation chosen overestimates turbulent heat fluxes.  相似文献   

14.
A systematic comparison of wind profiles and momentum exchange at a trade wind site outside Oahu, Hawaii and corresponding data from the Baltic Sea is presented. The trade wind data are to a very high degree swell dominated, whereas the Baltic Sea data include a more varied assortment of wave conditions, ranging from a pure growing sea to swell. In the trade wind region swell waves travel predominantly in the wind direction, while in the Baltic, significant cross-wind swells are also present. Showing the drag coefficient as a function of the 10-m wind speed demonstrates striking differences for unstable conditions with swell for the wind-speed range 2 m s?1 < U 10 < 7 m s?1, where the trade-wind site drag values are significantly larger than the corresponding Baltic Sea values. In striking contrast to this disagreement, other features studied are surprisingly similar between the two sites. Thus, exactly as found previously in Baltic Sea studies during unstable conditions and swell, the wind profile in light winds (3 m s?1) shows a wind maximum at around 7–8 m above the water, with close to constant wind speed above. Also, for slightly higher wind speeds (4 m s?1 < U 10 < 7 m s?1), the similarity between wind profiles is striking, with a strong wind-speed increase below a height of about 7–8 m followed by a layer of virtually constant wind speed above. A consequence of these wind-profile features is that Monin–Obukhov similarity is no longer valid. At the trade-wind site this was observed to be the case even for wind speeds as high as 10 m s?1. The turbulence kinetic energy budget was evaluated for four cases of 8–16 30- min periods at the trade-wind site, giving results that agree very well with corresponding figures from the Baltic Sea.  相似文献   

15.
利用1961—2015年Hadley中心逐月海表温度资料、海冰密集度资料以及NCEP/NCAR再分析资料,探讨了秋季北极海冰对于EP型ENSO事件的异常响应,并进一步研究了这种异常响应的可能原因。结果表明,秋季北极海冰对EP型ENSO的响应具有非线性,特别是喀拉海海域(60°~90°E,70°~80°N)海冰无论在EP型El Ni?o或是La Ni?a位相,均表现为显著的负异常。进一步研究发现,不同ENSO位相造成该区域海冰异常偏少的机制有明显不同。EP型El Ni?o年秋季菲律宾附近海域对流活动被抑制,所激发的经向波列在高纬地区形成异常反气旋环流,其南风分量向喀拉海输送暖平流,造成海冰异常偏少。而EP型La Ni?a年喀拉海海域则主要受到来自大西洋开放性海域西风异常的影响,合成结果和个例年均显示EP型La Ni?a年秋季北大西洋上空存在一个显著的西风急流中心,有利于北大西洋开放性海域较暖海水向下游输送,进而影响喀拉海海冰。这些结果表明,热带外地区大气环流场对EP型ENSO的非线性响应导致了喀拉海海冰对EP型ENSO事件的响应也表现出明显的非线性。  相似文献   

16.
近50a东北冷涡暴雨水汽源地分布及其水汽贡献率分析   总被引:2,自引:1,他引:1  
用HYSPLIT v4.9轨迹追踪模式,以分辨率为2.5°×2.5°的再分析资料驱动模式,对东北地区308例冷涡暴雨过程中的目标气块,进行后向轨迹追踪模拟。结果显示东北冷涡暴雨主要有4个水汽源地,(Ⅰ)西太平洋及相邻海域(包括鄂霍次克海、日本海、黄海、渤海和东海)水汽贡献率最大,平均水汽贡献率达39.8%;依次是(Ⅱ)孟加拉湾—南海海域为32.1%;(Ⅲ)欧亚大陆,尤其是贝加尔湖附近为20.9%;(Ⅳ)东北地区的水汽贡献率最小,仅为7.2%。欧亚大陆主要输送700 hPa高度附近的干冷气团,而各海域则输送800 hPa高度以下的暖湿气团。  相似文献   

17.
A long-range atmosphere transfer of radionuclides from nuclear explosions and nuclear plant accidents is considered. Data on radionuclide transport in the Yenisey, Pripet, Sozh, Iput’, and Besed’ rivers are presented. The time of the radionuclide transport from the Irish Sea to the Baltic and Barents seas is defined using changes in the cesium 134/cesium 137 isotope ratio.  相似文献   

18.
At the designing of nuclear power facilities at the coastal sites the risk of their flooding caused by the combinations of adverse hydrometeorological events should be assessed with the probability of exceedance to 0.01%. According to the IAEA recommendations, the combination of statistical and deterministic methods was used to calculate the flood level of such rare occurrence. The level of flooding caused by the storm surge and reiated wind waves were computed with the probability of 0.01% for the coastal part of the Koporye Bay of the Gulf of Finland in the area of the Leningrad Nuclear Power Plant 2 (LNPP 2) construction; the results are presented. The calculations are based on the CARDINAL and SWAN software and four nested numerical models (for the Baltic Sea, the eastern part of the Gulf of Finland, the Koporye Bay, and a part of the bay in the area of LNPP). The decrease in sea-surface drag coefficient at hurricane winds is taken into account.  相似文献   

19.
Summary Daily circulation patterns responsible for heavy snowfalls in the Polish – German lowlands were analysed. Composite maps of sea level pressure (SLP) and 500 hPa geopotential height means and anomalies were constructed for the days with an increase in snow cover depth by ≥5 cm. Contour maps show negative anomalies of SLP and 500 hPa level over central Europe, indicating a low pressure system. Strong positive anomalies of SLP appear over Scandinavia and the northern Atlantic with the centre of positive anomalies located over Iceland. Weaker negative anomalies are observed in the Azores region. This confirms the strong negative correlation between snow cover appearance and the North Atlantic Oscillation index in Europe. The days with heavy snowfalls were clustered using the Ward’s method. Three types of circulation patterns were distinguished, each of them characterised by a low pressure system over central Europe. Type 3 represents the northern position of the low with its centre over the Baltic Sea, Type 2 shows the southern position of the low with its centre over the Adriatic and the Ionic Sea and Type 1 represents the low location between the two previous patterns with a wide meridional trough over the Atlantic. Author’s address: Ewa Bednorz, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, ul. Dzięgielowa 27, 61-680 Poznań, Poland.  相似文献   

20.
The features of the spatiotemporal variability of the sea level in the North and Baltic seas during the periods of formation of major Baltic inflows are investigated using the analysis of satellite altimetry data. It is demonstrated that dramatic drops in the sea level between the Baltic and North seas are observed during a few weeks before major inflows. A process of intensive inflows of the North Sea water to the Baltic Sea is accompanied not only by horizontal motions but also by vertical ones manifested in the increase in convergent flows in the North Sea and divergent flows in the Baltic Sea. A pronounced feature of the low-frequency dynamics of water of the North and Baltic seas is its wave structure. In both seas, low-frequency waves with the periods of 14–36 days propagate with the eastern component of the phase velocity along the isobaths and are identified as barotropic topographic Rossby waves. Phase velocities and lengths of low-frequency waves in the Baltic Sea are smaller by several times than those in the North Sea. Using the data of the analysis of meteorological information, a resonance-wave mechanism of generation of major Baltic inflows is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号