首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The contents of Co, Cr, Cu, Mn, Ni, Pb and Zn in the dust samples collected from Changqing industrial park of Baoji city, NW China, were measured by XRF, while As and Hg in the dust samples were analyzed by AFS. Geo-accumulation index (I geo), pollution index (PI) and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of dust. The health risk due to exposure to heavy metals in dust was analyzed by the Health Risk Assessment Model of US EPA. The results show that the arithmetic means of As, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn are 23.3, 16.4, 1591.8, 178.2, 0.243, 346.5, 40.2, 1,586.2 and 1,918.8 mg kg?1, respectively, which are higher than the background values of Shaanxi soil, especially for Cr, Cu, Hg, Pb, and Zn. The mean values of I geo reveal the order of Pb > Zn > Cr > Hg > Cu > As > Co > Ni > Mn. The high I geo of Cr, Cu, Hg, Pb and Zn in dust indicates that there is considerable pollution from Cr, Cu, Hg, Pb and Zn, while the low I geo of As, Co, Mn and Ni presents no pollution in dust. The assessment results of PI support the results of I geo, and IPI indicates heavy metals in dust polluted seriously. The health risk assessment shows that ingestion of dust particles is the route for exposure to heavy metals from dust, followed by dermal adsorption. Exposure to As, Cr and Pb from dust may pose a potential health threat to children and adults. The risk of cancer from As, Co, Cr and Ni due to dust exposure is low.  相似文献   

2.
Concentrations of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn in campus dust from kindergartens and elementary schools in Xi’an, China, were analyzed using X-ray fluorescence spectrometry and heavy metal contamination levels were assessed based on the geoaccumulation index (I geo), enrichment factor (EF) and numero synthesis pollution index (NSPI). The results indicate that, in comparison with Shaanxi soil, dust samples have elevated metal concentrations as a whole, except for V, Mn, Ni, and As. The assessment results of I geo and EF indicate that V, Mn, Ni, and As in campus dust are uncontaminated, while Ba and Cr are uncontaminated to moderately contaminated, and Co, Cu, Pb, and Zn are moderately to strongly contaminated. The NSPI results show that most dust samples presented heavily contaminated by heavy metals. More attention should be paid to heavy metal contamination of campus dust from kindergartens and elementary schools of Xi’an.  相似文献   

3.
Heavy metals are introduced in human tissue through breathing air, food chain and human skin. They can cause damage to the nervous system and internal organs. In the present study, sixty street dust samples were collected from the central area of Tehran and were digested in the laboratory to determine the content of Zn, Ni, Cd, Cr, Cu and Pb, using inductively coupled plasma optical emission spectrometry (ICP-OES). The level of contamination with the analyzed metals was determined according to the following indices: geo-accumulation index (I geo), enrichment factor (EF), pollution index (PI), integrated pollution index (IPI) and potential ecological risk index (RI). The average concentration of heavy metals found was in the order of Zn > Cu > Pb > Ni > Cr > Cd. The average I geo values for Cd, Cr, Cu, Ni, Pb and Zn were 1.53, ?1.88, 2.68, ?0.67, 1.62 and 2.70, respectively. Among the investigated heavy metals, zinc and copper had the maximum average EF values and were placed into the “very severe enrichment” class. Potential ecological risk factor (E r) also indicated that Cd had the highest risk, and it was classified as of considerable potential ecological risk. Therefore, it is necessary to pay more attention to the appearance of Cd in the human environment. The calculated potential ecological risk index values also illustrated that the street dust samples presented a “moderate ecological risk.” The calculated IPI values showed that the pollution levels of the street dust samples ranged from high to extremely high.  相似文献   

