首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
This study was carried out as part of a baseline long-term environmental project in the proposed mining areas for an environmental impact assessment of future mining in the Clarion-Clipperton Fracture Zone (CCFZ). The community structure and distributional pattern of meiobenthos were investigated in the deep-sea bottom of the Clarion-Clipperton Fracture Zone of the northeastern Pacific in July 1998, 1999, 2001, 2003 and August 2004, 2005. Twenty one meiobenthic groups were found at the stations in the study area. The most abundant meiobenthos comprised nematodes followed by benthic foraminiferans and harpacticoid copepods. The maximum density of meiobenthos was 306 ind/10 cm2 at the station located at 11°N (water depth, 4833 m), and the minimum density was 6 ind/10 cm2 at the station located at 14°N (water depth, 5037 m). Oligotrophic conditions in the CCFZ seem to directly reflect the lower standing stocks of meiobenthos in the CCFZ compared to other deep-sea plains of similar depth. The latitudinal distribution pattern of meiobenthos in the study area seemed to be related with surface water primary productivity, which was connected to the water circulation pattern of the Pacific Ocean near the Equator, diverging at 8ºN latitude and converging at 5°N. The horizontal distribution of meiobenthic organisms in the study area showed high densities at the stations within 135–136°W. The densities of meiobenthic organismas within the CCFZ were high at stations with few manganese nodules on the sediment surface at low-latitude sites. In 1998, the observed relative high values of meiobenthic abundance were at stations from 5° to 6°N. Other stations from 7° to 10°N showed no significant fluctuations during the interannual sampling periods. It is considered that the inter-annual fluctuation of meiobenthos abundance is intimately related with a regime shift that may have occurred in the north Pacific between 1998 and 1999, the El Niño period. Vertical distribution of meiobenthic organisms showed the highest individual numbers in the surface sediment layers of 0~2 cm depth and a steep decreasing trend as sediment becomes deeper at the stations of high latitude located in 16~17°N. Size distribution analyses showed that organisms that fit into the sieve mesh size of 0.063 mm were abundant.  相似文献   

2.
Karline  Soetaert  Carlo  Heip Magda  Vincx 《Marine Ecology》1991,12(3):227-242
Abstract. Meiobenthos densities (excluding hard-shcllcd foraminifcrans) were compared along a Mediterranean deep-sea transect off Calvi (Corsica) and in an adjacent canyon. Chloroplastic Pigment Equivalent values (CPE) provided an estimate of the amount of primary production reaching the bottom.
The stations along the transect were characterized by a low CPE content of the sediment, decreasing with increasing station depth. CPE values in the canyon were much higher, which probably resulted from import of material from the adjacent bay of Calvi. Similarly, meiobenthos densities along the transect were much lower than at comparable depths along the canyon.
Meiobenthos density was significantly and positively correlated with CPE values.
Nematodes were the most abundant taxon at all stations, followed by copepods + nauplii and the soft-shelled foraminiferans. The meiobenthos was most abundant in the upper half centimeter. Nematode and foraminiferan densities tended to decline less rapidly with increasing depth into the sediment. Specimens belonging to the recently described phylum Loricifera, larvae of the parasitic crustacean class Tantulocarida, and fragments of an infaunal Xenophyophoria (large protozoans) are reported for the first time from the Mediterranean.  相似文献   

