首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Holocene paleoenvironments of Harris Lake, southwestern Saskatchewan, are reconstructed from the ostracode stratigraphy of a 10.4 m sediment core. Twenty three taxa, representing nine genera, were identified and counted from 113 samples. At each depth, a theoretical faunal assemblage was derived from the raw counts. The mean and variance of chemical, climatic and physical variables were inferred from modern analogues of the fossil assemblages, using existing autecological data from 6720 sites, mostly in western Canada. These data suggest four paleoenvironments: an early-Holocene (9240–6400 years BP) variable climate supporting aspen parkland vegetation; the warm dry hypsithermal (6400–4500 years BP); a short transitional period of ameliorating climate and expanding subboreal forest (4500–3600 years BP); and the present environment since 3600 years BP. A change in regional climate with the draining of Glacial Lake Agassiz (ca. 8500 years BP) and landsliding in the watershed (ca. 4000 years BP) caused relatively rapid environmental change. The ostracode record generally corroborates the interpretations of other proxy data previously published for Harris Lake. Most of the discrepancy involves the timing and severity of maximum Holocene warmth and aridity. Peak aridity interpreted from the pollen data is earlier than in the other proxy records. Both the diatoms and ostracodes indicate highest paleosalinity between ca. 6500 and 5000 years BP, but maximum salinity in the diatom record occurs between ca. 6000–5700 years BP, whereas the ostracode-inferred salinity is relatively low at this time and peaks later at ca. 5000 years. Neither of these reconstructions suggests the short episodes of hypersalinity interpreted from the mineralogy.  相似文献   

2.
ABSTRACT. A new high-resolution, alkenone-de-rived record of sea-surface temperature (SST) change covering the last 26000 years was obtained from the east-equatorial Atlantic off the Congo River. Temperature fluctuations correspond to climate change recorded in other marine and terrestrial archives of the region. The maximum temperature difference between 26000 years BP ago and the Holocene climate optimum around 6000 years BP was 4.3°C, corroborating other SST estimates from the same area. The coldest conditions were followed by a warming that began at 24000 calendar years BP, a time when Northern Hemisphere ice sheets were still at their maximal position. This comparatively early warming is in agreement with previous findings from the east-equatorial South Atlantic. After a relatively stable period between 21500 and 14500 calendar years BP, a second warming began at 14500 calendar years BP which coincides with the onset of the African Humid Period. A cool period at 11500 calendar years BP halted this warming but the trend of increasing temperatures began again at 10000 calendar years BP, this time through large-scale oscillations. The warmest time, around 6000 calendar years BP, was followed by a modest cooling that coincides with the end of the African Humid Period and the onset of Neoglaciation on the African continent. Following this the record shows two distinct warming-cooling cycles during the late Holocene.  相似文献   

3.
Analysis of midge remains in late-Quaternary sediment, recovered from a lake situated north of treeline in northeast Siberia, indicates the occurrence of notable climatic fluctuations during the last 12 ka. The onset of late-glacial warming was disrupted by a marked cooling event – possibly correlative with the Younger Dryas – that occurred between 11,000 and 10,000 yr BP. Increases in the relative abundance of taxa typically found in tundra lakes, such as Hydrobaenus/Oliveridia and Parakiefferiella nigra, and the concurrent decrease in temperate taxa, such as Microtendipes and Corynocera ambigua, suggest climatic deterioration occurred during this interval. At approximately 10,000 yr BP there was a large increase in temperate taxa such as Microtendipes and C. ambigua, and a decline of essentially all cold-water taxa. This suggests that climate was warmer than present since the modern distribution of both Microtendipes and C. ambigua is limited to forested sites in this region. This warm interval lasted until approximately 6000 yr BP when there was a precipitous decline in temperate chironomid taxa and an increase in cold-water chironomid taxa, such as Paracladius, Hydrobaenus/Oliveridia, Abiskomyia, and Parakiefferiella nigra. This cooling continued through the late-Holocene and the modern tundra chironomid assemblage developed by approximately 1400 yr BP.  相似文献   