4.
In the present study, roadside-deposited sediment samples collected from Kuwait city district, in Kuwait, were analyzed for specific heavy metals (As, Cr, Cu, Mn, Ni, Pb, and Zn). Contamination assessment status of heavy metals in roadside sediments was made using mathematical models in terms of enrichment factor (EF), geoaccumulation index (I geo), and contamination factor (CF). The sediments showed remarkably high levels of all the metals, except Ni, above background concentrations in the following order (As, Cu, Pb, Zn, Mn, and Cr). CF and I geo revealed overall moderately uncontaminated and moderate contamination, respectively, but the EFs for all metals ranged between moderate and significant enrichment.  相似文献   

5.
Socioeconomic developments and industrialization exert tremendous impact on beaches which is often neglected. Heavy metal (Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb) contents were estimated in the intertidal region from Kalpakkam to Mamallapuram (20 km), southeast coast of India covering seven locations. To evaluate the level of contamination of these metals; enrichment factor (EF), geoaccumulation index (I geo), contamination factor (CF), pollution load index (PLI) and modified degree of contamination (mCd) were applied. The results were also compared with the sediment quality guidelines (SQGs) to find out the eco-toxicity level. Metal contents in the beach sediment were observed in the order: Fe > Al > Mn > Cr > Cu > Ni > Zn > Pb > Co > Cd. Grain size distribution showed medium to coarse nature of the sediment. Significant positive correlation was found among the metals indicating their common source of input. Based on EF, minor enrichment of Mn and Zn and moderately severe to severe enrichment of Cr, Cu, Pb and Cd were observed which was further confirmed by I geo and CF values. Moreover, Mamallapuram showed a very high CF value for Cd (>6) indicating very high contamination accountable to anthropogenic sources. PLI and mCd in all the stations indicated unpolluted nature except M1 where the values pointed moderate degree of contamination. As per the SQGs, Ni and Cr values exceeded the probable effect limit value implying that these metals can have adverse impacts. None of the metals exceeded the effect range median indicating that the beach sediment is not very toxic.  相似文献   

6.
The study was taken up to establish the distributions of metals as well as to assess the extent of anthropogenic inputs into the Subarnarekha River. Bed sediments were collected; analyzed for metals; and assessed with the index of geo-accumulation (I geo), enrichment factor (EF) value, concentration factor (CF) and pollution load index (PLI). Metals in the sediment were variable in the river and there are major pollution problems at certain locations. The average concentrations of Fe, Cu, Cr, Pb, Mn, Ni, Zn, Co and Ba in mg/kg was found to be 30,802 ± 11,563, 69 ± 57, 111 ± 74, 75 ± 61, 842 ± 335, 42 ± 22, 100 ± 39, 15 ± 4 and 698 ± 435, respectively. The I geo, EF, CF and PLI indices showed that the contamination of Pb and Cu was more serious than that of Ni, Zn, Co and Ba, whereas the presence of Fe, Mn and Cr might be primarily from natural sources. The contamination of the sediments with metals at few locations is attributed to mining, industries and other anthropogenic causes. Principal component analysis was employed to better comprehend the controlling factors of sediment quality. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. PCA outcome of three factors together explained 83.8 % of the variance with >1 initial eigenvalue indicated both innate and anthropogenic activities are contributing factors as source of metal profusion in Subarnarekha River basin.The overall study reveals moderately serious pollution in the river basin principally in some locations under the anthropogenic influences.  相似文献   

7.
The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb, Cd, As, Hg, and Fe) in sediments of the Yangtze River, China, were investigated to evaluate levels of contamination and their potential sources. The lowest heavy metal concentrations were found in the source regions of the river basin. Relatively high concentrations of metals, except Cr, were found in the Sichuan Basin, and the highest concentrations were in the Xiangjiang and Shun’anhe rivers. All concentrations, except Ni, were higher than global averages. Principal component analysis and hierarchical cluster analysis showed that Zn, Pb, As, Hg, and Cd were derived mainly from the exploitation of various multi-metal minerals, industrial wastewater, and domestic sewage. Cu, Co, and Fe were derived mainly from natural weathering (erosion). Cr and Ni were derived mainly from agricultural activities, municipal and industrial wastewater. Sediment pollution was assessed using the geoaccumulation index (I geo) and enrichment factor (EF). Among the ten heavy metals assessed, Cd and Pb had the highest I geo values, followed by Cu, As, Zn, and Hg. The I geo values of Fe, Cr, Co, and Ni were <0 in all sediments. EF provided similar information to I geo: no enrichment was found for Cr, Co, and Ni. Cu, Zn, As, and Hg were relatively enriched at some sites while Cd and Pb showed significant enrichment.  相似文献   

