首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
Study about water characteristics(temperature and salinity) from the World Ocean Database(WOD) was conducted in the area of southern South China Sea(SSCS), covering the area of 0°–10°N, 100°–117°E. From interannual analysis, upper layer(10 m) and deep water temperature(50 m) increased from 1951 until 2014. Monthly averaged show that May recorded the highest upper layer temperature while January recorded the lowest. It was different for the deep water which recorded the highest value in September and lowest in February. Contour plot for upper layer temperature in the study area shows presence of thermal front of cold water at southern part of Vietnam tip especially during peak northeast season(December–January). The appearances of warm water were obviously seen during generating southwest monsoon(May–June). Thermocline study revealed the deepest isothermal layer depth(ILD) during peak northeast and southwest monsoon. Temperature threshold at shallow area reach more than 0.8°C during the transitional period. Water mass study described T-S profile based on particular region. Water mass during the southwest monsoon is typically well mixed compared to other seasons while strong separation according to location is very clear. During transitional period between northeast monsoon to southwest monsoon, the increasing of water temperature can be seen at Continental Shelf Water(CSW) which tend to be higher than 29°C and vice versa condition during transitional period between southwest monsoon to northeast monsoon. Dispersion of T-S profile can be seen during southwest monsoon inside Tropical Surface Water(TSW) where the salinity and temperature become higher than during northeast monsoon.  相似文献   

2.
The present climate simulation and future projection of the mixed layer depth (MLD) and subduction process in the subtropical Southeast Pacific are investigated based on the geophysical fluid dynamics laboratory earth system model (GFDL-ESM2M). The MLD deepens from May and reaches its maximum (>160 m) near (24°S, 104°W) in September in the historical simulation. The MLD spatial pattern in September is non-uniform in the present climate, which shows three characteristics: (1) the deep MLD extends from the Southeast Pacific to the West Pacific and leads to a "deep tongue" until 135°W; (2) the northern boundary of the MLD maximum is smoothly near 18°S, and MLD shallows sharply to the northeast; (3) there is a relatively shallow MLD zone inserted into the MLD maximum eastern boundary near (26°S, 80°W) as a weak "shallow tongue". The MLD non-uniform spatial pattern generates three strong MLD fronts respectively in the three key regions, promoting the subduction rate. After global warming, the variability of MLD spatial patterns is remarkably diverse, rather than deepening consistently. In all the key regions, the MLD deepens in the south but shoals in the north, strengthing the MLD front. As a result, the subduction rate enhances in these areas. This MLD antisymmetric variability is mainly influenced by various factors, especially the potential-density horizontal advection non-uniform changes. Notice that the freshwater flux change helps to deepen the MLD uniformly in the whole basin, so it hardly works on the regional MLD variability. The study highlights that there are regional differences in the mechanisms of the MLD change, and the MLD front change caused by MLD non-uniform variability is the crucial factor in the subduction response to global warming.  相似文献   

3.
Temporal and spatial variability of phytoplankton pigment concentrations in the Japan Sea are described, using monthly mean composite images of the Coastal Zone Color Scanner (CZCS). In order to describe the seasonal changes of pigment concentration from the results of the empirical orthogonal function (EOF) analysis, we selected four areas in the south Japan Sea. The pigment concentrations in these areas show remarkable seasonal variations. Two annual blooms appear in spring and fall. The spring bloom starts in the Japan Sea in February and March, when critical depth (CRD) becomes equal to mixed layer depth (MLD). The spring bloom in the southern areas (April) occurs one month in advance of that in the northern areas (May). This indicates that the pigment concentrations in the southern areas may increase rapidly in comparison with the northern areas since the water temperature increases faster in spring in the southern than in the northern areas. The fall bloom appears first in the southwest region, then in the southeast and northeast regions, finally appearing in the northwest region. Fall bloom appears in November and December when MLD becomes equal to CRD. The fall bloom can be explained by deepening of MLD in the Japan Sea. The pigment concentrations in winter are higher than those in summer. The low pigment concentrations dominate in summer.  相似文献   

