首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘杰  孙美静  杨睿  苏明  严恒 《现代地质》2016,30(6):1399-1407
摘要:详细阐述不同成因的泥底辟流体输导模式,探讨了泥底辟输导体系的演化与天然气水合物成藏之间的关系,并分析神狐海域泥底辟输导体系对天然气水合物成藏的影响。底辟核外部伴生断裂、底辟核内部流体压裂裂缝和边缘裂缝带均可作为输导流体的通道。根据运移通道和动力等差异性,提出泥底辟输导流体的2种端元模式:超压-流体压裂输导型和边缘构造裂缝输导型。在此基础上,讨论了泥底辟(泥火山)的不同演化阶段对水合物的形成、富集和分解的影响。早期阶段,泥底辟形成的运移通道可能未延伸到水合物稳定带,导致气源供给不够充分;中期阶段,水合物成藏条件匹配良好,利于天然气水合物生成;晚期阶段,泥火山喷发引起水合物稳定带的热异常,可能导致水合物分解,直至泥火山活动平静期,水合物再次成藏。神狐海域内泥底辟分为花冠状和穹顶状两类,花冠状泥底辟以超压-流体压裂输导型为主;穹顶状泥底辟以底辟边缘裂缝输导型为主。泥底辟输导体系的差异性可能是神狐海域天然气水合物非均质分布的影响因素之一。 关键词:泥底辟;输导体系;天然气水合物;成藏机制;神狐海域  相似文献   

2.
泥火山——天然气水合物存在的活证据   总被引:2,自引:0,他引:2  
海底天然气水合物大多与通过切穿沉积盖层的断裂的上升烃类流体相关,这些高渗透带包括泥火山和底辟等侵入构造,所以泥火山、底辟和海底断裂等构造周围可能赋存水合物;实际钻探结果也证实,泥火山和水合物的形成与聚集有较为密切的关系。泥火山,它是地层内部圈闭气体由于压力释放上冲的结果,也是气体向上运移的通道。文章初步总结了泥火山与水合物的成矿关系,认为泥火山是水合物赋存的标志之一,是水合物存在的活证据。本文对我国泥火山与水合物的发育和赋存进行了分析预测,并对泥火山构造中水合物的成矿模式进行了初步探讨。  相似文献   

3.
陈萍  方念乔 《地球科学》2002,27(4):441-445
天然气体水合物是一种准稳定态的物质, 对引起温-压条件变化的各种地质作用是非常敏感的.沉积与剥蚀、海平面升降、冰期与间冰期等地质过程改变着海底环境温-压状况, 控制了沉积物中水合物的形成、保存与分解.快速沉积(尤其是海底滑坡和泥火山喷发等带来的瞬间堆积)、海平面上升、高纬地区冰期等使海底环境朝着增压、降温的方向变化, 有利于气体水合物形成与保存; 而迅速剥蚀、海平面下降、上覆冰体移除引起水合物分解.水合物的分解可以是渐渐的气体溢出, 也可以是猛然的气体喷发, 这取决于温度上升及压力降低的速度.气体水合物的“爆炸式”分解在海底表面可留下“圆坑状”地貌特征.地质过程中同一地区频繁的温-压波动可引起水合物中乙烷成分相对增加.   相似文献   

4.
ABSTRACT This paper presents new geochemical data on gas-hydrate-bearing mud volcanoes discovered for the first time in the Gulf of Cadiz during cruises TTR9 and TTR10 of the R/V Professor Logachev in 1999–2000. The estimated gas hydrate content is 3–16% of sediment volume and 5–31% of pore space volume. Estimated values of the water isotopic composition for the Ginsburg mud volcano are very heavy for δ18O (up to +53‰) and light for δD (up to − 210‰). Gas released from the hydrates contains 81% of C1 and 19% of C2+. The inferred source of the gas in the hydrates is enriched in C2–C6 (≤ 5%), indicating that the gas has a thermogenic origin. Gas hydrate of cubic structure II should be formed from a gas of such composition. It is interpreted that the composition of the mud volcano fluid corresponds to deep oil basins below the Gulf of Cadiz.  相似文献   