8.
This study aims at identifying multi-source heavy metal pollution from natural and anthropogenic sources using a regression model, principal component analysis, and five different indices (geo-accumulation index (I geo), the modified degree of contamination, pollution load index (PLI), enrichment factor, and ecological risk factor. Results revealed that: (1) although the average concentrations of soil heavy metals (Cu, Cr, Pb, Hg, As, Zn) were generally low, Hg, As, and Cr concentrations exceeded national standard values by approximately 0.91, 1.84, and 0.91 times with maximum concentrations up to 0.41, 78.6, and 175.2 μg/g, respectively; (2) PLI results showed that the industrial park and Wucaiwan open coal mining area were the most polluted (PLI of 1.98, 1.71). The potential ecological hazards index indicated that the E i r of three heavy metals (Cu, Hg, As) in the soil were relatively high, presenting potential ecological risk factors of 74.89, 16.71, 4.15%, respectively; (3) stepwise regression model and principal component analysis suggest that Cu and Zn were primarily effected by the natural geological condition and atmospheric dust fall. Cr, Hg, Pb are mainly derived from anthropogenic sources, particularly coal mining activities and industrial sources. Results of this research have some significant implications for heavy metal pollution prevention and the sustainable development of the economy and ecology of arid regions in China.  相似文献   

9.
To assess the pollution of heavy metal in dust fall, nine dust fall samples were collected during the heating period and non-heating period from Jinan, a city in northeastern China. The samples were analyzed for Cu, Pb, Zn and Cr and the contamination level of heavy metals was assessed on the basis of the geo-accumulation index (I geo). The results indicated that all of the four investigated metals accumulated significantly in the dust fall of Jinan, and the metal concentrations were much higher than background values. During the heating period, the mean values for Cu, Pb, Zn and Cr in the dust fall were 354.9, 688.5, 2,585.5 and 478.6 mg kg−1. During the non-heating period, the mean values for Cu, Pb, Zn and Cr in the dust fall were 228.2, 518.2, 1,933.9 and 96.3 mg kg−1, respectively. The I geo values calculated based on background values revealed that the contamination level of heavy metal in the dust fall ranges from moderately contaminated to heavily contaminated, and it mainly originates from traffic and industry. In this work, the dust fall residue compared to the standard reference was also chosen as the background value to calculate the I geo value. This method is useful for situations in which the background value is difficult to obtain.  相似文献   

10.
190 Street dust samples were collected from nine different localities including high traffic (desert highway), moderate traffic (city center), light traffic (minor streets), residential streets, school gardens, hospital and health centers, industrial sites, parks and background sites (control) of Ma’an area. The concentrations of Fe, Zn, Ni, Pb, Mn, Cu and Cd were analyzed by flame atomic absorption spectrophotometer to assess and to compare road dust contamination levels of metals among the different types of urban environment. The results showed that dust samples from the urban and industrial site contained significant levels of the metals studied compared to the values obtained from the background site. The variation in concentration of the heavy metals determined from different locations was in the decreasing order as: industrial > high traffic > parks > moderate traffic > hospital and health centers > school gardens > light traffic > background sites. The mean concentrations of the metals were in the order of C Fe > C Zn > C Ni > C Pb > C Mn > C Cu > C Cd where C is the concentration of these metals in solution. Enrichment factor calculations indicated that Cd, Pb, Zn and Ni were highly enriched. Fossil fuel combustion, wear of brake lining materials, traffic emissions and several industrial processes are considered the main sources of these metals. Assessment of the contamination level in dust sample was estimated based on the geoaccumulation index (I geo), the pollution index, and integrated pollution index (IPI). The values of IPI are in the following order: Pb > Zn > Cu > Ni > Cd > Mn. All the indices for the metals under consideration were either low or corresponded to middle level of contamination. The use of factor analysis showed that anthropogenic activities seem to be the responsible source of contamination for metals in dust samples.  相似文献   