4.
Better forecast of tropical cyclone(TC) can help to reduce risk and enhance management. The TC forecast depends on the scientific understanding of oceanic processes, air-sea interaction and finally, the atmospheric process. The TC Viyaru is taken as an example, which is formed at the end of 11 May 2013 and sustains up to 17 May 2013 during pre-monsoon season. Argo data are used to investigate ocean response processes by comparing pre-and post-conditions of the TC. Eight oceanic parameters including the sea surface temperature(SST), the sea surface salinity(SSS), and the barrier layer thickness(BLT), the 26°C isotherm depth in the ocean(D26), the isothermal layer depth(ILD), the mixed layer depth(MLD), the tropical cyclone heat potential(TCHP) and the effective oceanic layer for cyclogenesis(EOLC) are chosen to evaluate the pre-and post-conditions of the TC along the track of Viyaru. The values of the SST, D26, BLT, TCHP and EOLC in the pre-cyclonic condition are higher than the post-cyclonic condition, while the SSS, ILD and MLD in the post-cyclonic condition are higher than the pre-cyclonic condition of the ocean due to strong cyclonic winds and subsurface upwelling. It is interesting that the strong intensity of the TC reduces less SST and vice versa. The satisfied real time Argo data is not available in the northern Bay of Bengal especially in the coastal region. A weather research and forecasting model is employed to hindcast the track of Viyaru, and the satellite data from the National Center Environmental Prediction are used to assess the hindcast.  相似文献   

5.
副热带东北太平洋混合层深度及其对潜沉的影响   总被引:1,自引:0,他引:1  
The present climate simulations of the mixed layer depth(MLD) and the subduction rate in the subtropical Northeast Pacific are investigated based on nine of the CMIP5 models. Compared with the observation data,spatial patterns of the MLD and the subduction rate are well simulated in these models. The spatial pattern of the MLD is nonuniform, with a local maximum MLD(140 m) region centered at(28°N, 135°W) in late winter. The nonuniform MLD pattern causes a strong MLD front on the south of the MLD maximum region, controls the lateral induction rate pattern, and then decides the nonuniform distribution of the subduction rate. Due to the inter-regional difference of the MLD, we divide this area into two regions. The relatively uniform Ekman pumping has little effect on the nonuniform subduction spatial pattern, though it is nearly equal to the lateral induction in values. In the south region, the northward warm Ekman advection(–1.75×10~(–7) K/s) controls the ocean horizontal temperature advection(–0.85×10~(–7) K/s), and prevents the deepening of the MLD. In the ensemble mean, the contribution of the ocean advection to the MLD is about –29.0 m/month, offsetting the sea surface net heat flux contribution(33.9 m/month). While in the north region, the southward cold advection deepens the MLD(21.4 m/month) as similar as the heat flux(30.4 m/month). In conclusion, the nonuniform MLD pattern is dominated by the nonuniform ocean horizontal temperature advection. This new finding indicates that the upper ocean current play an important role in the variability of the winter MLD and the subduction rate.  相似文献   

