首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ar/Ar analyses of phengites and paragonites from the ultrahigh-pressure metamorphic rocks (zoisite–clinozoisite schist, garnet–phengite schist and piemontite schist) in the Lago di Cignana area, Western Alps were carried out with a laser probe step-heating method using single crystals and a spot dating method on thin sections. Eight phengite and two paragonite crystals give the plateau ages of 37–42 Ma with 96–100% of 39Ar released. Each rock type also contains mica crystals showing discordant age spectra with age fractions (20–35 Ma) significantly younger than the plateau ages. Phengite inclusions in garnet give ages of 43.2 ± 1.1 Ma and 44.4 ± 1.5 Ma, which are significantly older than the spot age (36.4 ± 1.4 Ma) from the matrix phengites, and the plateau ages from the step-heating analyses. Inclusion ages (43 and 44 Ma) are consistent with a zircon SHRIMP age (44 ± 1 Ma) in this area. These results suggest that the oceanic materials that underwent a simple subduction related UHPM, form excess 40Ar-free phengite and that the peak metamorphism is ca. 44 Ma or little older. We suggest that matrix phengites experienced a retrogression reaction changing their chemistry contemporaneously with deformation related to the exhumation of rocks releasing significant radiogenic 40Ar from the crystals. This has lead to the apparent ages of the matrix phengites that are significantly younger than the inclusion age.  相似文献   

2.
Joseph M. Pyle 《Lithos》2006,88(1-4):201-232
Analysis of monazite-bearing lithologies from the Precambrian Honey Brook Upland (HBU) and overlying metasedimentary Paleozoic Chester Valley Sequence (CVS) (SE PA, USA) reveals overprinting of primary major and accessory phase parageneses by texturally and compositionally disparate secondary accessory phase parageneses. Two-pyroxene temperatures of 915–945 °C for reconstituted pyroxene reflect emplacement temperatures of felsic plutonic rocks (opdalite, charnockite) prior to Mesoproterozoic metamorphism. Monazite in metavolcanic felsic gneiss yields three age domains at 1009 ± 4 Ma (2 s.e.), 965 ± 6, and 876 ± 10 Ma. The first two domains record metamorphism of the HBU after anorthosite intrusion; peak monazite–xenotime temperatures for the monazite core domain are 700 °C, and high Th/U values in the second (overgrowth) age domain likely reflect a second high-T monazite growth episode. Formation of cummingtonite coronas on orthopyroxene in opdalite constrains maximum 1010 Ma metamorphic temperatures in the “granulite-facies” terrane to 730–740 °C. Evidence of increased Cl fluid activity in the 965 Ma metamorphism includes higher Cl content of matrix apatite relative to garnet-included apatite (metavolcanics), and Cl-bearing K-hornblende succeeding cummingtonite in coronal overgrowths (opdalite). Extreme monazite Th/U values (75–250) in the rim domain suggest growth during low-T hydrothermal alteration. In the opdalite, secondary singe-grain monazite and monazite + xenotime metasomites in apatite yield ages of 714 ± 24 and 586 ± 88 Ma, temperatures of 325–425 °C, and are interpreted to reflect thermal disturbances associated with late Proterozoic plutonic and volcanic activity in the Upland. This thermal disturbance may be recorded by Rb–Sr age of 567 Ma for biotite from a HBU gneiss. Monazite age domains in metaquartzite (378 ± 28, 272 ± 44 Ma) suggest that low-grade metamorphism (260–320 °C, Mnz–Xno thermometry) of the CVS is not a result of Taconian orogenesis.  相似文献   

3.
Zircons from an eclogite and a diamond-bearing metapelite near the Kimi village (north-eastern Rhodope Metamorphic Complex, Greece) have been investigated by Micro Raman Spectroscopy, SEM, SHRIMP and LA-ICPMS to define their inclusion mineralogy, ages and trace element contents. In addition, the host rocks metamorphic evolution was reconstructed and linked to the zircon growth domains.

