首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
Artificial reef is a man-made object that is deployed purposefully on the seafloor to restore the offshore fishery resources and the ecological environment.To secure its ecological effects,it is important to study the possible instability of artificial reefs,like drifting and reversing caused by burial and scour in different seafloor conditions.In the present study,experiments of local scour around an artificial reef are carried out in steady currents.The effect of the open-area ratios and the open-hole heights of the cubic reefs,and the bottom angles of the triangular reefs on the time-scale of the scour process and the equilibrium scour depth are investigated.The results indicate that for the cubic artificial reef,the scour depth decreases with the increasing open-area ratios,and increases with the increasing open-hole heights.In the present study,the optimal prototype of the cubic reef with an open-area ratio of 0.49 and open-height of 0.7 m produces the minimum scour depth.For the triangular reef,the scour depth increases when the bottom angle increases.Moreover,based on the experimental results,empirical equations of the effects of the cut-opening and the bottom angle on the maximum equilibrium scour depth are proposed.The formulas will provide theoretical support and practical guidance for the optimized design and construction of artificial reefs.  相似文献   

2.
The drop structure will fail as a result of local scoring downstream. This paper discusses the influence of a drop structures’ upstream slope to local scour. Empirical equations of the scour hole were developed by laboratory experiment, theoretical assumptions, and regression analysis. These equations include the maximum scour depth and length during the scouring period, the maximum equilibrium scour depth and length, and the unit width scour rate. The four channel slopes (0%, 2%, 4%, and 6%) before the drop structure has been included in the analysis. A series of laboratory experiments were conducted to obtain 48 groups of experiments and 419 scour hole profiles during the scouring period. The material used in the scour section is uniform non-cohesive and with a median diameter of d 50 = 0.5 mm. The results have been used to develop empirical equations via regression analysis to determine the coefficients of theoretical equations. The high correlation coefficient indicates that the equations developed in this study are suitable for verifying the characteristics of a scour hole at drop structure in the sloped channel. The semi-empirical equation is more accurate than the empirical equation. Compared to a horizontal channel, a sloped channel tends to cause a greater equilibrium maximum scour length, shorter equilibrium maximum scour depth, and faster unit-wide scour rate.  相似文献   

3.
虚拟植物是一种潜在、有力的植物分析辅助工具,而单株木生长模拟是森林生态系统模拟的基础。为了动态模拟杉木生长发育过程,提出了参数化单株木三维形态结构建模和与距离无关的单木生长模型的集成方法,其主要过程为:首先,根据杉木的形态结构特征,采用参数化建模方法建立特定生长阶段的三维静态模型;其次,根据生长模型预测不同年龄杉木的树高、胸径、枝下高和分枝轮数,并与树木三维静态模型几何描述参数建立联动;最后,采用参数曲线调整干径和枝径变化、枝条长度、分枝角等形态结构参数,使模型形态随树龄增长而变化。在自主研发的ParaTree系统上,扩展杉木动态生长模拟模块,并以福建省漳平五一林场的二类调查数据为例,动态模拟了杉木的生长过程。模拟结果表明,本方法可直观表达林分中林木个体平均生长状况和大体形态结构特征。树木三维模型描述参数与传统树木统计生长模型结合,有利于重用林业领域淀积大量的生长模型。  相似文献   

4.
Debris flows are one of the common natural hazards in mountainous areas. They often cause devastating damage to the lives and property of local people. The sabo dam construction along a debris flow valley is considered to be a useful method for hazard mitigation. Previous work has concentrated on the different types of sabo dams such as close-type sabo dam, open-type sabo dam. However, little attention has been paid to the spillway structure of sabo dam. In the paper, a new type of spillway structure with lateral contraction was proposed. Debris flow patterns under four different spillway structures were investigated. The projection theory was employed to predict trajectory of debris flow out from the spillway and to estimate the incident angle and terminal velocity before it plunged into the scour hole behind the sabo dam. The results indicated that the estimated data were in good agreement with the experimental ones. The discrepancy between the estimated and experimental values of main parameters remained below 21.82% (relative error). Additionally, the effects of debris flow scales under different spillway structures were considered to study the scour law. Although the debris flow pattern and scour law behind the sabo dam under different operating conditions was analyzed in this paper, further study on the scour mechanism and the maximum scour depth estimation based on scour theory is still required in the future.  相似文献   