4.
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.7′ E, 51°39.3′ N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.  相似文献   

5.
A new palaeoclimatic reconstruction of mid-summer (July) temperatures for the last 7.5?ka in northern Fennoscandia is presented. It is based on two botanical proxies: spectra of fossil pollen and tree rings of Scots pine logs recovered from lacustrine sediments in the Arctic tree-line region. A newly developed method of proxy fusion is used to integrate the proxy-specific reconstructions of past summer temperature variability based on the pollen-stratigraphic and dendroclimatic data. The rationale behind the method is that the two proxies are likely to be connected to climate variability in a timescale-dependent fashion and, accordingly, the new reconstruction makes use of the low- and high-frequencies from pollen-stratigraphic and tree-ring data, respectively. The most prominent features of the new reconstruction are: (1) the long-term decline of temperatures by 2.0?°C over the past 7.5?ka, (2) the mid-Holocene warmth culminating between 5 and 4?ka as a deviation from the cooling trend, (3) the Little Ice Age cool phase between 0.7 and 0.1?ka, and (4) the subsequent warming during the past century. These periods are superimposed on year-to-year variations in climate as dated to calendar-year accuracy by dendrochronology. Within the modern period, the years 1934 and 1937 are among the warmest, and the years 1903 and 1910 are among the coldest summers in the context of the past 7.5?ka. On average, the reconstructed Holocene climate was approximately 0.85?°C warmer than the twentieth century.  相似文献   

6.
Two cores from Trout Lake, northern Yukon, yielded quantitative estimates of summer air temperatures using fossil midge larvae. Warming began around 14,400?cal?yr BP, with inferred mean July air temperatures reaching values warmer than present by 12,800?cal?yr BP. A 1?°C cooling from 12,200 to 11,200?cal?yr BP closely corresponds with the Younger Dryas chronozone. A broad temperature maximum occurred between 10,800 and 9,800?cal?yr BP, with mean July air temperature about 2.2?°C warmer than present. This represents an early Holocene thermal maximum and coincides with increased organic content of the sediment. Both the shallow- and deep-water cores show similar temperature trends for their overlapping periods. The inferred rise in mean July air temperature at 14,200?cal?yr BP coincides with a shift in vegetation from an herb- to shrub-dominated landscape. In contrast, the increase in Alnus pollen at 6,400?cal?yr BP does not coincide with a change in temperature, but may be a response to a rise in precipitation.  相似文献   

7.
A high resolution study of early Holocene climate and palaeoceanography has been performed on two combined sediment cores from Malangenfjord, northern Norway. The fjord provides a regional oceanographic climatic signal reflecting changes in the North Atlantic heat flux at this latitude because of its deep sill and the relatively narrow adjoining continental shelf. Fauna and stable oxygen and carbon isotopes indicate cool, meltwater-depleted water masses in the fjord from 12000 to 11400 cal. yr BP followed by a warming between 11400-10300 cal. yr BP. The climatic variability can be explained partly by freshwater forcing hampering the North Atlantic heat conveyor, and partly by changing solar irradiance. A major cooling event at 11500-11400 cal. yr BP, followed by a rapid warming, is correlated to the Preboreal Oscillation, a widespread signal in the North Atlantic region which is probably linked to the increased meltwater flux to the northern North Atlantic at this time. Brief and small-scale cooling events between 10 300 and 10100 cal. yr BP, correlated to the onset of increased 10Be flux in the Greenland ice cores, suggest a response to solar forcing.  相似文献   