5.
天然气水合物发育的构造背景分析   总被引:1,自引:0,他引:1  
大量的钻孔资料和地震剖面显示主动大陆边缘的增生楔和被动大陆边缘的俯冲-增生楔、断裂-褶皱系、底辟构造或泥火山、滑塌构造、海底扇、"麻坑"构造和陆地多年冻土区等多种地质构造背景是形成天然气水合物的有利场所,可形成构造圈闭型天然气水合物矿藏。这些地质构造背景一方面大多是深部热成因气、生物成因气或混合成因气体或流体向上运移到海底的通道,形成天然气水合物矿藏;另一方面也可能造成天然气水合物的温压环境改变,致使天然气水合物分解。海底滑塌亦可能是天然气水合物分解所致,是潜在的地质灾害。  相似文献   

6.
海底天然气渗漏系统演化特征及对形成水合物的影响   总被引:9,自引:0,他引:9  
通过天然气沉淀水合物的动力学模拟计算,研究了墨西哥湾GC185区BushHill海底天然气渗漏系统的演化特征及对水合物沉淀的影响。渗漏早期,天然气渗漏速度大(q>18.4kg/m2-a),海底沉积以泥火山为主,渗漏天然气具有与气源天然气几乎一致的组成,形成的水合物具有最重的天然气成分。渗漏晚期,天然气渗漏速度很慢(q<0.55kg/m2-a),在海底附近没有水合物沉淀,主要以冷泉碳酸盐岩发育为主,水合物产于海底之下一定深度的沉积层中。介于二者间的渗漏中期(q:0.55~18.4kg/m2-a),海底发育水合物、自养生物群为特征,渗漏速度控制了水合物和渗漏天然气的组成及沉淀水合物的天然气比例。BushHill渗漏系统近10年的深潜重复采样显示,渗漏天然气和水合物天然气的化学组成在时空上是多变的,相对应的渗漏速度在时间上的变化约为3倍,在空间上的变化近2个数量级。  相似文献   

7.
This paper summarizes the results of recent gas-hydrate studies in Lake Baikal, the only fresh-water lake in the world containing gas hydrates in its sedimentary infill. We provide a historical overview of the different investigations and discoveries and highlight some recent breakthroughs in our understanding of the Baikal hydrate system. So far, 21 sites of gas hydrate occurrence have been discovered. Gas hydrates are of structures I and II, which are of thermogenic, microbial, and mixed origin. At the 15 sites, gas hydrates were found in mud volcanoes, and the rest six – near gas discharges. Additionally, depending on type of discharge and gas hydrate structure, they were visually different. Investigations using MIR submersibles allowed finding of gas hydrates at the bottom surface of Lake Baikal at the three sites.  相似文献   

8.
海底泥底辟构造与天然气水合物成藏关系密切,泥底辟既能为水合物提供充分的气源物质,同时又能促使地层温度场改变进而影响水合物成藏稳定性。南海北部神狐海域SH5站位虽然BSR明显,但钻探证实不存在天然气水合物。该钻位温度剖面异常高,温度场上移,同时在其下伏地层中发现泥底辟构造和裂隙通道。根据上述事实并结合泥底辟发育各个阶段中的特点,认为泥底辟构造对天然气水合物成藏具有控制作用。泥底辟发育早期和中期阶段,低热导率和低热量有机气体有利于天然气水合物生成;而在晚期阶段,高热量液体上侵稳定带底界,导致水合物分解迁移。SH5站位很可能由于受到处于晚期阶段的泥底辟上侵而未能获取天然气水合物。  相似文献   