3.
Deep-sea benthic ecosystems are mainly sustained by sinking organic materials that are produced in the euphotic zone. “Benthic-pelagic coupling” is the key to understanding both material cycles and benthic ecology in deep-sea environments, in particular in topographically flat open oceanic settings. However, it remains unclear whether “benthic-pelagic coupling” exists in eutrophic deep-sea environments at the ocean margins where areas of undulating and steep bottom topography are partly closely surrounded by land. Land-locked deep-sea settings may be characterized by different particle behaviors both in the water column and in relation to submarine topography. Mechanisms of particle accumulation may be different from those found in open ocean sedimentary systems. An interdisciplinary programme, “Project Sagami”, was carried out to understand seasonal carbon cycling in a eutrophic deep-sea environment (Sagami Bay) with steep bottom topography along the western margin of the Pacific, off central Japan. We collected data from ocean color photographs obtained using a sea observation satellite, surface water samples, hydrographic casts with turbidity sensor, sediment trap moorings and multiple core samplings at a permanent station in the central part of Sagami Bay between 1997 and 1998. Bottom nepheloid layers were also observed in video images recorded at a real-time, sea-floor observatory off Hatsushima in Sagami Bay. Distinct spring blooms were observed during mid-February through May in 1997. Mass flux deposited in sediment traps did not show a distinct spring bloom signal because of the influence of resuspended materials. However, dense clouds of suspended particles were observed only in the spring in the benthic nepheloid layer. This phenomenon corresponds well to the increased deposition of phytodetritus after the spring bloom. A phytodetrital layer started to form on the sediment surface about two weeks after the start of the spring bloom. Chlorophyll-a was detected in the top 2 cm of the sediment only when a phytodetritus layer was present. Protozoan and metazoan meiobenthos increased in density after phytodetritus deposition. Thus, “benthic-pelagic coupling” was certainly observed even in a marginal ocean environment with undulated bottom topography. Seasonal changes in features of the sediment-water interface were also documented.  相似文献   

4.
In an extended deep-sea study the response of the benthic community to seasonally varying sedimentation rates of organic matter were investigated at a fixed abyssal site in the NE Atlantic (BIOTRANS station or JGOFS station L2 at 47°N–20°W, water depth >4500 m) on four legs of METEOR expedition 21 between March and August 1992. The vertical flux at 3500 m depth and temporal variations in the chloroplastic pigment concentration, a measure of phytodetritus deposition, and of total adenylates and total phospholipids, measures of benthic biomass, and of activity of hydrolytic enzymes were observed. The flux patterns in moored sediment traps of total chlorophyll, POC and total flux showed an early sedimentation peak in March/April 1992, followed by low fluxes in May and intermediate ones from June to August. Thus 1992 differed from other years, in which one large flux peak after the spring phytoplankton bloom was observed. Unusually high concentrations of chloroplastic pigments were consistently observed in March 1992, reflecting the early sedimentation input. At the same time biomass of small benthic organisms (bacteria to meiobenthos) and activity of hydrolytic enzymes were higher compared to values from March 1985 and from the following months in 1992. In May and August 1992 pigment concentrations and biomass and activity parameters in the sediment were lower than during previously observed depositions of phytodetrital matter in summer. The data imply that the deep ocean benthic community reacts to small sedimentation events with transient increases in metabolic activity and only small biomass production. The coupling between pelagic and benthic processes is so close that interannual variability in surface water production is “mirrored” by deep-sea benthic processes.  相似文献   

5.
Metazoan meiofauna (e.g., nematodes, benthic copepods) play important roles in deep-sea sediment communities, but information as basic as standing stocks is not known for much of the world ocean. We therefore sampled six stations: one near the 2700-m isobath and one near the 3700-m isobath off northern, central, and southern California. We counted benthic copepods, both Desmoscolecidae and nondesmoscolecid nematodes, kinorhynchs, nauplii, and ostracods from multiple-corer samples. Nematodes from our 2700-m and 3700-m stations, and ostracods and nauplii from our 3700-m stations, were unusually abundant compared to those from other stations from comparable depths in the Pacific.Off California, the abundances of benthic copepods, kinorhynchs, and nondesmoscolecids at the 2700-m stations were significantly greater than those at the 3700-m stations. Abundance of benthic copepods was correlated with the percentage of medium sand in the sediment, so sediment texture could be important to them. That of kinorhynchs was correlated with the concentration of chloroplastic-pigment equivalents and percentage nitrogen, so consumable material from the euphotic zone could be important to them. In contrast to the usual pattern of decreasing abundance with depth, Desmoscolecidae abundance in the central region was greater at the 3700-m than at the 2700-m station.The three regions differed significantly in both kinorhynch and ostracod abundances, independently of depth. In the food-poor deep sea, animals are expected to be more abundant where food is plentiful. Unexpectedly, ostracod abundance was negatively correlated with all food variables. A possible explanation is that the natural enemies of ostracods are abundant where food is abundant.Multivariate faunal similarity at 2700 m differed significantly from that at 3700 m, independently of regions. Benthic copepods were most responsible for the difference. Regions also differed in multivariate faunal similarity independently of depth. In general, faunal similarity is expected to decrease as separation distance increases, but unexpectedly, the northern- and southern-region faunas were more similar to each other than to the central-region fauna. Kinorhynchs were most responsible for this pattern.  相似文献   