5.
Based on the large-scale model tests, a simplified dam breach model for homogeneous cohesive dam due to overtopping failure is put forward. The model considers headcut erosion as one of the key homogeneous cohesive dam breaching mechanisms and we calculate the time-averaged headcut migration rate using an energy-based empirical formula. A numerical method is adopted to determine the initial scour position at the downstream slope in terms of the water head and dam height, and the broad-crested weir equation is utilized to simulate the breach flow. The limit equilibrium method is used to analyze the stability of breach slope during the breach process. An iterative method is developed to simulate the coupling process of soil and water at each time step. The calculated results of three dam breach cases testify the reasonability of the model, and the sensitivity studies of soil erodibility show that sensitivity is dependent on each test case’s soil conditions. In addition, three typical dam breach models, NWS BREACH, WinDAM B, and HR BREACH, are also chosen to compare with the proposed model. It is found that NWS BREACH may have large errors for cohesive dams, since it uses a noncohesive sediment transport model and does not consider headcut erosion, WinDAM B and HR BREACH consider headcut erosion as the breaching mechanism and handle well homogeneous cohesive dam overtopping failure, but overall, the proposed model has the best performance.  相似文献   

6.
Drainage canals are engineering structures widely used for debris flow mitigation. When passing through a drainage canal, debris flow usually scours the gully bed at the back of the rib sill of the drainage canal, which leads to failure of the rib sill. Therefore, the scour depth at the back of the rib sill is an important design problem and it is related to the economic benefits of engineering and service years. To explore the law of the depth of the scour pit after debris flow through drainage canal ribs, we first proposed a formula for the calculation of the maximum scour depth at the back of a rib sill based on energy conservation. We then conducted a series of simulation experiments to test the proposed formula. The experimental results show that the scour depth, trench slope and the distance between ribs all increase with a decrease in debris flow density. We then compared the results of experiments and formula calculations. Through the testing analysis, we found that the calculation results of the conducted formula correspond with the experimental results better. Finally, taking Qipan Gully as an example, we designed the ultimate depth of a drainage canal for debris flow using the calculation formula.  相似文献   

7.
This paper presents the results from laboratory experiments and theoretical analysis to investigate the development of scour around submarine pipeline under steady current conditions. Experiments show that the scour process takes place in two stages: the initial rapid scour and the subsequent gradual scour development stage. An empirical formula for calculating the equilibrium scour depth (the maximum scour depth) is developed by using the regression method. This formula together with the maximum entropy theory can be applied to establish a formula to predict the scour process for given water depth, diameter of pipeline and flow velocity. Good agreement between the predicted and measured scour depth is obtained.  相似文献   

8.
Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures, and that destruction can pose a serious threat. Consequently, this paper aims at exploring the mechanisms of scouring and armoring. Firstly, the incipient velocity for nonuniform sediment particles was studied, and a formula was derived based on the angle of repose of nonuniform sediment. The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles. Also, comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions. Secondly, a birth-death, immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring. The comparison between experimental data and computed results shows that our model can predict the bed load transport rate, although there may be some limitations, the chief of which is that there are many variables in the model to be determined through experiment. This makes its application in river engineering inconvenient.  相似文献   

9.
The hydraulic system is the key component in the widely used wave energy converters (WEC). In this paper, we theoretically analyze and describe our investigation of the efficiency of the hydraulic system by simulation and model testing of the combined heaving-buoy WEC. We derive a new governing equation that includes nonlinear hydraulic resistance in the power take-off (PTO). We conducted a physical model experiment based on a 100-kW prototype and applied a hydraulic system with an energy accumulator. The model test results reveal an important parameter related to efficiency with respect to nonlinear hydraulic resistance. We also studied the relationship between the efficiency and the initial conditions. Finally, based on our numerical simulation results, we discuss the effect on efficiency of the gas content of the hydraulic fluid and ways to reduce its impact.  相似文献   

10.
INTRODUCTIONThemethodofautomaticallygeneratinggeneralizedcurvilinearmeshesisaneffectivetoolforobtainingnumericalsolutionsofpartialdifferentialequationsinaregionwitharbitraryboundaries.Thegrids,calledadaptivemesh ,canbeadaptedtotheshapeoftheboundaryortothespatialdis tributionofthesimulatedfield .Insteadofthetraditionalequidistantgrids,automaticallyproducedcurvilineargrids,whichcanbeadaptedtotheequationsolutions’featuresandtotheirregularshapeofthelateralboundary,areused .Thenumericalcalcul…  相似文献   