9.
东海与泥底辟构造有关的天然气水合物初探   总被引:6,自引:2,他引:4  
根据所获得的高分辨率地震资料分析,发现冲绳海槽南部西侧槽坡附近以及海槽内部发育有一系列泥火山(底辟)构造,在地形上表现为泥火山地貌,在穿过泥火山的地震剖面上,表现出典型的泥底辟构造。对穿过泥底辟构造的DMS01-5地震剖面进一步的处理和解释发现,泥底辟构造顶部存在明显的似海底反射(BSR),其与海底反射波组极性相反,在BSR之上存在振幅空白带,在速度谱上出现速度异常,指示存在与泥火山有关的天然气水合物。从世界广泛发现的与泥底辟构造有关的天然气水合物来看,天然气水合物既可以在泥底辟构造的丘状外围成藏,也可以在其外围的海底沉积物中产出。在泥底辟构造的丘状外围附近,天然气水合物的形成机制类似于传统的矿物低温热液的形成;在泥底辟构造外围海底沉积物中,其形成过程类似于传统的矿物交代形成机制。冲绳海槽泥底辟构造的发育与很高的沉积速率和槽坡的活动断层有关。在冰期期间,长江携带大量的陆源物质直接输送到大陆坡地区,沉积速率达300 m/Ma,产生异常高压,同时张性断层极为发育,为流体的迁移提供了良好的通道,在异常压力以及上覆地层压力作用下大量流体向上运移,从而发育大量的泥底辟构造。富含甲烷的流体易在其外围及外围海底沉积物中形成天然气水合物藏。  相似文献   

10.
We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 m below the seafloor [mbsf]) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2- to 2.5-km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor focused vertical gas migration from greater depth (e.g., Sites 1244 and 1245). Non-hydrocarbon gases such as CO2 and H2S are not abundant in sampled hydrates. The new gas geochemical data are inconsistent with earlier models suggesting that seafloor gas hydrates at Hydrate Ridge formed from gas derived from decomposition of deeper and older gas hydrates. Gas hydrate formation at the Southern Summit is explained by a model in which gas migrated from deep sediments, and perhaps was trapped by a gas hydrate seal at the base of the gas hydrate stability zone (GHSZ). Free gas migrated into the GHSZ when the overpressure in gas column exceeded sealing capacity of overlaying sediments, and precipitated as gas hydrate mainly within shallow sediments. The mushroom-like 3D shape of gas hydrate accumulation at the summit is possibly defined by the gas diffusion aureole surrounding the main migration conduit, the decrease of gas solubility in shallow sediment, and refocusing of gas by carbonate and gas hydrate seals near the seafloor to the crest of the local anticline structure.  相似文献   

11.
《China Geology》2020,3(2):210-220
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin, which is on the northern continental slope of the South China Sea. Gas hydrates in this area have been intensively investigated, achieving a wide coverage of the three-dimensional seismic survey, a large number of boreholes, and detailed data of the seismic survey, logging, and core analysis. In the beginning of 2020, China has successfully conducted the second offshore production test of gas hydrates in this area. In this paper, studies were made on the structure of the hydrate system for the production test, based on detailed logging data and core analysis of this area. As to the results of nuclear magnetic resonance (NMR) logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition, the hydrate system on which the production well located can be divided into three layers: (1) 207.8–253.4 mbsf, 45.6 m thick, gas hydrate layer, with gas hydrate saturation of 0–54.5% (31% av.); (2) 253.4–278 mbsf, 24.6 m thick, mixing layer consisting of gas hydrates, free gas, and water, with gas hydrate saturation of 0–22% (10% av.) and free gas saturation of 0–32% (13% av.); (3) 278–297 mbsf, 19 m thick, with free gas saturation of less than 7%. Moreover, the pore water freshening identified in the sediment cores, taken from the depth below the theoretically calculated base of methane hydrate stability zone, indicates the occurrence of gas hydrate. All these data reveal that gas hydrates, free gas, and water coexist in the mixing layer from different aspects.  相似文献   