11.
Surface sediments collected at the Tirumalairajan river estuary and their surrounding coastal areas were analyzed for the bulk metal concentration. The sediments were collected from post- and premonsoon seasons. Dominances of heavy metals are in the following order: Fe > Mn > Zn > Pb > Cu in both seasons from estuary and coastal area. The results reveal that Fe, Mn, Cu, Pb, and Zn demonstrated an increased pattern from the estuary when compared to the coastal area. The heavy metal pattern of the sediments of the Tirumalairajan river estuary and its surrounding coastal area offered strong evidence that the coastal area was a major source of heavy metals to the estuarine region. For various metals, the contamination factor and geoaccumulation index (I geo) have been calculated to assess the degree of pollution in sediments. The contamination factor and geoaccumulation index show that Zn, Pb, and Cu unpolluted to moderately pollute the sediments in estuarine part. This study shows the major sources of metal contamination in catchment and anthropogenic ones, such as agriculture runoff, discharge of industrial wastewater, and municipal sewage through the estuary and adjoining coastal area.  相似文献   

12.
The concentration and dynamic of soil trace metals in natural ecosystems, in particularly, is dependent on the lithology of parent rock as well as topography and geopedological processes. To ascertain more knowledge for this dependency, soils on three parent rocks involving peridotite, pegmatite, and dolerite in two contrasting topography aspects were investigated. The total values of Fe, Mn, Zn, Cu, and Ni were determined and compared for different soil pedons. The concentration of Fe, Mn, and Ni were highest in soils developed from peridotite (127, 1.8 g kg?1, and 218 mg kg?1, respectively), intermediate in soils derived from dolerite (81, 1.3 g kg?1, and 166 mg kg?1, respectively), and least in soil developed from pegmatite (50, 0.23 g kg?1, and 20 mg kg?1, respectively). The values of Zn and Cu, originated from different parent rocks, were in order of dolerite (78 mg kg?1) > peridotite (77 mg kg?1) > pegmatite (28 mg kg?1) and pegmatite (121 mg kg?1) > peridotite (111 mg kg?1) > dolerite (28 mg kg?1), respectively. For most of the studied pedons, profile metals distribution differed among the soils: The values of Fe, Cu, and Ni were enriched in the cambic horizons mainly as result of release, mobilization, and redistribution of the studied metals during geopedological processes, whereas those of Zn and Mn were concentrated in the surface horizons. Probably due to greater weathering rate of trace metal-bearing rocks on north-facing slope, the content of the trace metals along with the geoaccumulation index (I geo) and the degree of soil contamination (C d) were higher than on south-facing slope. Based on assessment of soil pollution indices, the soils were categorized as unpolluted [I geo ≤ 0 (class 0)], unpolluted to moderately polluted levels [0 < I geo < 1 (class 1)], and very low [C d < 1.5 (class 0)] to low degree of contamination [1.5 < C d < 2 (class 1)].  相似文献   