The eclogite contains relicts of a high pressure stage (ca. 700 °C and > 17.5 kbar) characterised by matrix omphacite with Jd40–35. This assemblage was overprinted by a lower pressure, higher temperature metamorphic event (ca. 820 °C and 15.5–17.5 kbar), as indicated by the presence of clinopyroxene (Jd35–20) and plagioclase. Biotite and pargasitic amphibole represent a later stage, probably related to an influx of fluids. Zircons separated from the eclogite contain magmatic relicts indicating Permian crystallization of a quartz-bearing gabbroic protolith. Inclusions diagnostic of the high temperature, post-eclogitic overprint are found in metamorphic zircon domain Z2 which ages spread over a long period (160 – 95 Ma). Based on zircon textures, zoning and chemistry, we suggest that the high-temperature peak occurred at or before ca. 160 Ma and the zircons were disturbed by a later event possibly at around 115 Ma. Small metamorphic zircon overgrowths with a different composition yield an age of 79 ± 3 Ma, which is related to a distinct amphibolite-facies metamorphic event.

The metapelitic host rock consists of a mesosome with garnet, mica and kyanite, and a quartz- and plagioclase-bearing leucosome, which formed at granulite-facies conditions. Based on previously reported micro-diamond inclusions in garnet, the mesosome is assumed to have experienced UHP conditions. Nevertheless, (U)HP mineral inclusions were not found in the zircons separated from the diamond-bearing metapelite. Inclusions of melt, kyanite and high-Ti biotite in a first metamorphic zircon domain suggest that zircon formation occurred during pervasive granulite-facies metamorphism. An age of 171 ± 1 Ma measured on this zircon domain constrains the high-temperature metamorphic event. A second, inclusion-free metamorphic domain yielded an age of 160 ± 1 Ma that is related to decompression and melt crystallization.

The similar age data obtained from the samples indicate that both rock types recorded a high-T metamorphic overprint at granulite-facies conditions at ca. 170 – 160 Ma. This age implies that any high pressure or even ultra-high pressure metamorphism in the Kimi Complex occurred before that time. Our findings define new constraints for the geodynamic evolution for the Alpine orogenic cycle within the northernmost Greek part of the Rhodope Metamorphic Complex. It is proposed that the rocks of the Kimi Complex belong to a suture zone squeezed between two continental blocks and result from a Paleo-ocean basin, which should be located further north of the Jurassic Vardar Ocean.  相似文献   


4.
黑龙江多宝山古生代海盆闭合的岩石学证据   总被引:2,自引:0,他引:2  
综合研究黑龙江多宝山地区古生代沉积地层、生物化石,通过分析侵入岩岩石地球化学及其锆石U--Pb 同位素测年资料,表明该地区早奥陶世至晚泥盆世早期为海相沉积地层,晚泥盆世晚期为海陆交互相沉积地层,早石炭世为陆相河湖沉积地层。多宝山海盆东南侧出露一套年龄为( 300 ± 3 ~ 357 ± 4) Ma 的花岗岩,其中正长、二长花岗质糜棱岩为后造山花岗岩,碱长花岗岩为造山后A 型花岗岩。表明多宝山海盆于晚泥盆世开始闭合,至早石炭世为陆相河湖沉积,晚石炭世-早二叠世为抬升剥蚀阶段。表现为多宝山地区于早石炭世开始造山,晚石炭世晚期或延至早二叠世发生造山后伸展作用。  相似文献   

5.
利用流体包裹体的分析测试技术与研究方法,对鄂尔多斯盆地中西部长8油层组的成藏期次进行了研究。烃类包裹
体及其伴生的盐水包裹体的岩相学特征、均一温度、盐度、密度及成分分析显示,长8储层主要发育两期烃类包裹体,第
一期分布在早期方解石胶结物、石英颗粒表面及其连生的石英加大边中以及未切穿石英颗粒的早期愈合裂缝中,其伴生盐
水包裹体的均一温度峰值为80~90℃;第二期烃类包裹体分布在石英颗粒表面和切穿石英颗粒的裂缝中,其伴生盐水包裹
体的均一温度峰值为100~120℃。储层成岩作用与油气充注微观分析、成岩-烃类充注演化时间序列研究,结合地层埋藏史
和热史分析表明,研究区经历了三期烃类充注事件:第一期(约169~161 Ma) 充注规模小,砂岩中未捕获到这一期适合进
行均一温度与成分测定的烃类包裹体,因此本研究缺乏这期包裹体的温度与成分数据;第二期(约148~135 Ma) 烃类充注
对应前述获得均一温度与成分数据的第一期烃类包裹体;第三期烃类充注规模最大,发生在早白垩世晚期的125.2~105.7 Ma
之间,为主成藏期,对应前述获得均一温度与成分数据的第二期烃类包裹体。  相似文献   