12.
Abstract: Interstitial waters extracted from the sediment cores from the exploration wells, “BH‐1” and “MITI Nankai Trough”, drilled ~60 km off Omaezaki Peninsula in the eastern Nankai Trough, were analyzed for the chloride and sulfate concentrations to examine the depth profiles and occurrence of subsurface gas hydrates. Cored intervals from the seafloor to 310 mbsf were divided into Unit 1 (~70 mbsf, predominated by mud), Unit 2 (70–150 mbsf, mud with thin ash beds), Unit 3 (150–250+ mbsf, mud with thin ash and sand), and Unit 4 (275–310 mbsf, predominated by mud). The baseline level for Cl “concentrations was 540 mM, whereas low chloride anomalies (103 to 223 mM) were identified at around 207 mbsf (zone A), 234–240 mbsf (zone B), and 258–265 mbsf (zone C) in Unit 3. Gas hydrate saturation (Sh %) of sediment pores was calculated to be 60 % (zone A) to 80 % (zones B and C) in sands whereas only a few percent in clay and silt. The total amount of gas hydrates in hydrate‐bearing sands was estimated to be 8 to 10 m3 of solid gas hydrate per m2, or 1.48 km3 CH4 per 1 km2. High saturation zones (A, B and C) were consistent with anomaly zones recognized in sonic and resistivity logs. 2D and high‐resolution seismic studies revealed two BSRs in the study area. Strong BSRs (BSR‐1) at ~263 mbsf were correlated to the boundary between gas hydrate‐bearing sands (zone C) and the shallower low velocity zone, while the lower BSRs (BSR‐2) at~289 mbsf corresponded to the top of the deeper low velocity zone of the sonic log. Tectonic uplift of the study area is thought to have caused the upward migration of BGHS. That is, BSR‐1 corresponds to the new BGHS and BSR‐2 to the old BGHS. Relic gas hydrates and free gas may survive in the interval between BSR‐1 and BSR‐2, and below BSR‐2, respectively. Direct measurements of the formation temperature for the top 170 m interval yield a geothermal gradient of ~4.3d?C/ 100 m. Extrapolation of this gradient down to the base of gas hydrate stability yields a theoretical BGHS at~230 mbsf, surprisingly ~35 m shallower than the base of gas hydrate‐bearing sands (zone C) and BSR‐1. As with the double BSRs, another tectonic uplift may explain the BGHS at unreasonably shallow depths. Alternatively, linear extrapolation of the geothermal gradient down to the hydrate‐bearing zones may not be appropriate if the gradient changes below the depths that were measured. Recognition of double BSRs (263 and 289 mbsf) and probable new BGHS (~230 mbsf) in the exploration wells implies that the BGHS has gradually migrated upward. Tectonically induced processes are thought to have enhanced dense and massive accumulation of gas hydrate deposits through effective methane recycling and condensation. To test the hypothetical models for the accumulation of gas hydrates in Nankai accretionary prism, we strongly propose to measure the equilibrium temperatures for the entire depth range down to the free gas zone below predicted BGHS and to reconstruct the water depths and uplift history of hydrate‐bearing area.  相似文献   

13.
Lake Baikal is the only fresh-water lake where natural gas hydrate accumulations were found in sediments. For the recent decade, Baikal has become a natural laboratory for investigation of the properties of gas hydrates, their indicators, and recovery of gas from subsurface (subbottom) gas hydrates. We present the main results of subsurface gas hydrate mapping and gas recovery test near the delta of the Goloustnaya River.  相似文献   

14.
《China Geology》2020,3(4):611-622
The Makran accretionary prism is located at the junction of the Eurasian Plate, Arabian Plate and Indian Plate and is rich in natural gas hydrate (NGH) resources. It consists of a narrow continental shelf, a broad continental slope, and a deformation front. The continental slope can be further divided into the upper slope, middle slope, and lower slope. There are three types of diapir structure in the accretionary prism, namely mud diapir, mud volcano, and gas chimney. (1) The mud diapirs can be grouped into two types, namely the ones with low arching amplitude and weak-medium activity energy and the ones with high arching amplitude and medium-strong activity energy. The mud diapirs increase from offshore areas towards onshore areas in general, while the ones favorable for the formation of NGH are mainly distributed on the middle slope in the central and western parts of the accretionary prism. (2) The mud volcanoes are mainly concentrated along the anticline ridges in the southern part of the lower slope and the deformation front. (3) The gas chimneys can be grouped into three types, which are located in piggyback basins, active anticline ridges, and inactive anticline ridges, respectively. They are mainly distributed on the middle slope in the central and western parts of the accretionary prism and most of them are accompanied with thrust faults. The gas chimneys located at different tectonic locations started to be active at different time and pierced different horizons. The mud diapirs, mud volcanoes, and gas chimneys and thrust faults serve as the main pathways of gas migration, and thus are the important factors that control the formation, accumulation, and distribution of NGH in the Makran accretionary prism. Mud diapir/gas chimney type hydrate develop in the middle slope, mud volcano type hydrate develop in the southern lower slope and the deformation front, and stepped accretionary prism type hydrate develop on the central and northern lower slope. The middle slope, lower slope and deformation front in the central and western parts of the Makran accretionary prism jointly constitute the NGH prospect area.  相似文献   