8.
Stratigraphic analysis of fossil chironomid head capsules wasperformed at North Crater Lake and Lake of the Woods, located at treeline (2250m) in the Ashnola region of southernmost British Columbia. Priorto 10,000 yr BP, cold conditions were indicated by the lack oftemperate taxa and the presence of cold-stenotherms. The abundance anddiversity of warm-adapted taxa (e.g., Dicrotendipes,Microtendipes, Polypedilum and Cladopelma)increased rapidly after 9500 yr BP, whereas taxa indicative ofcold conditions disappeared. Beginning prior to deposition of the Mazama ash(6730 ± 40 yr BP), several warm-adapted taxa decreasedin abundance. Mid- to late-Holocene assemblages (ca. 4500yr BP to present) indicated continued cooling as revealed by afurther reduction in diversity and abundance of warm-adapted taxa atboth lakes, and the reappearance of cold-stenotherms in Lake of theWoods. Diversity changes in the cores paralleled the inferred climatic changes.Diversity was low during the late-glacial, increased in theearly-Holocene, and declined after 5400 yr BP.To quantitatively infer past climatic changes, a newweighted yphen;averaging partial-least-squares (WA-PLS)model was developed and applied to the fossil midge data. The quantitativereconstructions revealed late-glacial mean July air temperatures rangingfrom about 8 to 10°C. Summer air temperatures were highest inthe early Holocene (13 to 17°C), gradually decreasing by about3°C through the mid- to late-Holocene.  相似文献   

9.
High-resolution analysis of macroscopic charcoal and pollen ratios were used to reconstruct a 10,000 yr history of fire and vegetation change around Dog Lake, now in the Montane Spruce biogeoclimatic zone of southeastern British Columbia. Lake sediment charcoal records suggest that fire was more frequent in the early Holocene from 10,000 to 8200 calendar yrs BP, when climate was warmer and drier than today and forest fuels were limited. Fire frequency increased and reached its maximum during the early to mid-Holocene from 8200 to 4000 calendar yrs BP, corresponding to the dry and warm Hypsithermal period in the Rocky Mountains. During the Hypsithermal period forests around Dog Lake were dominated by Pseudotsuga/Larix,Pinus and open meadows of Poaceae that were subject to frequent fire. From 4000 calendar yrs BP to present, fires became less frequent with the onset of cooler and wetter Neoglacial climate and an increase in wet-closed Picea and Abies forests in the valley. Changes in fire frequency are supported by dry-open/wet-closed pollen ratio data indicating that forest type and disturbance regimes vary with changing climate. The fire frequency and forest cover reconstructions from Dog Lake are a first attempt at defining a range of natural variability for Montane Spruce forests in southeastern British Columbia. Fire and vegetation management in Kootenay National Park can now use this century to millennial-scale range of variability to define the context of current forest conditions and potential changes under global warming scenarios.  相似文献   

10.
于世永  朱诚  王富葆  李弘 《地理科学》2000,20(4):331-336
太湖流域埋藏古树、泥炭、贝壳堤和新石器文化遗址,^14C年代频率变化揭示了全新世气候-海面波动与文明兴衰的时间耦合关系。本区降水量的明显增加始于8kaB.P.、7.5 ̄4kaB.P.总的看为高海面和新石器文化发展时期,但其间有相对的海面波动,即:7 ̄6.5kaB.P.为高海面期、6.3 ̄5.6kaB.P.为低海面期、4.5 ̄4kaB.P.为低海面期、3.8 ̄3.5kaB.P.为高海面期。从文化断层  相似文献   