13.
近50年来抚仙湖重金属污染的沉积记录*   总被引:15,自引:8,他引:15  
文章以抚仙湖污染严重的北部和基本未受人类活动影响的中部为研究对象,分别采集了沉积岩芯FB和FZ,通过对岩芯的137 Cs测年和重金属元素(Cu,Ni,Ti,Cr,V,Pb,Cd和Zn)的含量分析,研究了湖泊重金属来源和污染历史,并利用地质累积指数法评价了湖泊重金属污染程度。结果表明:抚仙湖北部的平均沉积速率约为2.0~2.8mm/a;20世纪80年代以前,湖泊北部和中部的重金属元素(Cu,Ni,Ti,V,Pb,Cd,Zn)以自然来源为主;80年代以后,抚仙湖受到人类活动的影响,但湖泊中部Cu,Ni,Ti,V,Pb,Zn以及湖泊北部Cu,Ni,Ti,V仍以自然来源为主;湖泊北部Pb和Zn地质累积指数值小于1,属无污染到中度污染;北部Cd地质累积指数为3~4,达强度污染;中部Cd地质累积指数为2~3,属中强度污染;且Pb,Zn和Cd污染程度有加速增大的趋势。  相似文献   

14.
Farming is the major source of income for the villagers of North-central Sri Lanka. However, chronic kidney disease of unknown etiology is a major health hazard in the area and it is assumed that agricultural contaminants are the major causative agents. This study focuses on the geochemistry of soils in the area to determine possible natural and anthropogenic impacts of the problem. X-ray fluorescence analysis was used to determine the abundance of selected major and trace elements. Results show that geo-enrichment for many elements indicates slight to significant variations between agricultural and non-agricultural soils. Geoaccumulation index (I geo) shows higher pollution levels of Pb and V (2 < I geo < 3) and very lower pollution levels of As, Zn, Cu, Fe and Mn (1 < I geo < 2) in agricultural soils. However, I geo for non-agricultural soils implies lack of contaminations (I geo < 1). Positive correlations of As with Pb and Zn and negative correlations with Cu, Ni and Cr suggest that they may have derived from different sources such as sulfide minerals of basement rocks, fertilizers and agrochemicals. The results of this study suggest that there is no significant threat from As and other trace elements to soils. The accumulation of these elements in agricultural fields may have been effectively controlled by seasonal farming practices. However, there is a potential environmental risk from elements such as Pb and V due to their significant enrichment in soils.  相似文献   

15.
Heavy metals are constantly emitted into the environment and pose a major threat to human health, particularly in urban areas. The threat is linked to the presence of Cd, Cr, Cu, Ni, Pb, and Zn in street dust, which consists of mineral and organic particles originating from the soil, industrial emitters, motor vehicles, and fuel consumption. The study objective was to determine the level of street dust contamination with trace metals in Lublin and to indicate their potential sources of origin. The analyses were carried out with an energy-dispersive X-ray fluorescence spectrometer. The sampling sites (49) were located within the city streets characterised by varying intensity of motor traffic. The following mean content values and their variation (SD) were determined: Cd: 5.1?±?1.7 mg kg?1, Cr: 86.4?±?23.3 mg kg?1, Cu: 81.6?±?69.2 mg kg?1, Ni: 16.5?±?3.9 mg kg?1, Pb: 44.1?±?16.4 mg kg?1, and Zn: 241.1?±?94.6 mg kg?1. The level of pollution was assessed with several widely used geochemical indices (geoaccumulation index, enrichment factor, pollution index, index of ecological risk, and potential ecological risk index). For most of the indices, the mean (median) values are arranged in the following manner: Zn?>?Cu(or Cd)?>?Pb?>?Ni?>?Cr. In general, street dust in Lublin does not show pollution with Cr, Ni, and Pb. Igeo and EF indices show moderate levels for Cu, Cd, and Zn; their presence in street dust is linked with anthropogenic factors (motor traffic). A significant threat is posed by Cd, and more than half of the samples show considerable pollution with cadmium (median for the index of ecological risk: 151). The spatial pattern of indices and the results of statistical analyses (CA, PCA) indicate three groups of elements: (1) Cr and Ni: natural origin; (2) Pb: mixed origin; and (3) Cd, Cu, and Zn: anthropogenic origin (mainly motor vehicle traffic). Higher content values for metals of anthropogenic origin in street dust indicate that it is a source of pollution of soil and air in the city.  相似文献   