6.
The abundance and biomass of abyssal (4300–5000 m) nematodes were investigated along a latitudinal gradient of phytodetritus deposition from 0 to 23°N in the central, equatorial Pacific (140–158°W). Nematode abundance in the oligotrophic, central, North Pacific gyre was 50% lower than at the equator while macrofauna abundance increased 6.5 times over the same transect. Nematode abundance and biomass in the surface (0–1 cm) sediment layer were significantly higher at phytodetritus stations than at non-phytodetritus stations. Abundance and biomass were within the range recorded from other sites of comparable depth that also receive an input of phytodetritus. Abundance was also strongly correlated with microbial biomass. An increase in body size was associated with an increase in food supply. The results demonstrate that the equatorial Pacific represents an immense zone of relatively high nematode standing stock.  相似文献   

7.
三种常用声速算法的比较   总被引:3,自引:0,他引:3  
在近几年的西太平洋调查中使用了SV Plus声速测量仪,共获取了46个站点的声速剖面,并基于同步观测的CTD数据,利用3种常用的声速算法计算了这些站点的声速剖面。所有这些站点的测深度均超过1500m,而且调查时间为3个不同的季节。CTD数据计算得到的声速剖面与声速测量仪器观测的声速剖面的比较表明,在三种算法中,Chen和Millero算法在积分平均意义上是最好的。当定点比较时,在水深大于800m或者小于200m的范围内,Wilson算法较好;在其他水深范围内,Chen和Millero的算法的计算结果和实际测量结果较为一致。  相似文献   

8.
Time-series sediment traps were deployed in the subtropical oligotrophic northwestern Pacific (SONP) at three depths from August to September 2015 to better understand vertical flux of sinking particles. Sinking particles were collected at 5-day intervals over the sediment trap deployment period. The average total mass flux at water depths of 400 m, 690 m, and 1,710 m was 9.1, 4.4, and 4.1 mg m-2day-1, respectively. CaCO3 materials constituted 50 to 70% of sinking particles while in comparison particulate organic carbon (POC) constituted up to 20%. A synchronous variation of total mass flux was observed at the three depths, indicating that calcite-dominated particles sank from 400 to 1,710 m within a 5-day period. POC flux at these water depths was 2.4, 0.38, and 0.31 mg m-2day-1, respectively. Our results indicate low transfer efficiencies of 16% from 400 to 690 m and 13% for the 400 to 1,710 m depth range. The estimated transfer efficiencies were significantly lower than those observed at the K2 station in the northwest Pacific subarctic gyre, presumably because of a prevalence of pico-cyanobacteria in the SONP. Because cyanobacteria have a semi-permeable proteinaceous shell, they are more readily remineralized by bacteria than are siliceous phytoplankton in the northwest Pacific subarctic gyre. Continued surface water warming and expansion of the SONP will likely have a profound impact on ocean acidification in the northwest Pacific, possibly affecting the transfer efficiency of sinking POC to the deep-sea.  相似文献   

9.
Seasonal variations of macrobenthos communities were analyzed over six years at two fixed stations at the depths of 500 m and 1,000 m in the bathyal zone off Sanriku, northeastern Japan, and were compared with those of the 80 m station established at the mouth of Otsuchi Bay, northeastern Japan. Significant seasonal variations of macrobenthos density were detected at the 80 m and 500 m stations. While the density increased in late spring and decreased until July at the 80 m station, it increased between May and August, and decreased in September at the 500 m station. At the 1,000 m station, no seasonal variation of macrobenthos abundance could be detected. The seasonal variations of the density observed at the 80 m and 500 m stations are probably related to that of the supply of organic materials derived from surface phytoplankton. Differences in the patterns of seasonal variations among the three stations may reflect the different periods of food supply to the sea floor. Significant seasonal variation in the feeding structure of the polychaete communities could be detected at the 80 m and 1,000 m stations.  相似文献   

