首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
在全球导航卫星系统(global navigation satellite system,GNSS)水汽层析中,受卫星星座和接收机几何分布的影响,穿过层析区域的射线条数有限。针对该问题,设计并实现了一种附加虚拟倾斜路径信号精化水汽层析模型的方法,该方法能够增加穿过研究区域的射线条数和射线穿过的网格数,使层析结果更加逼近真值。利用香港卫星定位参考站网2015年5月共31 d的GPS网实测数据和气象数据进行实验,并结合无线电探空数据验证该方法的可行性及精度。结果表明,该方法能够提高层析结果的精度,与传统层析方法相比,该方法在均方根(root mean square,RMS)、水汽密度廓线和误差分布上均优于传统方法。  相似文献   

2.
利用ECMWF改善射线利用率的三维水汽层析算法   总被引:1,自引:1,他引:0  
针对传统水汽层析技术只能利用完整穿过研究区域射线重构三维水汽的缺陷,提出了一种利用欧洲中尺度天气预报中心格网产品改善三维水汽反演射线利用率的方法。该方法通过引入比例因子,计算出侧面穿出射线在层析区域内的水汽含量,并参与观测方程的建立。利用香港卫星定位参考站网的实测全球定位系统和气象数据,结合该区域的无线电探空站45004和ECMWF格网点数据,对该方法的可行性及精度进行验证。试验结果表明:相对于传统方法,该方法的射线利用率和网格覆盖率分别提高了55.16%和16.46%;分别以探空数据和ECMWF格网数据为参考基准,发现提出的方法其均方根误差、平均绝对偏差和相对误差等均优于传统方法。  相似文献   

3.
全球导航卫星系统(global navigation satellite system, GNSS)层析技术是获取对流层三维水汽信息的重要途径之一。然而,传统水汽层析方法在构建层析模型时缺少足够的初始先验信息,导致层析模型设计矩阵结构不稳定,层析解算结果精度较差。针对上述情况,提出了一种融合欧洲中尺度天气预报中心(European Center for Medium-Range Weather Forecasting, ECMWF)格网数据精化层析模型反演水汽的方法。该方法通过ECMWF ERA-Interim再分析资料数据集提供的格网数据计算得到层析区域各网格内的水汽密度初值,将其作为先验初始信息附加到传统层析模型中对模型精化。在层析模型解算时,顾及层析模型先验信息权比对层析结果的影响。为了验证提出方法的有效性,以中国香港卫星定位参考站网(satellite positioning reference station network, SatRef)实测GNSS和气象数据为例进行实验,并以实验区域的无线电探空数据为基准验证该方法的可行性及精度。实验结果表明,提出的方法能够明显提高层析结果的精度,反演水汽的均方根误差(root mean squared error, RMSE)由原来的1.82 g/m3减小到了1.07 g/m3,改善率为41.2%。此外,所提方法在平均绝对偏差(mean absolute error, MAE)、偏差(Bias)和标准差(standard deviation,STD)等方面也均优于传统层析方法。  相似文献   

4.
针对传统水汽层析技术无法利用层析区域外GNSS测站数据的现状,提出一种顾及层析区域外测站数据的三维水汽建模方法.基于GPT2w模型计算层析区域的水汽密度初始场,首先,引入比例系数并联合水汽密度初值确定该比例系数表达式;然后,估计层析区域外测站信号在区域内的水汽含量;最后,构建顾及层析区域外测站数据的水汽观测方程.本文方法能够有效利用层析区域外的测站数据,改善层析结果的精度和可靠性,但仅能利用层析区域外一定范围内的测站.选取浙江CORS网中24个GNSS测站和一个无线电探空站共23 d的数据进行验证.试验结果表明,相对于传统层析方法,本文方法的射线利用率和有射线穿过的体素数分别提高了26.8% 和14.9%;以探空数据为参考基准,本文方法计算的IWV和水汽密度均优于传统方法.  相似文献   

5.
GNSS水汽层析技术可以反演对流层水汽三维时空变化情况,但该技术比较复杂、运算量大,需要消耗一定的时间.故本文提出了一种利用地基GNSS反演的大气可降水量(precipitable water vapor, PWV)结合水汽在垂直方向上的指数分布特性来计算大气水汽三维分布的快速层析方法.该方法利用香港地区2022年8月的GNSS数据开展试验,与传统GNSS水汽层析方法进行对比.试验结果表明:两种方法的层析解算结果与探空数据均具有良好的一致性.虽然快速层析方法的解算结果在底层区域缺少一些水汽变化的细节信息,精度略逊于传统层析方法,但是在中、高层时精度会有所提升,层析解算结果良好.而且本文提出的快速层析方法无需构建和解算复杂的层析方程组,可以在大量GNSS测站参与水汽层析时减少计算复杂度,提升运算能力,同时可以更快地得到任意高度层的水汽密度,是一种简便、高效的层析方法.  相似文献   