6.
塔里木盆地志留系发育厚层沥青砂,显示优越的含油气性.继塔中地区志留系原油勘探取得突破之后,塔北地区志留系砂岩风化壳型储层也发现了工业油藏.根据原油的甾、萜烷和噻吩类生物标记化合物的分布特征,结合原油的物理化学性质以及族组分稳定碳同位素特征分析,明确了塔北西部英买35井区志留系风化壳原油来源于库车凹陷三叠系黄山街组湖相烃源岩,与塔北东部同发育在志留系风化壳剥蚀尖灭线附近的哈得18C井海相原油形成鲜明对比.通过志留系砂岩流体包裹体均一温度测试,结合地层埋藏史研究成果,推断英买35井区志留系砂岩主要成藏时间为距今5 ~ 8Ma的晚喜山期.结合库车凹陷两套陆相烃源岩的生烃演化重构了该区域湖相原油的成藏过程,表明康村组沉积后白垩系卡普沙良群与志留系风化壳是湖相油气向台盆区输导的重要通道,预示着湖相原油运移充注的范围十分广泛.成藏机理分析表明,志留系风化壳的构造幅度和面积控制了油气的充注范围,直接盖层的封盖条件控制了风化壳储层的含油气性.塔北地区东、西部志留系风化壳的暴露时间和地层组合关系的差异,是东部形成海相含油气系统,而西部发育海、陆相油藏垂向上叠置,互不交叉的复式含油气系统的重要原因.  相似文献   

7.
Although hydrocarbon-bearing fluids have been known from the alkaline igneous rocks of the Khibiny intrusion for many years, their origin remains enigmatic. A recently proposed model of post-magmatic hydrocarbon (HC) generation through Fischer-Tropsch (FT) type reactions suggests the hydration of Fe-bearing phases and release of H2 which reacts with magmatically derived CO2 to form CH4 and higher HCs. However, new petrographic, microthermometric, laser Raman, bulk gas and isotope data are presented and discussed in the context of previously published work in order to reassess models of HC generation. The gas phase is dominated by CH4 with only minor proportions of higher hydrocarbons. No remnants of the proposed primary CO2-rich fluid are found in the complex. The majority of the fluid inclusions are of secondary nature and trapped in healed microfractures. This indicates a high fluid flux after magma crystallisation. Entrapment conditions for fluid inclusions are 450–550 °C at 2.8–4.5 kbar. These temperatures are too high for hydrocarbon gas generation through the FT reaction. Chemical analyses of rims of Fe-rich phases suggest that they are not the result of alteration but instead represent changes in magma composition during crystallisation. Furthermore, there is no clear relationship between the presence of Fe-rich minerals and the abundance of fluid inclusion planes (FIPs) as reported elsewhere. δ13C values for methane range from − 22.4‰ to − 5.4‰, confirming a largely abiogenic origin for the gas. The presence of primary CH4-dominated fluid inclusions and melt inclusions, which contain a methane-rich gas phase, indicates a magmatic origin of the HCs. An increase in methane content, together with a decrease in δ13C isotope values towards the intrusion margin suggests that magmatically derived abiogenic hydrocarbons may have mixed with biogenic hydrocarbons derived from the surrounding country rocks.  相似文献   

8.
J. Parnell 《Lithos》1996,37(4):281-292
Moinian (Proterozoic) gneisses in Easter Ross-shire, Scotland, exhibit pronounced alteration where they have been subjected to the flow of hydrocarbon-bearing fluids from an adjacent Devonian sedimentary basin. Comparison of the petrography of altered and unaltered gneiss indicates that element redistribution accompanied the alteration process. The alteration involved creation of secondary porosity by dissolution of primary minerals in the gneiss, chloritization of biotite and precipitation of authigenic orthoclase. Cross-cutting veinlets include bitumen, authigenic quartz, orthoclase, albite, monazite and titanium oxides, attesting to redistribution of all the major components of the gneiss. Evidence for bitumen being coeval with albite/quartz, and an association of high porosity with bitumen indicate that hydrocarbon-bearing fluids were present during the alteration process. Bitumen also penetrated beyond the visible alteration zone and accreted around radioelement-bearing accessory minerals.