10.
Seasonal variations in diversity and biomass of diatoms, tintinnids, and dinoflagellates and the contribution of microplankton and faecal material to the vertical flux of particulates were investigated at one time series station T (station 18) between 2002 and 2005 and at a grid of stations during November 2004 in the coastal and oceanic area off Concepción (36°S), Chile. The variations were analysed in relation to water column temperature, dissolved oxygen, nutrient concentration, offshore Ekman transport, and chlorophyll-a concentration. Abundance was estimated as cell numbers per litre and biomass in terms of biovolume and carbon units.A sharp decrease with depth was observed in the abundance of both phytoplankton and microzooplankton during the whole annual cycle; over 70% of their abundance was concentrated in the upper 10 m of the water column. Also, a clear seasonality in microplankton distribution was observed at station T, with maxima for diatoms, tintinnids, and dinoflagellates every summer (centred on January) from 2002 to 2005.On the grid of stations, the maximum integrated (0-50 m) micro-phytoplankton abundances (>1 × 109 cells m−2) occurred at the coastal stations, an area directly influenced by upwelling. A similar spatial distribution was observed for the integrated (0-200 m) faecal carbon (with values up to 632 mg C m−2). Tintinnids were distributed in all the first 300 miles from the coast and dinoflagellates were more abundant in oceanic waters.At station T, the average POC export production (below 50 m depth) was 16.6% (SD = 17%; range 2-67%; n = 16). The biological-mediated fluxes of carbon between the upper productive layer and the sediments of the continental shelf off Concepción depend upon key groups of phytoplankton (Thalassiosira spp., Chaetoceros spp.) and zooplankton (euphausiids) through the export of either cells or faecal material, respectively.  相似文献   

11.
We investigated biogenic silica, several biological components, and silicate in pore-water in the abyssal sediment to determine silicon flux of western North Pacific during several cruises. The surficial sediment biogenic silica content was high at high latitudes with the boundary running along the Kuroshio Extension, and maximum values (exceeding 20%) were found in the Oyashio region. In the subtropical region to the south, most stations showed less than 5% biogenic silica content. This distribution pattern reflected primary production and ocean currents in the surface layer very well. Pore-water samples were collected from 4 stations along the east coast of Japan. The highest asymptotic silicic acid concentration (670 μmol L?1) in pore-water was observed at the junction of Kuroshio and Oyashio, followed by samples from the Oyashio region. It is at the southern station that the lowest value (450 μmol L?1) was observed, and the primary production is low under the influence of Kuroshio there. The diffusive flux followed the same geographic trend as the asymptotic silicic acid concentrations did, ranging 77–389 mmol m?2 yr ?1. Multiple sampling of pore-water was conducted throughout the year at one station at high latitude. The average annual biogenic silica rain flux observed using sediment traps was 373 mmol m?2 yr?1; the diffusive flux and burial flux at the sediment–water interface were 305 and 9 mmol m?2 yr?1, respectively. We concluded that most of the settling silica particles dissolved and diffused at the sediment–water interface and approximately 3% only were preserved in this area. In addition, the obvious time lag observed between the peak rain flux and the maximum diffusive flux suggested that primary production in the surface layer has a great influence on the sedimentation environment of abyssal western North Pacific. These transitions of Si flux at the sediment–water interface were considerably greater in northwestern North Pacific than in southwestern North Pacific. In addition, a station in the Philippine Sea indicated high biogenic silica content because of Ethmodiscus ooze, which are scattered randomly on the sea floor in the subtropical region.  相似文献   