6.
针对目前地基全球卫星导航系统(GNSS)层析大气水汽精度不高的问题,本文提出对网格划分垂直方向非均匀分层的方法,提高了区域层析结果精度.基于多系统GNSS观测数据,对河南地区东经111.5°~115.5°,北纬33.6°~35.6°区域上空水汽分布进行层析探测,研究垂直分层方法对层析结果的影响,垂直方向采用均匀和非均匀两种分层方式,得到的水汽密度结果与探空反演水汽密度值都非常接近,对比来看,非均匀分层层析在相关系数、均方根误差和平均偏差等数据分析方面表现出了较好的数据精度,采用非均匀分层方法可以得到更优的大气水汽反演结果.  相似文献   

7.
全球导航卫星系统(global navigation satellite system, GNSS)水汽层析技术凭借高精度、低成本、全天候等优点成为获取高时空分辨率水汽三维分布的重要手段之一。引入遥感卫星提供的高分辨率水汽信息,首次提出附加高水平分辨率大气可降水量(precipitable water vapor, PWV)约束的GNSS水汽层析算法,对现有水汽层析算法的约束条件进行补充和改进。首先对高分辨率PWV观测值进行校正,然后基于二次加密划分的层析体素块构造PWV约束方程,通过将PWV约束方程融合到GNSS层析模型来改善模型的约束条件,进而优化层析结果质量。利用徐州地区2017-08的GNSS观测数据和风云三号A星(Fengyun-3A, FY-3A)遥感水汽数据对该算法的可行性及精度进行验证,分别以高精度的探空水汽廓线和ERA5三维水汽密度场为参考值对层析结果进行评估。实验结果表明,所提算法反演的水汽廓线和三维水汽分布均优于传统层析算法,各类精度指标都有了显著改善,其中平均均方根误差由2.73 g/m~3减小为1.78 g/m~3,反演精度提高了34.80%,进一步表明所提算法可有效改善层析结果质量,有助于获取高精度和高可靠性的三维大气水汽分布。  相似文献   

8.
地基GPS水汽层析的投影面算法   总被引:1,自引:1,他引:0  
丁楠  张书毕 《测绘学报》2016,45(8):895-903
水汽层析技术在研究气候变化、极端天气预警、辅助数值天气预报等方面发挥着重要作用。常规的水汽层析技术在计算层析方程系数时,需要进行大量的求交运算。对此,本文提出了一种投影面算法,提高了运算速度和反演的精度。本文采用的试验数据是香港卫星定位参考站网(SatRef)提供的GPS信号数据,与传统算法相比,投影面算法的计算速度更快、计算量更小,不受层析区域大小影响,水汽层析的结果与探空数据具有良好的一致性。  相似文献   

9.
大气水汽对全球以及区域气候变化有重要的影响,精确获取水汽数据是非常重要的研究方向。TRMM(热带降雨观测计划)卫星上搭载的VIRS传感器(可见光/红外扫描仪)在降雨观测中应用广泛,但是目前很少有研究将其用于水汽反演。本文尝试使用VIRS的两个红外分裂窗通道(10.8μm和12μm),通过建立改进的方差协方差比值分裂窗方法进行水汽反演。首先对TRMM/VIRS数据和方差协方差比值法进行了介绍,接着针对VIRS数据特点,利用MODTRAN辐射传输模式和探空大气廓线数据模拟回归了大气透过率和水汽的定量关系,最后利用VIRS遥感数据开展了水汽反演试验。由于红外波段分裂窗水汽反演算法只适合于晴空条件下,因此在云雨识别的时候,为了保证时空一致性,采用TRMM提供的基于微波成像仪TMI的云中液态水信息来对晴空与否进行判断。水汽反演结果首先与地基GPS大气水汽观测值进行了比较,均方根误差为5.76 mm;其次和MODIS卫星水汽反演结果进行了面状对比,二者显示出了高度的区域一致性。验证结果表明,TRMM/VIRS的水汽反演结果精度较高,具有进行业务化推广的潜力,丰富了水汽数据的来源,同时也对利用风云系列卫星传感器数据进行热红外通道的水汽反演具有借鉴意义。  相似文献   

10.
利用选权拟合法进行GPS水汽层析解算   总被引:1,自引:0,他引:1  
附加约束条件的层析解算方法是克服GPS水汽层析观测方程不适定性的主要方法,为了避免该方法中水平约束方程权阵的选取不当对水汽层析结果产生的不良影响,将选权拟合法应用到对流层水汽参数反演中。首先利用水汽参数在空间的分布规律构建参数权矩阵,并利用L曲线法确定正则化参数,然后利用模拟实验对该方法在水汽层析解算中的应用进行了验证。结果表明,该方法可以有效地克服观测方程的不适定性,反演得到符合客观实际的结果。  相似文献   