16.
In this study, total heavy metal content of soil and their spatial distribution in Sar?seki-Dörtyol district were analyzed and mapped. Variable distance grids (0.5, 1.0 and 2.0 km) were established, with a total of 102 soil samples collected from two different soil depths (0–5 and 5–20 cm) at intersections of the grids (51 sampling point). Soil samples were analyzed for heavy metals (Cd, Co, Cr, Cu, Pb, Zn, Mn, Fe, and Ni). The most proper variogram models for the contents of all heavy metal were spherical and exponential ones. The ranges of semivariograms were between 1.9 and 31.1 km. According to the calculated geoaccumulation (I geo) values, samples from both soil depths were classified as partly to highly polluted with Cd and Ni and partly polluted with Cr and as partly polluted-to-not polluted with Pb and not polluted with Cu, Fe and Mn. Similar results were also obtained when evaluated by the enrichment factor. The contamination levels of the heavy metals were Ni > Cd > Cr > Pb > Zn > Cu > Co > Fe > Mn in decreasing order. The soils in the study area are contaminated predominantly by Cd and Ni, which may give rise to various health hazards or diseases. Cadmium pollution results primarily from industrial activities and, to a lesser extent, from vehicular traffic, whereas Ni contents in the study area result from parent material, phosphorus fertilizer, industries, and vehicles.  相似文献   

17.
Heavy metal pollution in the surficial sediments derived from the estuary in Daliao River and Yingkou Bay is investigated to assess environmental quality, pollution level, bioavailability and toxicity. The ranges of Pb, Co, Zn and Cu concentrations in the surficial sediments are: 16.57–39.18, 3.61–16.02, 16.53–39.18, 2.77–43.80 mg/kg. Results of the geoaccumulation index (I geo) show that the pollution levels of four metals are in the “unpolluted” class except for Pb in 15 sampling sites. The pollution level of the study area assessed by pollution load index (PLI) shows that except for the moderately polluted region of sites 1, 2, 3, 8, 12 and 13, other sites belong to unpolluted state. The sequence of pollution extent of different heavy metals is: Pb > Zn > Co > Cu. At all sampling sites, the grades of potential ecological risk of Co, Cu, Pb and Zn are “light”. The order of potential ecological risk is: Pb > Co > Cu > Zn. Sequential extraction of the metals indicates that the states of Pb, Cu, Co and Zn in the sediment are relatively stable at most sites of the estuary in Daliao River and Yingkou Bay, which means that there is a low source of pollution arriving in this area. While only at several sites, Co, Pb and Zn are labile, which are considered as anthropogenically originated.  相似文献   

18.
Concentration and distribution of heavy metals (Cd, Cu, Pb and Zn) in urban soils of Hangzhou, China, were measured based on different land uses. The contamination degree of heavy metals was assessed on the basis of pollution index (PI), integrated pollution index (IPI) and geoaccumulation index (I geo). The 0.1 mol l−1 HCl extraction procedure and gastric juice simulation test (GJST) were used to evaluate the potential mobility and environmental risk of heavy metals in urban soils. The average concentration of Cd, Cu, Pb and Zn in urban soils was measured at 1.2 (with a range of 0.7–4.6), 52.0 (7.4–177.3), 88.2 (15.0–492.1) and 206.9 (19.3–1,249.2) mg kg−1, respectively. The degree of contamination increased in the order of industrial area (IA) > roadside (RS) > residential and commercial areas (RC) > public park and green areas (PG). The PIs for heavy metals indicated that there is a considerable Cd, Cu, Pb and Zn pollution, which originate from traffic and industrial activities. The IPI of these four metals ranged from 1.6 to 11.8 with a mean of 3.5, with the highest IPI in the industrial area. The assessment results of I geo also supported that urban soil were moderately contaminated with Cd and to a lesser extent also with Cu, Pb and Zn. The IP and I geo values reveal the pollution degree of heavy metal was the order of Cd > Pb > Zn ≈ Cu. It was shown that mobility and bioavailability of the heavy metals in urban soils increased in the order of Cd > Cu > Zn ≈ Pb. Owing to high mobility of Cd and Cu in the urban soils, further investigations are needed to understand their effect on the urban environment and human health. It is concluded that industrial activities and emissions from vehicles may be the major source of heavy metals in urban contamination. Results of this study present a rough guide about the distribution and potential environmental and health risk of heavy metals in the urban soils.  相似文献   