6.
Using the 28°C isotherm to define the Western Pacific Warm Pool(WPWP), this study analyzes the seasonal variability of the WPWP thermohaline structure on the basis of the monthly-averaged sea temperature and salinity data from 1950 to 2011, and the dynamic and thermodynamic mechanisms based on the monthly-averaged wind,precipitation, net heat fluxes and current velocity data. A DT=–0.4°C is more suitable than other temperature criterion for determining the mixed layer(ML) and barrier layer(BL) over the WPWP using monthly-averaged temperature and salinity data. The WPWP has a particular thermohaline structure and can be vertically divided into three layers, i.e., the ML, BL, and deep layer(DL). The BL thickness(BLT) is the thickest, while the ML thickness(MLT) is the thinnest. The MLT has a similar seasonal variation to the DL thickness(DLT) and BLT.They are all thicker in spring and fall but thinner in summer. The temperatures of the ML and BL are both higher in spring and autumn but lower in winter and summer with an annual amplitude of 0.15°C, while the temperature of the DL is higher in May and lower in August. The averaged salinities at these three layers are all higher in March but lower in September, with annual ranges of 0.41–0.45. Zonal currents, i.e., the South Equatorial Current(SEC)and North Equatorial Counter Current(NECC), and winds may be the main dynamic factors driving the seasonal variability in the WPWP thermohaline structure, while precipitation and net heat fluxes are both important thermodynamic factors. Higher(lower) winds cause both the MLT and BLT to thicken(thin), a stronger(weaker)NECC induces MLT, BLT, and DLT to thin(thicken), and a stronger(weaker) SEC causes both the MLT and BLT to thicken(thin) and the DLT to thin(thicken). An increase(decrease) in the net heat fluxes causes the MLT and BLT to thicken(thin) but the DLT to thin(thicken), while a stronger(weaker) precipitation favors thinner(thicker)MLT but thicker(thinner) BLT and DLT. In addition, a stronger(weaker) NECC and SEC cause the temperature of the three layers to decrease(increase), while the seasonal variability in salinity at the ML, BL, and DL might be controlled by the subtropical cell(STC).  相似文献   

7.
利用2002—2015年ARGO网格化的温度、盐度数据, 结合卫星资料揭示了赤道东印度洋和孟加拉湾障碍层厚度的季节内和准半年变化特征, 探讨了其变化机制。结果表明, 障碍层厚度变化的两个高值区域出现在赤道东印度洋和孟加拉湾北部。在赤道区域, 障碍层同时受到等温层和混合层变化的影响, 5—7月和11—1月受西风驱动, Wyrtki急流携带阿拉伯海的高盐水与表层的淡水形成盐度层结, 同时西风驱动的下沉Kelvin波加深了等温层, 混合层与等温层分离, 障碍层形成。在湾内, 充沛的降雨和径流带来的大量淡水产生很强的盐度层结, 混合层全年都非常浅, 障碍层季节内变化和准半年变化主要受等温层深度变化的影响。上述两个区域障碍层变化存在关联, 季节内和准半年周期的赤道纬向风驱动的波动过程是它们存在联系的根本原因。赤道东印度洋地区的西风(东风)强迫出向东传的下沉(上升)的Kelvin波, 在苏门答腊岛西岸转变为沿岸Kelvin波向北传到孟加拉湾的东边界和北边界, 并且在缅甸的伊洛瓦底江三角洲顶部(95°E, 16°N)激发出向西的Rossby波, 造成湾内等温层深度的正(负)异常, 波动传播的速度决定了湾内的变化过程滞后于赤道区域1~2个月。  相似文献   

8.
A monthly mean climatology of the mixed layer depth (MLD) in the North Pacific has been produced by using Argo observations. The optimum method and parameter for evaluating the MLD from the Argo data are statistically determined. The MLD and its properties from each density profile were calculated with the method and parameter. The monthly mean climatology of the MLD is computed on a 2° × 2° grid with more than 30 profiles for each grid. Two bands of deep mixed layer with more than 200 m depth are found to the north and south of the Kuroshio Extension in the winter climatology, which cannot be reproduced in some previous climatologies. Early shoaling of the winter mixed layer between 20–30°N, which has been pointed out by previous studies, is also well recognized. A notable feature suggested by our climatology is that the deepest mixed layer tends to occur about one month before the mixed layer density peaks in the middle latitudes, especially in the western region, while they tend to coincide with each other in higher latitudes.  相似文献   