11.
The water chemistry of a groundwater-fed sinkhole-pond near St. Louis, Missouri, and its associated climate during the last glaciation are reconstructed by comparison with autecological data of modern ostracodes from about 5,500 sites in Canada. A 4.8-m succession of fossiliferous sediment yielded ostracode assemblages that collectively are generally found today in ponds in North America including the species Cyclocypris ampla, C. laevis, Cypridopsis vidua, Candona crogmaniana, C. distincta, and C. ohioensis. Fossils of Picea needles and the ostracode Cyclocypris sharpei imply that best analog sites for the succession are in central to south-central Canada. The pond formed 23,300 ± 400 cal yr BP when a sinkhole became plugged by a clay bed about 1 m thick. By about 20,250 cal yr BP, the pond had desiccated and was buried by loess. The sediment accumulation rate was about 0.18 cm/yr, and each sample interval (6 cm) represents a time slice of 33 years. Data from this record provides the first fairly high resolution proxy record of the glacial paleoclimate of the mid-latitude of North America. The analog data indicate the water in the hydrologically-open spring-fed pond was less than 1 m deep. The paleoclimatic reconstructions imply gradually drier conditions and uniform, cool temperatures. The shallow water depth indicates that the temperature reconstruction is robust with mean annual temperatures (MATs) that ranged between 0.8 and 3.9°C, and mean July temperatures that ranged from 16.8 and 18.1°C. Other estimated climatic parameters include mean annual precipitation (MAP; 430 to 840 mm/yr), and moisture balance (P-E; –111 to 298 mm/yr). Compared to values measured today at St. Louis, the MAP was about 400 mm less, MAT about 10°C cooler, and P-E, about the same. These values are consistent with other published reconstructions based on modern analog analysis of fossil beetles and pollen, and paleothermometry based on amino acid racemization. The total dissolved solids (TDS) progressively increased from about 87 to 431 mg/L. Changes in TDS reflect either the balance between the relative inputs of karst groundwater and overland flow, or changes in the duration of water-rock interaction associated with the groundwater. The postulated long-term 900 ± 200 year cyclicity of growing-season moisture and temperature, attributed to El Niño-Southern Oscillation cycles, is not expressed in the reconstructed hydrologic or climatic data. This is attributed, in part, to the mediating effect on temperature by monothermic groundwater input to this flow-through system.  相似文献   

12.
ABSTRACT. Multiple overlapping and replicate pollen stratigraphies from Canal de la Puntilla (40°57’09”S, 72°54’18”W, 120 m elevation) reveal that a Nothofagus dombeyi-type parkland occupied the Valle Central of the Chilean Lake District during the portion of the Last Glacial Maximum between 20,200 and about 14,600 14C yr BP . Dominating this landscape was Nothofagus dombeyi-type and Gramineae, accompanied by taxa commonly found today in Subantarctic environments and above the Andean tree-line in the Lake District (Perezia-type, Valeriana, and Huperzia selago), along with cushion bog taxa characteristic of Magellanic Moorlands (Donatia fascicularis and Astelia pumila). Within this open landscape Nothofagus dombeyi-type expanded between 20,200 and 15,800 14C yr BP , interrupted by a brief reversal between 19,200 and 18,800 14 C yr BP and followed by a prominent increase in Gramineae pollen between 15,800 and about 14,600 14C yr BP . A major rise of Nothofagus dombeyi-type began at about 14,600 14C yr BP , followed by decline in non-arboreal taxa and a remarkable expansion of North Patagonian Rain Forest taxa in pulses centered at 14,200 and 13,000 14C yr BP . Podocarpus nubigena expanded between 12,200 and 9800 14C yr BP , along with increases in Misodendrum and Maytenus disticha-type between 11,000 and 9800 14C yr BP. Paleovegetation records suggest that mean annual temperature was 6–7°C colder than at present during the coldest episodes between 20,200 and about 14,600 14C yr BP , with twice the modern annual precipitation between 20,200 and 13,000 14C yr BP, suggesting a northward shift and intensification of westerly stormtracks. Slight climate warming occurred between 20,200 and 15,800 14C yr BP , interrupted by cooling events at 19,200 and 15,800 14C yr BP . The initial warming of the last termination started at 14,600 14C yr BP , followed by warming pulses at 14,200 and 13,000 14C yr BP. These events brought glacial conditions to a cool-temperate climate, slightly cooler and wetter than modern climate, accounting for a total temperature recovery of ≥5°C by about 13,000 14C yr BP . A general reversal in trend is inferred with cooling events at 12,200 and 11,000 14C yr BP .  相似文献   

13.
周雪如  李育 《地理学报》2022,77(5):1138-1152
全球升温导致区域干湿格局转变,千年尺度中全新世暖期和百年尺度中世纪暖期可以为探究现代的气候趋势提供历史相似型。通过湖相沉积、冰芯、孢粉、树轮等古气候记录和PMIP3/CMIP5计划的古气候模型模拟数据对比分析,结果表明,祁连山地区中全新世暖期(7.2—6.0 ka BP)东亚夏季风强盛,降水较多,气候温暖湿润;中世纪暖期(950—1250 AD)与小冰期表现为暖干—冷湿气候机制。现代观测数据显示,祁连山地区呈现暖湿化,但现代的气候机制与自然因子主导下暖期的响应机制差异较大,表明了人类活动对自然发展下气候环境的影响。因此,自然因素与人类活动共同作用是准确预测研究区未来干湿格局的基础。  相似文献   