15.
海域孔隙型天然气水合物储层中,水合物主要以颗粒胶结、包裹胶结、骨架支撑、孔隙悬浮4种赋存模式充填沉积物孔隙,水合物饱和度与赋存模式的不同导致了储层弹性和电性的差异,利用声波和电阻率测井资料联合处理可以进行水合物赋存模式的定量表征。首先利用Simandoux公式计算水合物饱和度,然后通过有效介质模型构建的岩石物理模板识别水合物赋存模式,最后计算储层中不同赋存模式水合物的相对占比。以全球范围内三个典型区域(中国南海神狐海域、北美Blake海台、新西兰Hikurangi边缘)为例,利用水合物储层的实际钻探资料,对水合物赋存模式进行定量分析:(1)中国南海神狐海域SH2站位储层中,水合物主要以骨架支撑模式产出,约占水合物总量的64%;(2)Blake海台994C站位储层中,水合物主要为颗粒胶结和包裹胶结模式,分别占总量的27%和51%;(3)Hikurangi边缘U1518B站位的水合物储层中,水合物主要为包裹胶结和骨架支撑模式,分别占总量的32%和47%。前人针对水合物形成和赋存模式的实验研究显示,水合物更易以颗粒胶结、包裹胶结和骨架支撑模式赋存,从侧面验证了上述分析结果的可靠性。本研究使用...  相似文献   

16.
The efficiency of gas hydrate production depends on the success of gas exploration and occurrence evaluation. The existing evaluation models are generally univariate and only applicable to certain geological settings. This study presents a holistic approach to evaluate the likelihood of gas hydrate occurrence by supplying an index for mapping gas hydrate levels with depth. The approach integrates a generalised TOPSIS method with the fuzzy set theory. An expedition of gas hydrate conducted in the Shenhu area of the South China Sea was adopted as a case study to assess the reliability of the proposed index. As a multivariate model, the proposed approach enables the capture of non-linearity associated with gas hydrates in its entirety. The magnitude of the strength of the influential factor varies substantially from one site to another across the Shenhu area. The results also show that no site achieves the highest likelihood ‘Level V’. These results are consistent with the gas saturation values obtained using Archie’s relationship. For example, at SH4 and SH7, the values of the likelihood index are the highest between 170–185 m and 150–165 m, respectively, and the observed saturation at these locations varies from 20% (SH4) to 43% (SH7). The proposed likelihood index yields a prominent ability to quantify the level of occurrence of gas hydrates with depth at different sites. It appears to be an efficient multicriteria system bound to improve the management of the gas production trial stage.  相似文献   

17.
The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu Ⅱ depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated by methane with content up to 99.89% and 99.91%. The carbon isotope of the methane (δ13C1 ) are 56.7‰ and 60.9‰, and its hydrogen isotope (δD) are 199‰ and 180‰, respectively, indicating the methane from the microbial reduction of CO2 . Based on the data of measured seafloor temperature and geothermal gradient, the gas formed hydrate reservoirs are from depths 24-1699 m below the seafloor, and main gas-generation zone is present at the depth interval of 416-1165 m. Gas-bearing zones include the Hanjiang Formation, Yuehai Formation, Wanshan Formation and Quaternary sediments. We infer that the microbial gas migrated laterally or vertically along faults (especially interlayer faults), slump structures, small-scale diapiric structures, regional sand beds and sedimentary boundaries to the hydrate stability zone, and formed natural gas hydrates in the upper Yuehai Formation and lower Wanshan Formation, probably with contribution of a little thermogenic gas from the deep sedments during this process.  相似文献   