9.
The response of the mixed layer depth(MLD) and subduction rate in the subtropical Northeast Pacific to global warming is investigated based on 9 CMIP5 models. Compared with the present climate in the 9 models, the response of the MLD in the subtropical Northeast Pacific to the increased radiation forcing is spatially nonuniform, with the maximum shoaling about 50 m in the ensemble mean result. The inter-model differences of MLD change are non-negligible, which depend on the various dominated mechanisms. On the north of the MLD front, MLD shallows largely and is influenced by Ekman pumping, heat flux, and upper-ocean cold advection changes. On the south of the MLD front, MLD changes a little in the warmer climate, which is mainly due to the upper-ocean warm advection change. As a result, the MLD front intensity weakens obviously from 0.24 m/km to0.15 m/km(about 33.9%) in the ensemble mean, not only due to the maximum of MLD shoaling but also dependent on the MLD non-uniform spatial variability. The spatially non-uniform decrease of the subduction rate is primarily dominated by the lateral induction reduction(about 85% in ensemble mean) due to the significant weakening of the MLD front. This research indicates that the ocean advection change impacts the MLD spatially non-uniform change greatly, and then plays an important role in the response of the MLD front and the subduction process to global warming.  相似文献   

10.
Abstract-The growth rate of the hyalid amphipod Hyale perieri was studied on the bases of Ikeda'sgrowth model which is based on the inter moult period (IP) and moult increament (ΔBL). To applythis approach, laboratory experiments were carried out at three temperatures regimes (15℃, 20℃,25℃) to gain accurate data of IP and BL. The total number of specimens used in this study was 86 at15℃, 24 at 20℃ and 70 at 25℃. The number of flagellar segments of both antennae of the Hyaleperieri could not be used as an index of growth (instar criterion). The obtained results indicated that,the predicted IP of the specimens was inversely related to temperature and in good agreement with theobserved values at the experimental temperatures. IP data obtained from laboratory-reared specimes arecombined with ΔBL data to establish a growth model for Hyale perieri from its release from the mar-supium (1.64 mm BL) to the maximum size (12.67 mm BL) as a function of temperature. The maxi-mum numbers of consecutive moults  相似文献   

11.
盐度对变化2014年东北太平洋“暖泡”的作用   总被引:1,自引:0,他引:1  
A significant strong, warm "Blob"(a large circular water body with a positive ocean temperature anomaly)appeared in the Northeast Pacific(NEP) in the boreal winter of 2013–2014, which induced many extreme climate events in the US and Canada. In this study, analyses of the temperature and salinity anomaly variations from the Array for Real-time Geostrophic Oceanography(Argo) data provided insights into the formation of the warm"Blob" over the NEP. The early negative salinity anomaly dominantly contributed to the shallower mixed layer depth(MLD) in the NEP during the period of 2012–2013. Then, the shallower mixed layer trapped more heat in the upper water column and resulted in a warmer sea surface temperature(SST), which enhanced the warm"Blob". The salinity variability contributed to approximately 60% of the shallowing MLD related to the warm"Blob". The salinity anomaly in the warm "Blob" region resulted from a combination of both local and nonlocal effects. The freshened water at the surface played a local role in the MLD anomaly. Interestingly, the MLD anomaly was more dependent on the local subsurface salinity anomaly in the 100–150 m depth range in the NEP.The salinity anomaly in the 50–100 m depth range may be linked to the anomaly in the 100–150 m depth range by vertical advection or mixing. The salinity anomaly in the 100–150 m depth range resulted from the eastward transportation of a subducted water mass that was freshened west of the dateline, which played a nonlocal role.The results suggest that the early salinity anomaly in the NEP related to the warm "Blob" may be a precursor signal of interannual and interdecadal variabilities.  相似文献   

12.
It is known that there is a front-like structure at the mixed layer depth (MLD) distribution in the subtropical gyre, which is called the MLD front, and is associated with the formation region of mode water. In the present article, the generation mechanism of the MLD front is studied using an idealized ocean general circulation model with no seasonal forcing. First, it is shown that the MLD front occurs along a curve where u g ·∇T s = 0 is satisfied (u g is the upper ocean geostrophic velocity vector, T s is the sea surface temperature and ∇ is the horizontal gradient operator). In other words, the front is the boundary between the subduction region (u g ·∇T s > 0) and the region where subduction does not occur (u g ·∇T s < 0). Second, we have investigated subduction of low potential vorticity water at the MLD front, which has been pointed out by past studies. Since u g ·∇T s = 0 at the MLD front, the water particles do not cross the outcrop at the MLD front. The water that is subducted at the MLD front has come from the deep mixed layer region where the sea surface temperature is higher than that at the MLD front. The temperature of the water in the deep mixed layer region decreases as it is advected eastward, attains its minimum at the MLD front where u g ·∇T s = 0, and then subducts under the warmer surface layer. Since the deep mixed layer water subducts beneath a thin stratified surface layer, maintaining its thickness, the mixed layer depth changes abruptly at the subduction location.  相似文献   