14.
Subantarctic Parkland and Subantarctic–North Patagonian Evergreen Forest, embracing >40,000 14 C years of middle and late Llanquihue glaciation, are reconstructed from pollen contained in multiple interdrift deposits and cores of lake sediments. The subantarctic plant communities at low elevations have since been replaced by temperate Valdivian Evergreen Forest. Data in support of the vegetation reconstruction derive from close-interval sampling (>1400 pollen analysed stratigraphic levels) and high-resolution chronology (>200 AMS and conventional radiocarbon-dated horizons). Pollen sequences are from 15 sites, eight of which are exposures and seven mires, located in relation to lobes of piedmont glaciers that occupied Lago Llanquihue, Seno Reloncav', Golfo de Ancud, and the east-central sector of Isla Grande de Chiloí at the northern limit of the Golfo Corcovado lobe. Recurring episodes of grass maxima representing Subantarctic Parkland, when grass and scrub became widespread among patches of southern beech (Nothofagus), bear a relationship to glacial advances. The implication of the maxima, prominent with advances at 22,400 and 14,800 14C yr BP during late Llanquihue glaciation in marine oxygen-isotope Stage 2, is of successive intervals of cold climate with summer temperatures estimated at 6–8°C below the modern mean. The earliest recorded maximum at >50,000 14C yr BP is possibly during late Stage 4. At the time of middle Llanquihue glaciation in Stage 3, cool, humid interstades on Isla Grande de Chiloé with Subantarctic Evergreen Forest, which under progressive cooling after 47,000 14C yr BP was increasingly replaced by parkland. During stepwise deglaciation, when transitional beech woodland communities supplanting parkland became diversified by formation of thermophilous North Patagonian Evergreen Forest, warming in the order of 5–6°C was abrupt after 14,000 14C yr BP . Closed-canopy North Patagonian Evergreen Forest was established by 12,500 14C yr BP . Later, after c. 12,000 until 10,000 14C yr BP , depending on location, forest at low elevations became modified by expansion of a cold-tolerant element indicative of ≥2–3°C cooler climate. This stepwise climatic sequence is seen at all late-glacial sites. Cool, humid interstadial conditions, punctuated by cold stadial climate, are characteristic of the last ≥40,000 14C years of the Pleistocene at midlatitude in the Southern Hemisphere. Pollen sequences from southern South America and terrestrial–marine records from the New Zealand–Tasmania sector express a broad measure of synchrony of vegetational/climatic change for marine oxygen-isotope Stages 2–3. The data, combined with the timing of glacial maxima in the Southern Andes, Southern Alps of New Zealand, and in the Northern Hemisphere, are indicative of synchronous, millennial-scale, midlatitude climatic changes in the polar hemispheres.  相似文献   

15.
Five pollen zones are identified in Yangmu peatland of Mishan region located at 45o34’N, 132o23’E through sporo-pollen analysis. The changing process of paleovegetation and paleoclimate was obtained. Warm-inclined broad-leaved forest predominated in the environment of warm climate with a little dry 3400 yr BP. Deciduous broad-leaved and coniferous mixed forests predominated, in which Pinus, Picea and Abies were main species, together with wet meadow in the environment of cool and humid climate during 3400-1940 yr BP. Deciduous broad-leaved and coniferous mixed forests predominated in the dry and warm climate environment 1940-1090 yr BP. Broad-leaved forest was predominant, and the climate was warm and humid 1090-545 yr BP. Marsh meadow predominated when the climate changed to cool and dry 545 yr BP. The composition of the upper part of the 143-125 cm of the peat profile presented the cold period in the early Christian era through mutual identification between the records of historical material such as spores and pollens, susceptibility, organic matter and archaeological studies. The composition of the parts of 125-85 cm and 85-38 cm presented the warm climate in the Northern and Southern Dynasty and Sui and Tang dynasties. Since 3400 yr BP because of the frequent human activities in Mishan region, the amount of cultural relics in the Sui and Tang dynasties increased, which indicated that the ancients took much more woods from the forests in the warm climate environment.  相似文献   