11.
Mountainous torrents often carry large amounts of loose materials into the rivers, thus causing strong sediment transport. Experimentally it was found for the first time that when the intensive sediment motion occurs downstream over a gentle slope, the siltation of the riverbed is induced and the sediment particles can move upstream rapidly in the form of a retrograde sand wave, resulting in a higher water level along the river. To further study the complex mechanisms of this problem, a sediment mass model in the framework of the Smoothed Particle Hydrodynamics(SPH) method was presented to simulate the riverbed evolution, sediment particle motion, and the generation and development of dynamic hydraulic jump under the condition of sufficient sediment supply over a steep slope with varying angles. Because the sediment is not a continuous medium, the marker particle tracking approach was proposed to represent a piece of sediment with a marked sediment particle. The twophase SPH model realizes the interaction between the sediment and fluid by moving the bed boundary particles up and down, so it can reasonably treat the fluid-sediment interfaces with high CPU efficiency. The critical triggering condition of sediment motion, the propagation of the hydraulic jump and the initial siltation position were all systematically studied. The experimental and numerical results revealed the extra disastrous sediment effect in a mountainous flood. The findings will be useful references to the disaster prevention and mitigation in mountainous rivers.  相似文献   

12.
Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentation processes are important.Based on the Bingham fluid theory,a mathematical model of the two-dimensional non-constant debris flow is developed.The governing equations include the continuity and momentum conservation equations of debris flow,the sediment convection-diffusion equation,the bed erosion-deposition equation and the bed-sediment size gradation adjustment equation.The yield stress and shear stress components are included to describe the dynamic rheological properties.The upwind control-volume Finite Volume Method (FVM) is applied to discretize the convection terms.The improved SIMPLE algorithm with velocity-free-surface coupled correction is developed to solve the equations on non-orthogonal,quadrilateral grids.The model is applied to simulate a debris flow event in Jiangjia Gully,Yunnan Province and to predict the flow pattern and bed erosion-deposition processes.The results show the effectiveness of the proposed numercial model in debris flow simulation and potential hazard analysis.  相似文献   

13.
The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.  相似文献   

14.
The removal of bed material from active river channels usually affects the bed profile of the streambed, causing progressive degradation upstream and downstream of the extraction site. These effects can extend for kilometers affecting hydraulic structures located in the vicinity of the river reach. In this paper, the geomorphic effects of gravel mining are reviewed and summarized. Some cases in Venezuelan streams are presented to illustrate the problem. To describe the processes of erosion and sedimentation in a gravel extraction pit, a recent developed mathematical model for the simulation of flow and sediment transport in gravel-cobble bed streams is applied to a hypothetical case of gravel mining in a river channel. A simple rectangular dredge pit is imposed as initial condition in the channel bed, and changes in bed elevations and grain size distribution of bed material are calculated by using the numerical model. The process of deposition within the pit, and the downstream and upstream migration of the erosion wave are well simulated by the model and closely resemble the phenomena observed in laboratory experiments. The response of the friction coefficient to the changes in flow and bed elevations shows the importance in modeling adequately flow resistance and sediment transport in gravel-cobble bed streams.  相似文献   

15.
As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few experimental studies have been published on the scour around the piggyback pipeline under steady current. This study numerically and experimentally investigates the local scour of the piggyback pipe under steady current. The influence of prominent factors such as pipe diameter, inflow Reynolds number, and gap between the main and small pipes, on the maximum scour depth have been examined and discussed in detail. Furthermore, one formula to predict the maximum scour depth under the piggyback pipeline has been derived based on the theoretical analysis of scour equilibrium. The feasibility of the proposed formula has been effectively calibrated by both experimental data and numerical results. The findings drawn from this study are instructive in the future design and application of the piggyback pipeline.  相似文献   

16.
In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT) model. The model was tested at the Juntanghu watershed on the northern slope of the Tian Shan Mountains, Xinjiang,China. We compared the performances of temperature-index method and energy balanced method in SWAT model by taking Juntanghu river basin as an application example(as the simulation experiment was conducted in Juntanghu River, we call the energy balanced method as SWAT-JTH). The results suggest that the SWAT snowmelt model had overall Nash-Sutcliffe efficiency(NSE) coefficients ranging from 0.61 to 0.85 while the physical based approach had NSE coefficients ranging from 0.58 to0.69. Overall, on monthly scale, the SWAT model provides better results than that from the SWAT-JTH model. However, results generated from both methods seem to be fairly close at a daily scale. Thestructure of the temperature-index method is simple and produces reasonable simulation results if the parameters are well within empirical ranges. Although the data requirement for the energy balance method in current observation is difficult to meet and the existence of uncertainty is associated with the experimental approaches of physical processes, the SWAT-JTH model still produced a reasonably high NSE. We conclude that using temperature-index methods to simulate the snowmelt process is sufficient, but the energy balance-based model is still a good choice to simulate extreme weather conditions especially when the required data input for the model is acquired.  相似文献   