11.
GNSS水汽层析技术凭借高精度、高时空分辨率及全天候监测等优点,已成为探测大气水汽最具潜力的技术之一。目前,融合多源大气遥感数据逐步成为弥补传统层析模型GNSS信号几何缺陷的研究热点。本文利用Terra卫星上的中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)提供的观测数据,首先分析了传统体素模型融合MODIS信号的不足;然后提出了基于体素节点模型的GNSS/MODIS信号紧耦合水汽层析算法,该算法将高分辨率MODIS PWV以三维信号的形式引入层析模型中;最后利用2016年7月徐州地区的15幅MODIS影像及同步GNSS数据对3种模型的层析结果质量进行了评估。试验结果表明:利用本文所提出的紧耦合算法,层析模型的平均有效观测信号数量提高了34.15%,层析结果平均RMSE(root mean square error)值降低了25.10%。此外,以邻近时刻探空站数据作为参考值,发现0~2 km的近地层,紧耦合算法的层析结果明显优于传统算法,这表明融合MODIS观测信号可改善近地层三维水汽场的重构质量。  相似文献   

12.
Water vapor tomography has been developed as a powerful tool to model spatial and temporal distribution of atmospheric water vapor. Global navigation satellite systems (GNSS) water vapor tomography refers to the 3D structural construction of tropospheric water vapor using a large number of GNSS signals that penetrate the tomographic modeling area from different positions. The modeling area is usually discretized into a number of voxels. A major issue involved is that some voxels are not crossed by any GNSS signal rays, resulting in an undetermined solution to the tomographic system. To alleviate this problem, the number of voxels crossed by GNSS signal rays should be as large as possible. An important way to achieve this is to optimize the geographic distribution of tomographic voxels. We propose an approach to optimize voxel distribution in both vertical and horizontal domains. In the vertical domain, water vapor profiles derived from radiosonde data are exploited to identify the maximum height of tomography and the optimal vertical resolution. In the horizontal domain, the optimal horizontal distribution of voxels is obtained by searching the maximum number of ray-crossing voxels in both latitude and longitude directions. The water vapor tomography optimization procedures are implemented using GPS water vapor data from the Hong Kong Satellite Positioning Reference Station Network. The tomographic water vapor fields solved from the optimized tomographic voxels are evaluated using radiosonde data and a numerical weather prediction non-hydrostatic model (NHM) obtained for the Hong Kong station. The comparisons of tomographic integrated water vapor (IWV) with the radiosonde and NHM IWV show that RMS errors of their differences are 1.41 and 3.09 mm, respectively. Moreover, the tomographic water vapor density results are compared with those of radiosonde and NHM. The RMS error of the density differences between tomography and radiosonde data is 1.05  \(\mathrm{g/m}^{3}\) . For the comparison between tomography and NHM, an overall RMS error of \(1.43\,\mathrm{g/m^{3}}\) is achieved.  相似文献   

13.
多路径效应影响是目前限制GPS定位精度进一步提高的瓶颈。提出用交叉证认技术自动识别小波分解的信号层,再通过小波重构实现降噪和信号提取,并将该方法应用于GPS多路径误差的削减中。对模拟数据和实际GPS观测资料的分析表明,该方法能合理分离不同噪声水平下资料序列中的信号和噪声;当噪声水平小于信号振幅的一半时,能成功分离资料序列中的高频信号。同时,运用该方法得到的多路径改正模型和GPS多路径效应的重复性,可有效地削弱多路径效应的影响,提高GPS定位精度。  相似文献   

14.
将GPS信号的斜路径湿延迟当作层析的观测量能够有效获取对流层的三维水汽场。由于射线分布的不均匀和观测网地形的扁平,观测方程是不适定的,因此需要添加一些约束条件来确定唯一解。由于水汽在垂直方向变化很快,合理的垂直约束在获取准确的水汽场上起着重要作用。研究了香港地区湿折射率的垂直分布特征,发现高斯函数能很好地表达湿折射率与高度的关系,利用高斯函数建立约束方程获得的层析解能很好地与探空数据和欧洲中尺度天气预报中心(ECMWF)数据吻合。相对于指数约束所得结果,层析湿折射率的标准差在整个对流层减小了3.8 mm/km,在低对流层减小了4.7 mm/km。实验也表明,利用其他气象数据,如无线电探空数据,作为湿折射率的先验信息,也可以得到较好的层析解。  相似文献   