16.
During recent years, numerous studies dealing with Holocene lake level fluctuations have been conducted in Finnish Lapland. However, no quantification of lake level variations exists to date. Here, we applied a recently developed modern cladocera – lake depth transfer model to subfossil cladocerans analysed from three small and shallow (< 6 m) kettle-hole lakes in northwestern Finnish Lapland to provide estimates of the amplitudes of long-term lake-level changes in the region. The quantitative inferences were compared to pollen, charcoal and geochemical records from one of the study sites. The lake levels were inferred to be high during the early Holocene; they faced marked reduction up to 4–6 m in the mid-Holocene (≈7000–4000 cal yr BP), and rose again during the latter part of the Holocene. There is some indication of lowered lake levels around 1500 cal yr BP, but interpretation of such small-scale changes is hazardous due to large prediction errors in the initial cladoceran model. The overall pattern of the Holocene lake level variation generally followed the regional changes in climate humidity as reconstructed in previous studies by means of other sedimentary proxy indicators, such as pollen and oxygen isotopic compositions. We postulate that changes in winter precipitation may have had a greater influence on lake-levels than variations in summer precipitation or evaporation.  相似文献   

17.
The Holocene environmental history and climate are reconstructed for Råtåsjøen, a low-alpine lake in south-central Norway. The reconstructions are based on chironomids, diatoms, pollen, plant macrofossils, and sediment characteristics. From plant macrofossil evidence, birch trees (Betula pubescens) immigrated ca. 10,000 cal BP. The chironomid-inferred mean July air temperature was high, but may be unreliable during the early stages of the lakes history due to the high abundance of Chironomus anthracinus type, a taxon that may include several species. From ca. 9000 cal BP the inferred mean July temperature was lower (ca. 9 °C). Temperatures increased towards 8000 cal BP and pine (Pinus sylvestris) reached its upper limit near the lake. July temperature may have become a significant factor controlling long-term pH in the lake, starting shortly after 8000 cal BP. High pH values were associated with periods of warm summers and lower pH values occurred during periods of colder summers. Alkalinity processes within the lake and/or the catchment are possible factors controlling this relationship. A temperature decline at ca. 5400 cal BP separated two 10.6 °C temperature maxima around 6400 and 4500 cal BP. The 1.5 °C decline in July air temperatures from ca. 4400 cal BP was paralleled by a decrease of pH from 7.2 to 6.8. Following the temperature drop, first pine and then birch trees declined and disappeared from the catchment and organic accumulation in the lake increased. The increased organic accumulation rate had a positive effect on diatom production. At ca. 2700 cal BP the temperature reached a minimum (ca. 9.2 °C) and correspondingly a second pH minimum was reached. Temperature decreased again slightly at ca. 400 cal BP during the Little Ice Age, before increasing by about 0.5 °C towards the present. Percentage organic carbon as estimated by loss-on-ignition appears to be better correlated with chironomid-inferred July temperatures than organic accumulation rates, at least for the last 9000 years. Accumulation rates of organic sediments are more coupled with catchment-related processes, such as erosion and major changes in vegetation, than is percentage organic carbon.  相似文献   