13.
Two distinct layers usually exist in the upper ocean. The first has a near-zero vertical gradient in temperature (or density) from the surface and is called the isothermal layer (or mixed layer). Beneath that is a layer with a strong vertical gradient in temperature (or density), called the thermocline (or pycnocline). The isothermal layer depth (ILD) or mixed layer depth (MLD) for the same profile varies depending on the method used to determine it. Also, whether they are subjective or objective, existing methods of determining the ILD do not estimate the thermocline (pycnocline) gradient. Here, we propose a new exponential leap-forward gradient (ELG) method of determining the ILD that retains the strengths of subjective (simplicity) and objective (gradient change) methods and avoids their weaknesses (subjective methods are threshold-sensitive and objective methods are computationally intensive). This new method involves two steps: (1) the estimation of the thermocline gradient G th for an individual temperature profile, and (2) the computation of the vertical gradient by averaging over gradients using exponential leap-forward steps. Such averaging can filter out noise in the profile data. Five existing methods of determining the ILD (difference, gradient, maximum curvature, maximum angle, and optimal linear fitting methods) as well as the proposed ELG method were verified using global expendable bathythermograph (XBT) temperature and conductivity–temperature–depth (CTD) datasets. Among all the methods considered, the ELG method yielded the highest skill score and the lowest Shannon information entropy (i.e., the lowest uncertainty).  相似文献   

14.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   

15.
Mixed layer depth (MLD) variability in the Eastern Equatorial Indian Ocean (EEIO) from a hindcast run of an Ocean General Circulation Model (OGCM) forced by daily winds and radiative fluxes from NCEP-NCAR reanalysis from 2004 to 2006 is investigated. Model MLD compares well with the ~20,000 observations from Argo floats and a TRITON buoy (1.5°S and 90°E) in the Indian Ocean. Tests with a one-dimensional upper ocean model were conducted to assess the impact on the MLD simulations that would result from the lack of the diurnal cycle in the forcing applied to the OGCM. The error was of the order of ~12 m. MLD at the TRITON buoy location shows a bimodal pattern with deep MLD during May–June and December–January. MLD pattern during fall 2006 was significantly different from the climatology and was rather shallow during December–January both in the model and observation. An examination of mixed layer heat and salt budget suggested salinity freshening caused by the advective and vertical diffusive mixing to be the cause of shallow MLD.  相似文献   

16.
基于南沙群岛海域综合科学考察11个航次的实测资料,研究了南沙群岛海域的混合层深度季节变化特征。研究结果表明,南沙群岛海域混合层深度存在明显的季节变化,并且与季风和海表热通量的变化密切相关。春季,风速较小且风向不稳定,海面得到的净热通量全年最大,上层水体层结稳定,混合层深度较小;夏季,南海西南季风盛行,上层为反气旋式环流,海面得到的净热通量减少,混合层呈加深的趋势;秋季,海面净热通量继续减少,混合层深度达到最大值;冬季,东北季风驱动下形成的上层气旋式环流引起深层冷水的上升,限制了混合层的加深。  相似文献   