Organic geochemical data indicate that there is a local source for the bitumen in the Devonian sequence. Bitumen veining also occurs within the Devonian sequence. Fluid inclusion data from quartz associated with bitumen in the gneiss and the Devonian indicate minimum trapping temperatures of 120–140 and 100–120 °C respectively. The alteration was probably a result of a fluid flow episode relating to fault movement during basin subsidence.  相似文献   


9.

Laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of zircons confirm a Late Devonian to Early Carboniferous age (ca 360–350 Ma) for silicic volcanic rocks of the Campwyn Volcanics and Yarrol terrane of the northern New England Fold Belt (Queensland). These rocks are coeval with silicic volcanism recorded elsewhere in the fold belt at this time (Connors Arch, Drummond Basin). The new U–Pb zircon ages, in combination with those from previous studies, show that silicic magmatism was both widespread across the northern New England Fold Belt (>250 000 km2 and ≥500 km inboard of plate margin) and protracted, occurring over a period of ~15 million years. Zircon inheritance is commonplace in the Late Devonian — Early Carboniferous volcanics, reflecting anatectic melting and considerable reworking of continental crust. Inherited zircon components range from ca 370 to ca 2050 Ma, with Middle Devonian (385–370 Ma) zircons being common to almost all dated units. Precambrian zircon components record either Precambrian crystalline crust or sedimentary accumulations that were present above or within the zone of magma formation. This contrasts with a lack of significant zircon inheritance in younger Permo‐Carboniferous igneous rocks intruded through, and emplaced on top of, the Devonian‐Carboniferous successions. The inheritance data and location of these volcanic rocks at the eastern margins of the northern New England Fold Belt, coupled with Sr–Nd, Pb isotopic data and depleted mantle model ages for Late Palaeozoic and Mesozoic magmatism, imply that Precambrian mafic and felsic crustal materials (potentially as old as 2050 Ma), or at the very least Lower Palaeozoic rocks derived from the reworking of Precambrian rocks, comprise basement to the eastern parts of the fold belt. This crustal basement architecture may be a relict from the Late Proterozoic breakup of the Rodinian supercontinent.  相似文献   

10.
The Uralides, a linear N–S trending Palaeozoic fold belt, reveals an intact, well-preserved orogen with a deep crustal root within a stable continental interior. In the western fold-and-thrust belt of the southern Uralides, Devonian to Carboniferous siliciclastic and carbonate rocks overlay Mesoproterozoic to Neoproterozoic sedimentary rocks. Deformation in the Devonian, Carboniferous and Permian caused thick-skinned tectonic features in the western and central parts of the western fold-and-thrust belt. A stack of several nappes characterizes the deformation in the eastern part. Along the E–W transect AC-TS'96 that crosses the western fold-and-thrust belt, apatite fission track data record various stages of the geodynamic evolution of the Uralide orogeny such as basin evolution during the Palaeozoic, synorogenic movements along major thrusts, synorogenic to postorogenic exhumation and a change in the regional stress field during the Upper Jurassic and Lower Cretaceous. The Palaeozoic sedimentary cover and the Neoproterozoic basement of the Ala-Tau anticlinorium never exceed the upper limit of the PAZ since the Devonian. A temperature gradient similar to the recent one (20 °C/km) would account for the FT data. Reactivation of the Neoproterozoic Zilmerdak thrust was time equivalent to the onset of the Devonian and Carboniferous collision-related deformation in the east. West-directed movement along the Tashli thrust occurred in the Lower Permian. The Devonian and Carboniferous exhumation path of the Neoproterozoic siliciclastic units of the Tirlyan synclinorium mirrors the onset of the Uralian orogeny, the emplacement of the Tirlyan nappe and the continuous west-directed compression. The five main tectonic segments Inzer Synclinorium, Beloretzk Terrane, Ala-Tau anticlinorium, Yamantau anticlinorium and Zilair synclinorium were exhumed one after another to a stable position in the crust between 290 and 230 Ma. Each segment has its own t–T path but the exhumation rate was nearly the same. Final denudation of the western fold-and-thrust belt and exhumation to the present surface probably began in Late Tertiary. In Jurassic and Cretaceous, south-directed movements along W–E trending normal faults indicate a change in the tectonic regime in the southern Uralides.  相似文献   