18.
A temperature reconstruction using chironomids was attempted at Egelsee, Switzerland, a site where pollen and macrofossil records showed a correspondence between vegetation and climatic changes inferred by other proxies in Europe. The general pattern of temperature changes inferred from chironomids during the Late Glacial [i.e. cold temperatures between ca. 16,500 and 14,800 cal BP, close to present-day temperature between 15,000 and 13,000 cal BP and colder temperatures during the Younger Dryas (YD)], and the major temperature changes of the Holocene (i.e. the Younger Dryas–Holocene transition and the Late Holocene cooling trend) at Egelsee, were mirrored in other European climate reconstructions using various proxies. However, the amplitude of temperature changes during the YD was smaller than reconstructed by other proxies at various sites, and the 8,200 years BP event was not apparent. These differences between records were probably due to the dominance of Corynocera ambigua, with percentages reaching 60% in parts of the Egelsee sequence. This taxon was not present in any of the 103 lakes used for the transfer function and its absence may have yielded less accurate inferences. Its presence in samples only associated with cold inferences at Egelsee suggests that this taxon is a cold indicator. However, it was also found in warm Danish lakes and the factors that determine the presence of C. ambigua remain unexplained. Most samples had a poor fit to temperature and instead, dissolved organic carbon seemed to be a factor influencing the chironomid assemblages during the Holocene. These results illustrate the need to better understand the ecology of chironomids and to disentangle the various factors that affect chironomid communities through time. Ultimately, such information will lead to more accurate temperature reconstructions.  相似文献   

19.
Sedimentary, palynologic and 14C analysis of marls and swamp‐peats, formed under fluctuating artesian spring conditions, provide climate and vegetation records from >52,000 to 0 yr BP at Mowbray, and 30,000 to 0 yr BP at Broadmeadows. Before about 65,000 yr BP conditions at Mowbray were relatively dry and the vegetation was Leptospermum shrubland. After 65,000 and before 55,000 yr BP moist conditions produced Cyperaceae swamps. Between 55,000 and 45,000 yr BP the climate was relatively dry, and between 45,000 and 35,000 yr BP relatively moist. Leptospermum shrubs were dominant in both periods. The climate was moist between 35,000 and 22,000 yr BP and sedge swamps formed. Between 22,000 and 11,000 yr BP the climate was relatively dry and grasses were important. Postglacial climate (11,000–0 yr BP) was warm and moist, and Melaleuca‐Leptospermum forest and shrubland flourished. The climatic changes suggested for north western Tasmania seem to compare broadly with changes suggested for Tasmanian and for other southern Australian sites, but the correlation is limited by imprecise dating.  相似文献   

20.
Extreme climate events play an important role in studies of long-term climate change. As the Earth’s Third Pole, the Tibetan Plateau (TP) is sensitive to climate change and variation. In this study on the TP, the spatiotemporal changes in climate extreme indices (CEIs) are analyzed based on daily maximum and minimum surface air temperatures and precipitation at 98 meteorological stations, most with elevations of at least 4000 m above sea level, during 1960-2012. Fifteen temperature extreme indices (TEIs) and eight precipitation extreme indices (PEIs) were calculated. Then, their long-term change patterns, from spatial and temporal perspectives, were determined at regional, eco-regional and station levels. The entire TP region exhibits a significant warming trend, as reflected by the TEIs. The regional cold days and nights show decreasing trends at rates of -8.9 d (10 yr)-1 (days per decade) and -17.3 d (10 yr)-1, respectively. The corresponding warm days and nights have increased by 7.6 d (10 yr)-1 and 12.5 d (10 yr)-1, respectively. At the station level, the majority of stations indicate statistically significant trends for all TEIs, but they show spatial heterogeneity. The eco-regional TEIs show patterns that are consistent with the entire TP. The growing season has become longer at a rate of 5.3 d (10 yr)-1. The abrupt change points for CEIs were examined, and they were mainly distributed during the 1980s and 1990s. The PEIs on the TP exhibit clear fluctuations and increasing trends with small magnitudes. The annual total precipitation has increased by 2.8 mm (10 yr)-1 (not statistically significant). Most of the CEIs will maintain a persistent trend, as indicated by their Hurst exponents. The developing trends of the CEIs do not show a corresponding change with increasing altitude. In general, the warming trends demonstrate an asymmetric pattern reflected by the rapid increase in the warming trends of the cold TEIs, which are of greater magnitudes than those of the warm TEIs. This finding indicates a positive shift in the distribution of the daily minimum temperatures throughout the TP. Most of the PEIs show weak increasing trends, which are not statistically significant. This work aims to delineate a comprehensive picture of the extreme climate conditions over the TP that can enhance our understanding of its changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号