17.
Temperature and salinity data from 2001 through 2005 from Argo profiling floats have been analyzed to examine the time evolution of the mixed layer depth (MLD) and density in the late fall to early spring in mid to high latitudes of the North Pacific. To examine MLD variations on various time scales from several days to seasonal, relatively small criteria (0.03 kg m−3 in density and 0.2°C in temperature) are used to determine MLD. Our analysis emphasizes that maximum MLD in some regions occurs much earlier than expected. We also observe systematic differences in timing between maximum mixed layer depth and density. Specifically, in the formation regions of the Subtropical and Central Mode Waters and in the Bering Sea, where the winter mixed layer is deep, MLD reaches its maximum in late winter (February and March), as expected. In the eastern subarctic North Pacific, however, the shallow, strong, permanent halocline prevents the mixed layer from deepening after early January, resulting in a range of timings of maximum MLD between January and April. In the southern subtropics from 20° to 30°N, where the winter mixed layer is relatively shallow, MLD reaches a maximum even earlier in December–January. In each region, MLD fluctuates on short time scales as it increases from late fall through early winter. Corresponding to this short-term variation, maximum MLD almost always occurs 0 to 100 days earlier than maximum mixed layer density in all regions.  相似文献   

18.
Ocean temperature responses to Typhoon Mstsa in the East China Sea   总被引:1,自引:1,他引:0  
The MASNUM wave-tide-circulation coupled model, with 21 layers in the vertical and (1/8) °horizontal resolution, was employed to investigate the oceanic responses to Typhoon Mstsa which traversed the East China Sea (ECS) during the period of 4 - 6 August, 2005. Numerical experiment results are analyzed and compared with observation. The responses of the sea surface temperature (SST), in a focused area of (27° -29°N, 121° - 124°E), include heating and cooling stages. The heating is mainly due to warm Kuroshio water transportation and downwelling due to the water accumulation. In the cooling stage, the amplitude of the simulated cold wake ( -3℃ ), located on the right side of this typhoon track, is compared quite well with that of the satellite observed SST data. The wave-induced mixing(Bv) plays a key role for the SST cooling. Bv still plays a leading role, which accounts for 36%, for the ocean temperature drop in the upper ocean of 0 - 40 m, while the upwelling is responsible for 84% of the cooling for the lower layer of 40 - 70 m. The mixed layer depth (MLD) increased quickly from 28 to 50 m in the typhoon period. However, the simulated MLD without the wave-induced vertical mixing, evolution from 13 to 32 m, was seriously underestimated. The surface wave is too important to be ignored for the ocean responses to a typhoon.  相似文献   

19.
本文通过理想化的外部强迫以及海洋站点实测数据驱动普林斯顿海洋模式来研究海洋热力学效应和斯托克斯漂流对上混合层数值模拟的影响。在Mellor-Yamada湍流闭合方案中,经常出现夏季海表面温度偏暖和混合层深度偏浅的模拟误差。实验表明,斯托克斯漂流在冬季和夏季均能增强湍流动能,加深混合层深度。这种效应可以改善夏季的模拟结果,但与观测数据相比,将增大冬季混合层深度的模拟误差。斯托克斯漂流可以通过增强湍动能来加深混合层深度。结果表明,将斯托克斯漂流与冷皮层和暖层对上部混合层的热效应相结合,可以正确地模拟混合层深度。在夏季,海洋冷皮层和暖层通过“阻挡结构”和双温跃层结构模拟出更真实的上混合层变化。在冬季,海洋热力学效应通过增强上层海洋层结平衡了斯托克斯漂流的影响,并且由斯托克斯漂流引起的过度混合被校正。  相似文献   

20.
After validated by the in-situ observation, the slab model is used to study the wind-generated near-inertial energy flux(NIEF) in the South China Sea(SCS) based on satellite-observed wind data, and its dependence on calculation methods and threshold criteria of the mixed layer depth(MLD) is investigated. Results illustrate that the total amount of NIEF in the SCS could be doubled if different threshold criteria of MLD are adopted. The NIEF calculated by the iteration and spectral solutions can lead to a discrepancy of 2.5 GW(1 GW=1×109 W). Results also indicate that the NIEF exhibits spatial and temporal variations, which are significant in the boreal autumn,and in the southern part of the SCS. Typhoons are an important generator of NIEF in the SCS, which could account for approximately 30% of the annual mean NIEF. In addition, deepening of the MLD due to strong winds could lead to a decrease of NIEF by approximately by 10%. We re-estimate the annual mean NIEF in the SCS,which is(10±4) GW and much larger than those reported in previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号