19.
Pu  Wanqiu  Sun  Jiaqi  Zhang  Fangfang  Wen  Xingyue  Liu  Wenhu  Huang  Chengmin 《中国地球化学学报》2019,38(5):753-773

Metallic ore mining causes heavy metal pollution worldwide. However, the fate of heavy metals in agrosystems with long-term contamination has been poorly studied. Dongchuan District (Yunnan, southwest China), located at the middle reaches of the Xiaojiang River, is a well-known 2000-year-old copper mining site. In this work, a survey on soil heavy metal contents was conducted using a handheld X-ray fluorescence instrument to understand the general contamination of heavy metals in the Xiaojiang River Basin. Furthermore, river water, soil, and rice samples at six sites along the fluvial/alluvial fans of the river were collected and analyzed to implement an environmental assessment and an evaluation of irrigated agrosystem. V, Zn, and Cu soil levels (1724, 1047, and 696 mg·kg−1, respectively) far exceeded background levels. The geo-accumulation indexes (Igeo) showed that cultivated soils near the mining sites were polluted by Cd and Cu, followed by Zn, V, Pb, Cr, Ni, and U. The pollution index (Pi) indicated that rice in the area was heavily polluted with Pb, Cr, Cd, Ni, Zn, and Cu. The difference in orders of metal concentrations between the soil and rice heavy metal contamination was related to the proportion of bioavailable heavy metals in the soil. The crop consumption risk assessment showed that the hazard quotient exceeded the safe threshold, indicating a potential carcinogenic risk to consumers. The Nemerow integrated pollution index and health index indicated that the middle of the river (near the mining area) was the heaviest polluted site.

  相似文献   

20.
This study reported the first comprehensive research on identification of metal concentrations (Fe, Mg, Mn, Pb, Cd, Cr) in order to provide baseline data for future studies, identify possible sources, determine degree of pollution, and identify potential ecological risks of metals in surface sediments from Iran’s Choghakhor Wetland. The order of metal concentration was as follows: Fe > Mg > Mn > Pb > Cd > Cr, with mean concentrations of 6140.35, 1647.32, 289.03, 1.10, and 0.45 µg/g of dry weight, respectively. These results reveal that Choghakhor Wetland is not heavily polluted compared to other regions. The results of enrichment factor (EF) and geoaccumulation index (I geo) showed that Fe, Pb, Mg, Cr, and Mn presented low levels of contamination and probably originated from natural sources. On the other hand, the results of EF and I geo indices suggested that Cd concentrations in sediments of Choghakhor Wetland originated from anthropogenic sources. Based on the results of three sets of sediment quality guidelines, only Cd concentration in sediments of Choghakhor Wetland is a threat for aquatic organisms of Choghakhor Wetland. The results of multivariate analysis such as principal component analysis and cluster analysis showed that Fe–Mn, Cr–Mg, and Pb groups originated from natural sources, while Cd concentrations in sediments of Choghakhor Wetland originated from both natural and anthropogenic sources (mainly chemical fertilizers). To our knowledge, this is the first study about metal concentrations in sediments of Choghakhor Wetland, and because of low levels of these metals, these concentrations can be considered background levels for future investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号