18.
Natural gas hydrate deposits have been estimated to store about 10% of gas in hydrate form (even with regard to a higher concentration of gas in hydrates), proceeding from the known ratio of dissolved-to-deposited gas. This high percentage is largely due to the fact that the buffer factor in natural gas hydrate deposits is lower than that for free gas because of less diverse structural conditions for gas accumulation. Therefore, the available appraisal of world resources of hydrated gas needs a revision.Hydrates in rocks are either syngenetic or epigenetic. Syngenetic hydrates originate from free or dissolved gas which was present in rocks in situ at the time when PT-conditions became favorable for gas hydrate formation. Epigenetic hydrates are derived from gas which came by migration into rocks with their PT-conditions corresponding to formation of gas hydrates.In addition to the optimum PT-conditions and water salinity, economic gas hydrate accumulation requires sustained supply of natural gas into a specific zone of gas hydrate formation. This condition is feasible only in the case of vertical migration of natural gas along faults, fractured zones, and lithologic windows, or, less often, as a result of lateral migration.Of practical importance are only the gas hydrate deposits produced by vertical or lateral gas migration.  相似文献   

19.
ABSTRACT

Mud diapirs and gas chimneys are widely developed in continental slope areas, which can provide sufficient gas for hydrate formation, and they are important for finding natural gas hydrates. Based on the interpretation and analysis of high-resolution 2D and 3D seismic data covering the deep-water area in the Qiongdongnan Basin (QDNB), northern South China Sea, we studied the formation mechanism of mud diapirs and gas chimneys and their relationship with natural gas hydrates. Mud diapirs and gas chimneys are columnar and domelike in shape and the internal regions of these bodies have abnormal reflections characterized by fuzzy, chaotic, and blanking zones. The reflection events terminate at the rims of mud diapirs and gas chimneys with pull-up reflections and pull-down reflections, respectively. In addition, ‘bright spots’ and diapiric-associated faults occur adjacent to mud diapirs and gas chimneys. The rapidly deposited and deeply buried fine sediments filling in the Tertiary in deep-water areas of the QDNB and overpressure potential derived from undercompacted mudstones, as well as from the pressurization of organic matter and hydrocarbon generation, provide abundant materials and intensive driving forces for the formation of mud diapirs and gas chimneys. Bottom simulating reflectors (BSRs) with strong amplitude and high or poor continuity were recognized atop the mud diapirs and gas chimneys and in the structural highs within the same region, indicating that they have a close relationship with each other. The mud diapirs and gas chimneys and associated high-angle faults provide favourable vertical pathways for the hydrocarbons migrating from deep strata to shallow natural gas hydrate stability zones where natural gas hydrates accumulate; however, some BSRs are characterized by weak amplitude and poor continuity, which can be affected by high temperature and overpressure in the process of the mud diapir and gas chimney activities. This mutually restricting relationship must be taken into consideration in the process of gas hydrate exploration in QDNB.  相似文献   

20.
Abstract. The Nankai Trough runs along the Japanese Islands, where extensive BSRs have been recognized in its forearc basins. High resolution seismic surveys and site-survey wells undertaken by the MITI have revealed the gas hydrate distribution at a depth of about 290 mbsf. The MITI Nankai Trough wells were drilled in late 1999 and early 2000. The highlights were successful retrievals of abundant gas hydrate-bearing cores in a variety of sediments from the main hole and the post survey well-2, keeping the cored gas hydrate stable, and the obtaining of continuous well log data in the gas hydrate-dominant intervals from the main hole, the post survey well-1 and the post survey well-3. Gas-hydrate dominant layers were identified at the depth interval from 205 to 268 mbsf. Pore-space hydrate, very small in size, was recognized mostly filling intergranular pores of sandy sediments. Anomalous chloride contents in extracted pore water, core temperature depression, core observations as well as visible gas hydrates confirmed the presence of pore-space hydrates within moderate to thick sand layers. Gas hydrate-bearing sandy strata typically were 10 cm to a meter thick with porosities of about 40 %. Gas hydrate saturations in most hydrate-dominant layers were quite high, up to 90 % pore saturation.
All the gas hydrate-bearing cores were subjected to X-ray CT imagery measurements for observation of undisturbed sedimentary textures and gas-hydrate occurrences before being subjected to other analyses, such as (1) petrophysical properties, (2) biostratigraphy, (3) geochemistry, (4) microbiology and (5) gas hydrate characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号