11.
The Central Zone of the Limpopo Belt (South Africa) underwent high-grade metamorphism at 2.7–2.5 and 2.03 Ga. Quartz-rich, garnet-, cordierite-, biotite- and orthoamphibole-bearing, feldspar-free gneisses from the western Central Zone reached granulite-facies conditions (800 °C at 8–10 kbar) followed by decompression. Garnet from one such sample shows significant zonation in trace elements but little zonation in major elements. Zoning patterns suggest that the early prograde breakdown of REE-rich accessory phases contributed to the garnet trace element budget. Monazite from the sample yields a SHRIMP weighted mean 207Pb–206Pb age of 2028 ± 3 Ma, indistinguishable from a SHRIMP zircon age of 2022 ± 11 Ma previously measured on metamorphic overgrowths on 2.69 Ga igneous zircon cores. New zircon and monazite formed before, or at, the metamorphic peak, and occur as inclusions in garnet. Monazite appears to have formed through the breakdown of early allanite ± xenotime ± apatite. Trace element zoning patterns in garnet and the age of accessory phases are most consistent with a single tectonometamorphic event at 2.03 Ga.

The plagioclase and K-feldspar-free composition of the garnet–cordierite–orthoamphibole gneisses requires open system processes such as intense hydrothermal alteration of protoliths or advanced chemical weathering. In the studied sample, the 2.69 Ga igneous zircons show a prominent negative Eu anomaly, suggesting equilibrium with plagioclase, or plagioclase fractionation in the precursor magma. In contrast, the other minerals either show small negative (2.03 Ga monazite), no (2.02 Ga zircon and garnet) or positive Eu anomalies (orthoamphibole). This suggests that the unusual bulk compositions of these rocks were set in after 2.69 Ga but before the peak of the 2.03 Ga event, most probably while the protoliths resided at shallow or surficial crustal levels.  相似文献   


12.
Here new mineralogical data is presented on the occurrence of K-feldspar in granulite-facies metagabbronorite xenoliths found in recent alkaline lavas from Western Sardinia, Italy. The xenoliths originated from the underplating of variably evolved subduction-related basaltic liquids, which underwent cooling and recrystallisation in the deep crust (T = 850–900 °C, P = 0.8–1.0 GPa). They consist of orthopyroxene + clinopyroxene + plagioclase porphyroclasts (An = 50–66 mol%) in a granoblastic, recrystallised, quartz-free matrix composed of pyroxene + plagioclase (An = 56–72 mol%) + Fe–Ti oxides ± K-feldspar ± biotite ± fluorapatite ± Ti-biotite. Texturally, the K-feldspar occurs in a variety of different modes. These include: (1) rods, blebs, and irregular patches in a random scattering of plagioclase grains in the form of antiperthite; (2) micro-veins along plagioclase–plagioclase and plagioclase–pyroxene grain rims; (3) myrmekite-like intergrowths with Ca-rich plagioclase along plagioclase–plagioclase grain boundaries; and (4) discrete anhedral grains (sometimes microperthitic). The composition of each type of K-feldspar is characterized by relatively high albite contents (16–33 mol%). An increasing anorthite content in the plagioclase towards the contact with the K-feldspar micro-vein and myrmekite-like intergrowths into the K-feldspar along the plagioclase–K-feldspar grain boundary are also observed. Small amounts of biotite (TiO2 = 4.7–6.5 wt.%; F = 0.24–1.19 wt.%; Cl = 0.04–0.20 wt.%) in textural equilibrium with the granulite-facies assemblage is present in both K-feldspar-bearing and K-feldspar-free xenoliths. These K-feldspar textures suggest a likely metasomatic origin due to solid-state infiltration of KCl-rich fluids/melts. The presence of such fluids is supported by the fluorapatite in these xenoliths, which is enriched in Cl (Cl = 6–50% of the total F + Cl + OH). These lines of evidence suggest that formation of K-feldspar in the mafic xenoliths reflects metasomatic processes, requiring an external K-rich fluid source, which operated in the lower crust during and after in-situ high-T recrystallisation of relatively dry rocks.  相似文献   