12.
Time-series measurements of particulate organic carbon (POC) and particulate nitrogen (PN) fluxes, sediment community composition, and sediment community oxygen consumption (SCOC) were made at the Hawaii Ocean Time-series station (Sta. ALOHA, 4730 m depth) between December 1997 and January 1999. POC and PN fluxes, estimated from sediment trap collections made at 4000 m depth (730 m above bottom), peaked in late August and early September 1998. SCOC was measured in situ using a free vehicle grab respirometer that also recovered sediments for chemical and biological analyses on six cruises during the 1-year study. Surface sediment organic carbon, total nitrogen and phaeopigments significantly increased in September, corresponding to the pulses in particulate matter fluxes. Bacterial abundance in the surface sediment was highest in September with a subsurface high in November. Sediment macrofauna were numerically dominated by agglutinating Foraminifera fragments with highest density in September. Metazoan abundance, dominated by nematodes was also highest in September. SCOC significantly increased from a low in February to a high in September. POC and PN fluxes at 730 m above bottom were significantly correlated with SCOC with a lag time of ⩽14 days, linking pelagic food supply with benthic processes in the oligotrophic North Pacific gyre. The annual supply of POC into the abyss compared to the estimated annual demand by the sediment community (POC:SCOC) indicates that only 65% of the food demand is met by the supply of organic carbon.  相似文献   

13.
本文通过对中太平洋海盆40多个表层沉积物的分析和研究,根据沉积物中各组分含量、物质来源和成因等特征,把本区表层沉积物分为六种类型。它们分布在不同区域和不同水深范围内。钙质沉积物分布在碳酸钙补偿深度(CCD)界面以浅区。硅质粘土、深海粘土等沉积物出现在CCD以下水深区,这些沉积物的分布具有明显的垂向分带性和横向分区性。沉积物类型的变化主要受水深与物质来源的控制,南极底层流也有一定的影响。在不同的沉积物中锰结核的丰度、品位、类型等亦有明显的差异。  相似文献   

14.
The vertical distribution of benthic organisms in the sediment profile was studied using horizontally sliced sediments collected at five stations at depths from 115 to 472 m in Suruga Bay, central Japan. Using sieves of 1.0 and 0.5 mm mesh, benthic organisms were divided into two size classes, smaller macrobenthos (>1mm, <1g wet weight) and larger meiobenthos (1.0 mm0.5 mm). The maximum depth of vertical distribution of organisms in the sediment profile was expressed by the 95 % intercept of the cumulative % curve of the number of individuals drawn with respect to depth in the sediment. It has long been supposed that benthic animals are concentrated in the surface centimeters of sediment in the deep-sea system, and the present study clearly substantiated this. Most benthic organisms of both of these two size classes were concentrated in the upper 5 cm of sediment. The vertical distribution was almost always deeper in the case of smaller macrobenthos than for larger meiobenthos. However the difference could not be substantiated statistically since the number of samples was insufficient. The maximum depth indices of polychaetes were found to be significantly larger than those of crustaceans in the case of macrobenthos, while in the case of meiobenthos, the difference was not significant. The maximum depth index of all benthic organisms was positively and significantly correlated with water-depth and the possible cause for this relationship is discussed.  相似文献   

15.
The isotopic composition (δ15N) of dissolved nitrate was measured at five stations within the oxygen-deficient region of the eastern tropical North Pacific Ocean (ETNP) and at one station 900 km northeast of Hawaii, which was considered to be representative of all major water masses of the Pacific. At this last station, the δ15N composition of dissolved nitrate decreased systematically from about +6‰ at 400 m to approximately +5‰ at 5,000 m; these results are consistent with other estimates from the western Pacific.In contrast, vertical profiles of δ15N of dissolved nitrate from the ETNP showed marked departure from the above observed trend and correlated with losses of nitrate arising from denitrification. Instantaneous fractionation factors (α) were estimated, using the one dimensional vertical diffusion-advection model. These results suggest that 14NO3 is consumed 3–4% faster than 15NO3, significantly larger than fractionations (2%) observed under laboratory conditions.Maximum rates of denitrification at 100 m were also evaluated and ranged from 0.6 to 8 μg-at 1−1 yr−1 for the stations investigated. The above upper limit is probably excessive, but the average maximum for the four stations analyzed is estimated to be 3.5 μg-at NO3 1−1 yr−1. These results compare favorably with suitably corrected oxygen utilization rates derived from electron transport activity measurements.  相似文献   