17.
The deflection angle of a river bend plays an important role on behaviours of the flow within it, and a clear understanding of the angle's influence is significant in both theoretical study and engineering application. This paper presents a systematic numerical investigation on effects of deflection angles(30°, 60°, 90°, 120°, 150°, and 180°) on flow phenomena and their evolution in open-channel bends using a Re-Normalization Group(RNG) κ-ε model and a volume of fluid(VOF) method. The numerical results indicate that the deflection angle is a key factor for flows in bends. It is shown that the maximum transverse slope of water surface occurs at the middle cross section of a bend, and it increases with the deflection angle. Besides a major vortex, or, the primary circulation cell near the channel bottom, a secondary vortex, or, an outer bank cell, may also appear above the former and near the outer bank when the deflection angle is sufficiently large, and it will gradually migrate towards the inner bank and evolve into an inner bank cell. The strength of the secondary circulations increases with the deflection angle. The simulation demonstrates that there is alow-stress zone on the bed near the outer bank and a high-stress zone on the bed near the inner bank, and both of them increase in size with the deflection angle. The maximum of shear stress on the inner bank increases nonlinearly with the angle, and its maximums on the outer bank and on the bed take place when the deflection angle becomes 120°.  相似文献   

18.
利用Bedmap2数据与中国第29次南极科学考察期间获取的冰雷达数据,在中山站至Dome A断面的Gamburtsev山脉地区首次构建11.3 km×11.5 km南极局部冰盖三维模型。着重介绍三维模型建立过程中的数据处理,其中冰雷达数据采集首次采用中国自主研发的冰雷达系统。详细阐述了冰雷达数据的处理流程,包括数据预处理、常规图像修正技术以及冰下地形获取,得到冰下基岩埋深和冰盖内部等时层埋深,插值得到100 m分辨率的冰下基岩DEM(海拔1 729 m~2 718 m)和等时层DEM(海拔2 601 m~2 950 m),利用南极Bedmap2冰表面栅格影像得到100 m分辨率的冰盖表面DEM(海拔3 679 m~3 745 m)。结合冰盖内外部数据处理结果,构建包含冰盖表面、冰盖内部等时层和冰下基岩地形特征的三维模型,并对模型进行检验,对冰盖内外部地形特征进行初步分析。  相似文献   

19.
为了研究双层滑脱构造变形的主控因素,设计了3类砂箱模型,对滑脱层材料、滑脱层厚度、滑脱层黏度、上覆砂层厚度、受力边界条件等主控因素进行物理模拟试验研究。试验结果表明:不同滑脱层材料产生的变形样式不同。以微玻璃珠组成的滑脱层主要产生前展型逆冲叠瓦式断裂构造,下部滑脱层起主控滑脱作用,上部滑脱层厚度、滑脱层之上砂层厚度越大越容易形成滑脱断层;挤压方向与受力边界间的夹角较大时,上部滑脱层容易先形成滑脱断层,其推覆体前缘水平位移较快。以不同黏度硅胶组成的滑脱层产生不同的分层滑脱构造变形样式,当下部滑脱层硅胶黏度为500~1 000Pa.s时,形成分层滑脱前展型叠瓦式构造;当硅胶黏度为2 000~2 500Pa.s时,靠近挤压端先形成背冲构造,然后在上部滑脱层形成叠瓦式构造,在下部滑脱层形成对冲三角带构造、冲起背斜构造。地震和钻井资料显示,准噶尔盆地南缘西段霍尔果斯—安集海褶皱冲断带具有双层滑脱变形特征;模拟结果认为,斜向受力边界、侏罗纪煤层以及古近纪泥岩层的分层滑脱作用是控制变形过程的主要因素。  相似文献   

20.
地下水流系统理论是当代水文地质学的核心概念框架,研究不同控制因素对盆地地下水流系统发育模式的影响具有重要意义。近年来的研究表明利用通量上边界能够更好地揭示盆地不同要素对地下水流系统模式转化的影响。基于通量上边界,采用数值模拟方法,研究稳定流条件下,渗透系数随埋深呈指数衰减的非均质含水层对盆地地下水流系统模式转化的影响。结果表明:随着渗透系数随埋深指数衰减程度的加大,盆地潜水面整体抬升,盆地上部地下水流速增大,水力梯度增大;同时,盆地地下水流系统由复杂的多级次水流系统到单一的局部水流系统,顺向局部水流系统占据的空间消减,而逆向局部水流系统占据的空间增大,流速近似为零的局部滞留区域向左下方移动。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号