13.
鄂尔多斯盆地苏里格大气田天然气成藏地球化学研究   总被引:3,自引:0,他引:3  
苏里格大气田位于鄂尔多斯盆地伊陕斜坡西北部,属于典型的低渗砂岩气田。对天然气组分和同位素组成研究表明,苏里格大气田上古生界天然气以干气为主、湿气为辅,甲烷含量为82.729%~98.407%,干燥系数为84.7%~98.8%,δ13C1值为-36‰~-30‰,δ13C2值为-26‰~-21‰,属于高成熟度的煤成气;气田范围内各井区天然气组分和碳同位素组成变化较小,暗示其来源和成藏过程的一致性。根据储层流体包裹体镜下观察、包裹体均一温度、含烃包裹体丰度、颗粒荧光定量(QGF)、包裹体激光拉曼分析,苏里格大气田上古生界储层发育盐水包裹体、气体包裹体、液态烃包裹体、CO2包裹体等不同类型流体包裹体,主要产于石英次生加大边、微裂隙及胶结物中;包裹体均一温度分布呈连续的单峰态,分布范围为80~180℃,主峰温度为100~145℃;上古生界砂岩储层样品的含烃包裹体丰度不高(多为1%~5%),QGF强度较低(1~10pc)。研究认为,苏里格大气田天然气充注可能是一个连续的过程,主要经历了一期成藏,其主要成藏期为晚侏罗世-早白垩世。通过生气动力学与碳同位素动力学的研究表明,苏里格大气田天然气主要来源于苏里格地区及周缘的石炭-二叠系煤系烃源岩,为近源充注、累积聚气成藏。  相似文献   

14.
Crystalline rocks from the Sierra de Comechingones, eastern Sierras Pampeanas, evolved through three distinct orogenic cycles during the Eopalaeozoic: (1) the first tectono-thermal event named Pampean orogeny (550 to 505 Ma), which peaked in the Early Cambrian, was responsible for extensive metamorphism, partial melting, juvenile magmatism, rapid decompression, and persistent tectonic activity. Large part of the crustal section that was residing at middle levels (c. 27 km) was heated above 800 °C during the thermal peak stage of the Pampean orogeny; decompression of the Pampean orogen's core took place at this high temperature. The exhumation mechanism that assisted rapid uplifting combined the effects of ongoing tectonic forces with a buoyant instability created by a large amount of anatectic magmas in the middle to lower crust. (2) Beginning at the Early Ordovician, the Famatinian orogeny produced an overall shortening, causing pervasive textural reworking of the Cambrian metamorphic sequences under a high-strain regime. By being adjacent to the Famatinian magmatic arc, the western border of the Cambrian crystalline package absorbed imposed deformation along a crustal scale ductile shear zone. Within this zone, the high-grade metamorphic rocks were reworked and re-hydrated to lower temperature assemblages (<600°C and 3–6 kbar). Early Ordovician subduction-related igneous activity, even though manifested as small plutons, intruded Cambrian crystalline sequences, and experienced textural reworking during Late Famatinian tectonic exhumation. Late Famatinian convergence resulted in west-vergent ductile shear zones that placed Cambrian onto Ordovician crystalline sequences. (3) During post-Famatinian times (360–400 Ma) enduring crustal perturbation produced intra-crustal-derived granitic magmatism. West- to northwest-directed thrusting was concentrated in belts nucleated along crustal-scale tectonic boundaries formed between older tectono-stratigraphic units. As a result, Devonian anatectic granites were formed and tectonically extruded among Pampean and Famatinian crystalline sequences. The post-Famatinian event is also characterised by the intrusion of batholith-scale monzogranites into Pampean and Famatinian crystalline sequences residing in the upper crust.