16.
Field studies have established the concentrations of naphthalenes in bay sediments and water in the vicinity of an oil separator platform and their effects on the benthic fauna. Fifteen stations were occupied monthly, from July, 1974 to December, 1975, along three transects extending from the separator platform outfall outwards for a distance of 4·0 to 5·6 km. A lesser number of stations were occupied from April, 1974 to June, 1974. Bottom sediments at each station were analysed for total naphthalenes content and for number of species and individuals. All stations were located in 2 to 3 m of water. The outfall was located 1 m off the bay bottom.There was a definite correlation between sediment naphthalenes concentration and number of species and individuals. As expected, the first station, located 15 m from the outfall, had the highest concentration of naphthalenes of all stations sampled. The naphthalenes levels dropped sharply from the outfall to the stations located 75 m from the platform where levels were about 20–50% of those found 15 m from the outfall. Naphthalenes concentrations then decreased gradually to near background levels at stations farther out. Hydrocarbon concentrations in bottom water 15 m from the outfall were three orders of magnitude lower than those in the full strength effluent, but sediments 15 m from the outfall had hydrocarbon concentrations four times as great as in the full strength effluent. There were approximately four orders of magnitude more hydrocarbons in the sediment than in the overlying water.The bay bottom was almost completely devoid of organisms within 15 m of the effluent outfall. Stations located 150 m from the outfall had severely depressed benthic faunas but not to the extent of stations nearer the outfall. Stations located 455 m from the platform were unaffected. Both numbers of species and individuals increased with distance from the platform and reached a peak at the first station medial to the control on each transect (685 to 1675 m from the platform) and then dropped at the control station. Physical environmental factors such as temperature, salinity, water depth and sediment type were essentially the same at all stations.The temporary use of a second outfall located 275 m from the main platform outfall resulted in a rapid build up of naphthalenes in surrounding sediments which persisted for at least six months following the termination of use of the second outfall. The benthic fauna was also severely depressed in the vicinity of the second outfall. The use of multiple outfalls, located some distance apart, appears to be more harmful than the use of a single outfall.Trinity Bay, Texas, the site of this investigation, has a mean depth of 2·5 m. The bay water is highly turbid due to the presence of a high concentration of clay-sized particulate material. The brine outfall was located approximately 1 m above the bay bottom. These special conditions undoubtedly contributed significantly to the observed impact of the brine. Therefore, extrapolations from the results of this study to offshore oil production and brine disposal should be made with extreme caution.  相似文献   

17.
Weekly aerosol samples were collected for two years from 1981 at six stations in the western North Pacific region. The samples were analyzed for aluminum to determine the mineral dust concentration in the air. By combining our data with observations in the central and eastern North Pacific by a US research group, the following results and conclusions have been obtained. Spring peaks in atmospheric mineral dust were observed at all the stations accompanied byKosa episodes (hazes due to mineral dust of Chinese origin). The spring peaks, however, varied from year to year. The mean concentration of mineral dust depends not only on the distance from the Asian coast but also on the latitude of the sampling station. The half-decrease distance of the atmospheric mineral dust turned out to be 500–600 km for all latitudes in the western North Pacific. This indicates that the rate of deposition of mineral dust in the western North Pacific is much larger than that in the central and eastern North Pacific.  相似文献   