15.
北斗三号卫星导航系统(BDS-3)B1C信号相较北斗二号卫星导航系统卫星信号,从信号结构、编码方式再到导航电文结构都发生了改变,包括引入导频信号、二次编码、BOC调制、LDPC编码和B-CNAV1导航电文结构等.这些改变一方面提高了信号性能(如抗多路径、信号捕获和跟踪精度等);另一方面,也带来了一系列问题,对接收机的信号捕获技术提出了全新的要求,如需处理更大的数据流,解决由二次编码带来的符号翻转和BOC调制造成的捕获多峰性问题.针对BDS-3接收机的工程实现,本文提出了一种新颖有效的两级B1C信号捕获技术.其中第一阶段采用扩展并行平均相关搜获结构,用以解决符号翻转问题,同时实现高效的信号粗捕获;第二阶段在缩小的搜索范围内进行高精度搜索,此步骤可有效避免信号多峰性造成的误锁可能.除此之外,本文还介绍了单信道和多信道组合式捕获技术,用户可根据资源占用和捕获灵敏度需求选取更有效的捕获方法.实验结果表明,本文提出的方法允许使用更小更经济的快速傅里叶变换(FFT)模块,并通过大量并行处理的方法实现快速捕获.相较传统的高精度捕获技术,此方法在采样频率超过50MHz时,能够在保证相近的捕获精度的同时减少至少61%的运算量.  相似文献   

16.
With the proposed new GNSS signals, enhanced navigation performance is expected in both civil and military applications. However, these new signals introduce the difficulty of combining multiple signal components into a constant-envelope signal. For the Compass B1 band, the problem is to multiplex a QPSK(2) signal and a new multiplexed binary offset carrier (MBOC) signal with a center frequency difference of 14.322 MHz. One approach for multiplexing spreading codes is the phase-optimized constant-envelope transmission (POCET) method proposed for the GPS L1 band. However, only binary spreading codes are considered in POCET. We first generalize the POCET method as a multilevel POCET (MPOCET) algorithm for multilevel coded signals. A new implementation of the alternative binary offset carrier (AltBOC) generator is derived from MPOCET. Secondly, the multiplexing problem for Compass is modeled by MPOCET. Multilevel subcarriers of AltBOC are adopted in the model. As a result, an 8-PSK unbalanced AltBOC (UAltBOC) modulation, which has a QPSK(2) signal at the lower sideband and a TMBOC signal at the upper sideband, is obtained. Simulations for signal model validation and power spectrum analysis are conducted. Numerical results indicate that UAltBOC successfully combines the QPSK and TMBOC signals with only 0.16-dB additional combining loss compared to AltBOC. The proposed MPOCET technique is demonstrated as a unified multiplexing method for navigation signals.  相似文献   

17.
张良培  李家艺 《遥感学报》2016,20(5):1091-1101
高光谱成像技术具有光谱连续、图谱合一,能够以较高的光谱诊断能力对地物目标进行精细化解译,可以大幅增强地物信息的提取能力。充分利用高光谱遥感图像丰富的空间、谱信息,进行观测目标地物的精细化解译,成为近年来遥感领域的研究热点和前沿领域,并在多个相关领域具有巨大的应用价值和广阔的发展前景。本文结合高光谱图像成像特点,对基于稀疏表示理论的高光谱图像处理与分析方法进行综述,概括了高光谱图像处理与分析主要研究,并对各个研究领域与方向进行分析和评价,最后对各研究领域发展提出建议和展望。  相似文献   

18.
高涵  袁希平  甘淑  张明 《测绘学报》2022,51(9):1899-1910
地震的孕育和发生本质上都是地壳内部应力、应变能逐渐积累并突然或缓慢释放的结果,研究应变的变化过程对于地震危险性的判定具有重要意义。本文基于云南区域2013—2019年GNSS格网应变时间序列,利用专门适用于非线性非平稳信号处理的热门时频分析方法—整体经验模态分解(ensemble empirical mode decomposition,EEMD)的希尔伯特-黄变换(Hilbert-Huang transform,HHT)分析方法,探索云南区域中强地震前GNSS应变时序的时-频-能量分布特征,尝试挖掘应变时频信号中所携带的孕震信息。利用23号、42号格网对应的地震进行震例分析,结果显示:EEMD具有分频剖面的类似特征,它能够依据数据的时间特征尺度进行信号分解,较好地剖析信号在不同频率尺度上的变化特征;Hilbert变换能够通过瞬时频率、瞬时振幅等方式突出信号的局部瞬时特性,在固有模态分量(intrinsic mode functions,IMF)异常曲线识别无效的情况下仍能凸显异常;通过EEMD、残差趋势项分析、IMF异常识别和Hilbert变换综合动态分析应变时间序列的分析方法,能够在部分地震前夕发现一些潜在异常信息,为未来云南区域强震危险地点的判定提供一定的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号