Crystalline rocks currently exposed in the Sierra de Comechingones show that they crystallised and were exhumed in a setting where tectono-thermal activity lasted, even though it might have waned, until the Middle Palaeozoic. From the latest Neoproterozoic (c. 550 Ma) until the Late Devonian (c. 360 Ma) tectonic activity was intermittently acting, indicating continuous convergence along the proto-Pacific margin of Gondwana.  相似文献   


15.
Chaotically structured diamictite from the inner ring syncline surrounding the central uplift of the Woodleigh impact structure contains shocked metamorphic and impact melt-rock fragments, largely derived from Ordovician and Devonian target sandstones. Coarse illite fractions (<2 m) from the sandstones containing no K-feldspar yield K–Ar ages of around 400 Ma, whereas the K–Ar ages of authigenic clays of >0.2 m fractions from the diamictite without smectite and K-feldspar cluster around 360 Ma, consistent with Rb–Sr data. Crystallisation of newly formed illite in the impact melt rock clasts and recrystallisation of earlier formed illite in the sandstone clasts preserved in the diamictite, are attributed to impact-induced hydrothermal processes in the Late Devonian. The illitic clays from the diamictite and from the sandstones have very similar trace element compositions, with significantly enriched incompatible lithophile elements, which increase in concentrations correlatively with those of the compatible ferromagnesian elements. The unusual trace element associations in the clays may be due to the involvement of hot gravity-driven basinal fluids that interacted with rocks of the Precambrian craton to the east of the study area, or with such material transported and reworked in the studied sedimentary succession.  相似文献   

16.
The West Junggar lies in the southwest part of the Central Asian Orogenic Belt (CAOB) and consists of Palaeozoic ophiolitic mélanges, island arcs, and accretionary complexes. The Barleik ophiolitic mélange comprises several serpentinite-matrix strips along a NE-striking fault at Barleik Mountain in the southern West Junggar. Several small late Cambrian (509–503 Ma) diorite-trondhjemite plutons cross-cut the ophiolitic mélange. These igneous bodies are deformed and display island arc calc-alkaline affinities. Both the mélange and island arc plutons are uncomfortably covered by Devonian shallow-marine and terrestrial volcano-sedimentary rocks and Carboniferous volcano-sedimentary rocks. Detrital zircons (n = 104) from the Devonian sandstone yield a single age population of 452–517 million years, with a peak age of 474 million years. The Devonian–Carboniferous strata are invaded by an early Carboniferous (327 Ma) granodiorite, late Carboniferous (315–311 Ma) granodiorites, and an early Permian (277 Ma) K-feldspar granite. The early Carboniferous pluton is coeval with subduction-related volcano-sedimentary strata in the central West Junggar, whereas the late Carboniferous–early Permian intrusives are contemporary with widespread post-collisional magmatism in the West Junggar and adjacent regions. They are typically undeformed or only slightly deformed.

Our data reveal that island arc calc-alkaline magmatism occurred at least from middle Cambrian to Late Ordovician time as constrained by igneous and detrital zircon ages. After accretion to another tectonic unit to the south, the ophiolitic mélange and island arc were exposed, eroded, and uncomfortably overlain by the Devonian shallow-marine and terrestrial volcano-sedimentary strata. The early Carboniferous arc-related magmatism might reflect subduction of the Junggar Ocean in the central Junggar. Before the late Carboniferous, the oceanic basins apparently closed in this area. These different tectonic units were stitched together by widespread post-collisional plutons in the West Junggar during the late Carboniferous–Permian. Our data from the southern West Junggar and those from the central and northern West Junggar and surroundings consistently indicate that the southwest part of the CAOB was finally amalgamated before the Permian.  相似文献   