18.
《Oceanologica Acta》1998,21(6):793-802
The mesozooplankton distribution in the upper water layer (up to 200 m) off Marseilles (NW Mediterranean Sea) was studied during 22 cruises performed between March 1992 and February 1995. Four stations (M1, M3, M5 and M7) were investigated along a coast-open sea transect. Spatial and seasonal variations of zooplankton were described using different quantitative parameters: biomass (dry weight, carbon, nitrogen), displacement volume (biovolurne) and abundance of total organisms. C/N ratio, dry weight per individual and volume per individual were also calculated. The seasonal quantitative variations occurring at the four stations were not well synchronized. Annual maximum biomass was observed during spring and summer at M1 but only in early spring at the other stations. Abundance and biovolumes followed the same general pattern of variation. The mean values of the different parameters were maximum near the coast, at M1, and minimum at the most distant station (M7), but the decrease towards the open sea was not regular: the values found at M5 were higher than at M3 and markedly exceeded those at M7. This seems to be related to the presence of the oligotrophic Northern Mediterranean Current flowing parallel to the coast. In most cases M3 was in the core of the current whereas M5 seemed to be frequently influenced by its external boundary. Locally, this frontal situation enhanced the primary production and consequently favoured an increase in zooplankton biomass or production as suggested by the strong temporal correlation between chlorophyll and Zooplankton at this station. Comparison between stations demonstrated the specificity of M5 zooplankton which showed the lowest variability in its specific dry weight and biovolurne and the highest C/N ratios.  相似文献   

19.
We have collected fifty-five seawater samples at seven stations at various depths in the Yamato and Japan Basins of the Japan Sea and measured their helium isotopic ratios. The 3He/4He ratios vary from 0.997 Ratm to 1.085 Ratm where Ratm is the atmospheric ratio. The maximum 3He excesses about 8%, are observed at mid-depth (1000 m), and these values are significantly lower than those observed in deep Pacific waters. This implies that mantle-derived helium in deep Pacific water cannot enter the Japan Sea since it is an almost landlocked marginal sea. The observed 8% excess 3He may be attributable to the decay product of tritium. Slightly higher 3He/4He ratios in the Bottom Water were observed in the Yamato Basin than in the Japan Basin. The ventilation ages of seawater shallower than 1000 m are calculated as about 5 to 20 years, which is consistent with the CFC ages reported in the literature. There is a positive correlation between the apparent oxygen utilization and 3H-3He ages. The estimated oxygen utilization rate from the correlation in a layer between 500 m and 1000 m is about 3 μmol/kg/yr, which is similar to that in the eastern subtropical North Atlantic.  相似文献   

20.
Meiofauna and macrofauna communities and several sediment characteristics were compared between a slope situated far from the coast (Goban Spur) and two transects across the Iberian Margin with steep slopes and close to the shore. The northern Galician transect (off La Coruña) was situated in an area subjected to wind-induced upwelling events. The western Galician transect was also subjected to upwelling, was additionally influenced by outflows of water rich in organic matter from the Rías Bajas. This transect also included the Galicia Bank. Macrofauna density decreased exponentially from the shelf edge (154 m) to the abyssal plain (4951 m) and different communities occurred on the shelf, the upper- and lower slope and on the abyssal plain. Apart from two extremely low-density stations on the Iberian Margin, there were no significant differences in the meiofauna between the Goban Spur and the Iberian Margin. Along the La Coruña-transect a station where meiofaunal densities were low occurred at a depth of 1522 m, where the sediment was characterised by having a high median-grain size, ripple structures, a low Corg and total N content. There were relatively high numbers of macrofaunal filter-feeders but low numbers of crustaceans, indicating a high current velocity regime. On top of the Galicia Bank (˜770 m) the sediment consisted mainly of shells of pelagic foraminifers, and had low contents of Corg and N. The macrofauna was dominated by filter-feeding and carnivorous taxa. At both these stations meiofauna densities were low. Meiofauna densities and community structure differed between the Goban Spur and the Iberian Margin. Meiofauna densities on the Galician shelf were more than double those on the Goban Spur shelf. The two deep stations on the La Coruña transect and the deepest station on the Galicia Bank transect all contained meiofaunal densities that were higher than found at similar depths off the Goban Spur. The meiofaunal densities were inversely correlated with %CaCO3 content and, excluding the shelf stations, were positively correlated with both %Corg and total N at the Iberian Margin. Neither upwelling nor the enriched outflows from the rias affected the macrofauna, but meiofaunal densities were greatly enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号