17.
ABSTRACT

To determine the Late Palaeozoic evolution of the Lhasa terrane, we report the results of field mapping, petrological and fossil investigations, and U–Pb dating of detrital zircon grains (n = 474) from lower-greenschist-facies clastic rocks of the Lagar Formation in the Baruo area, Tibet. Our results indicate that the Lagar Formation was deposited during the Late Carboniferous to Early Permian in a shallow-marine environment on the northern margin of Gondwana. Glacial marine diamictites are common within the Lagar Formation and record glaciation of Gondwana during the Late Palaeozoic. Moreover, the detrital materials of the Lagar formation originated mostly from the collision orogenic belt. The ages of detrital zircon grains from the Lagar Formation make up five main groups with ages of 410–540 Ma, 550–650 Ma, 800–1100 Ma, 1600–1800 Ma, and 2300–2500 Ma, which display three characteristic age peaks at ~1150, 2390 and 2648 Ma. We tentatively suggest that the Lhasa terrane was a shallow-marine basin under the influence of the Gondwanan glaciation during the Late Carboniferous–Early Permian.  相似文献   

18.
郭凯  曾溅辉  刘涛涛  雷新 《现代地质》2013,27(2):382-388
利用显微荧光与包裹体显微测温技术,并结合烃源岩生排烃史分析,探讨了鄂尔多斯盆地陇东地区延长组含油气流体活动期次及石油充注历史。结果表明:陇东地区延长组烃源岩开始排烃的时期为早白垩世早期(约133 Ma),主要存在两期含油气流体活动,第一期含油气流体活动发生在早白垩世主力源岩排烃期间(133~100 Ma),第二期含油气流体活动发生在晚白垩世构造抬升期间(100~70 Ma)。早白垩世期间石油的充注表现为充注强弱程度不同的连续过程,晚白垩世以来生烃停止导致石油的充注与运移逐渐减弱并在晚白垩世末期基本停止。  相似文献   

19.
Growth of zircon with respect to that of garnet has been studied using a combination of petrography, U–Pb dating and oxygen isotope analysis. The aim is to document the mechanism and pressure–temperature conditions of zircon growth during metamorphism in order to better constrain the Tertiary metamorphic history of Naxos, Greece. Two metamorphisms are recognised: (1) an Eocene Franciscan metamorphism (M1) and (2) a widespread Miocene Barrovian metamorphism (M2) that increases from greenschist facies up to partial melting. An amphibolite sample contains zircon crystals characterised by a magmatic core and two metamorphic rims, denoted as A and B, dated at 200–270, 42–69, and 14–19 Ma, respectively. The first metamorphic rim A (δ18O = 7 ± 1‰) preserves the δ18O value of the magmatic core (6.2 ± 0.8‰), whereas rim B is characterised by higher δ18O values (7.8 ± 1.8‰). These observations indicate the formation of A rims by solid-state recrystallisation in a closed system with regard to oxygen and those of B in an open system. Compositional zoning in garnet is interpreted as the result of decompressional heating. Zircon B rims and garnet rims display similar δ18O values which indicates a contemporaneous growth of garnet and zircon rims during the Miocene Barrovian event (M2). Calcic gneiss and metapelite samples contain zircon crystals with single metamorphic overgrowths aged 41–57 Ma. δ18O values measured in zircon overgrowths (11.8 ± 1.4‰) from the calcic gneiss are similar to those measured in garnet rims (11.4 ± 1.1‰) from the same rock. This suggests that garnet rims and zircon overgrowths grew during the high pressure–low temperature event in equilibrium with prograde fluids. In the metapelite sample, δ18O values are similar in garnet cores (14.8 ± 0.2‰) and in zircon metamorphic overgrowths (14.2 ± 0.5‰). As zircon overgrowths have been dated at ca. 50 Ma by U–Pb, garnet cores and zircon overgrowths are interpreted to have grown during the high pressure event.

As demonstrated here for the island of Naxos, correlating the crystallisation of zircon with that of metamorphic index minerals such as garnet using stable isotope composition and U–Pb determination is a powerful tool for deciphering the mechanism of zircon growth and pin-pointing zircon crystallisation within the metamorphic history of a terrain. This approach is potentially hampered by an inability to verify the degree of textural equilibrium of zircon with other mineral phases, and the possible preservation (in metamorphic rims) of isotopic signatures from pre-existing zircon when they form by recrystallisation. Nevertheless, this study illustrates the application of this approach in providing key constraints on the timing and mechanism of growth of minerals important to understanding metamorphic petrogenesis.  相似文献   


20.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号