首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The design of a lunar landing trajectory which satisfies certain constraints is considered and discussed. The constraints are of two kinds, kinetic constraints, which deal with the relative positions among the Sun, the Moon, the Earth, the spacecraft and tracking stations, and dynamic constraints, which deal with the orbital motion of the spacecraft. After a discussion of the characteristics of lunar flight trajectory, a method of designing standard flight trajectory is suggested that satisfies the constraints. This method is applied to the Chinese lunar landing flight and to the pre-design of the orbit of a lunar satellite.  相似文献   

2.
Rationale is given for the braking profile of a spacecraft making a soft landing on the Moon’s surface, including the following four phases: main braking, free fall, repeated braking, and descent at a constant speed. Due to the large altitude differential over the braking path in near-polar regions of the Moon, main braking is proposed as a type of trajectory correction impulse using no altimeter. The boundary problem solution and statistical calculations are used to give the potential energy costs and characteristics of the dispersion characteristics for this phase and choose an optimal thrust-to-weight ratio for the phase.  相似文献   

3.
This paper presents a method to construct optimal transfers between unstable periodic orbits of differing energies using invariant manifolds. The transfers constructed in this method asymptotically depart the initial orbit on a trajectory contained within the unstable manifold of the initial orbit and later, asymptotically arrive at the final orbit on a trajectory contained within the stable manifold of the final orbit. Primer vector theory is applied to a transfer to determine the optimal maneuvers required to create the bridging trajectory that connects the unstable and stable manifold trajectories. Transfers are constructed between unstable periodic orbits in the Sun–Earth, Earth–Moon, and Jupiter-Europa three-body systems. Multiple solutions are found between the same initial and final orbits, where certain solutions retrace interior portions of the trajectory. All transfers created satisfy the conditions for optimality. The costs of transfers constructed using manifolds are compared to the costs of transfers constructed without the use of manifolds. In all cases, the total cost of the transfer is significantly lower when invariant manifolds are used in the transfer construction. In many cases, the transfers that employ invariant manifolds are three times more efficient, in terms of fuel expenditure, than the transfer that do not. The decrease in transfer cost is accompanied by an increase in transfer time of flight.  相似文献   

4.
满足一定约束条件的登月飞行轨道的设计   总被引:3,自引:0,他引:3  
黄珹  胡小工  李鑫 《天文学报》2001,42(2):161-172
讨论满足约束条件的登月飞行轨道的设计问题,将约束条件分类为只与太阳,月球,地球,飞行器和观测站之间的相对位置有关的运动学约束条件以及小及到飞行器轨道云动的动力学约束条件,在考虑登月飞行轨道的特征后,给出一种设计满足约束条件的标准飞行轨道的方法,并将方法应用于不同约束条件下的我国登月飞行以及月球卫星的轨道预测计。  相似文献   

5.
This article continues our study of spacecraft guidance and control for a soft Moon landing (see our article “Main braking phase for a soft Moon landing as a form of trajectory correction”). Rationale is given for the objectives of the subsequent (final touchdown) phases. Analytical relations for the main parameters are obtained, and the impact of various disturbing factors is estimated. A methodology is proposed for calculating the main parameters for the whole braking sequence from the sighting altitude of the main braking phase termination to braking engine thrust and its throttle range.  相似文献   

6.
This paper presents a navigation strategy to fly to the Moon along a Weak Stability Boundary transfer trajectory. A particular strategy is devised to ensure capture into an uncontrolled relatively stable orbit at the Moon. Both uncertainty in the orbit determination process and in the control of the thrust vector are included in the navigation analysis. The orbit determination process is based on the definition of an optimal filtering technique that is able to meet accuracy requirements at an acceptable computational cost. Three sequential filtering techniques are analysed: an extended Kalman filter, an unscented Kalman filter and a Kalman filter based on high order expansions. The analysis shows that only the unscented Kalman filter meets the accuracy requirements at an acceptable computational cost. This paper demonstrates lunar weak capture for all trajectories within a capture corridor defined by all the trajectories in the neighbourhood of the nominal one, in state space. A minimum Δv strategy is presented to extend the lifetime of the spacecraft around the Moon. The orbit determination and navigation strategies are applied to the case of the European Student Moon Orbiter.  相似文献   

7.
Impulsive time-free transfers between halo orbits   总被引:1,自引:0,他引:1  
A methodology is developed to design optimal time-free impulsive transfers between three-dimensional halo orbits in the vicinity of the interior L 1 libration point of the Sun-Earth/Moon barycenter system. The transfer trajectories are optimal in the sense that the total characteristic velocity required to implement the transfer exhibits a local minimum. Criteria are established whereby the implementation of a coast in the initial orbit, a coast in the final orbit, or dual coasts accomplishes a reduction in fuel expenditure. The optimality of a reference two-impulse transfer can be determined by examining the slope at the endpoints of a plot of the magnitude of the primer vector on the reference trajectory. If the initial and final slopes of the primer magnitude are zero, the transfer trajectory is optimal; otherwise, the execution of coasts is warranted. The optimal time of flight on the time-free transfer, and consequently, the departure and arrival locations on the halo orbits are determined by the unconstrained minimization of a function of two variables using a multivariable search technique. Results indicate that the cost can be substantially diminished by the allowance for coasts in the initial and final libration-point orbits.An earlier version was presented as Paper AIAA 92-4580 at the AIAA/AAS Astrodynamics Conference, Hilton Head Island, SC, U.S.A., August 10–12, 1992.  相似文献   

8.
The design of spacecraft trajectories is a crucial part of a space mission design. Often the mission goal is tightly related to the spacecraft trajectory. A geostationary orbit is indeed mandatory for a stationary equatorial position. Visiting a solar system planet implies that a proper trajectory is used to bring the spacecraft from Earth to the vicinity of the planet. The first planetary missions were based on conventional trajectories obtained with chemical engine rockets. The manoeuvres could be considered 'impulsive' and clear limitations to the possible missions were set by the energy required to reach certain orbits. The gravity-assist trajectories opened a new way of wandering through the solar system, by exploiting the gravitational field of some planets. The advent of other propulsion techniques, as electric or ion propulsion and solar sail, opened a new dimension to the planetary trajectory, while at the same time posing new challenges. These 'low thrust' propulsion techniques cannot be considered 'impulsive' anymore and require for their study mathematical techniques which are substantially different from before. The optimisation of such trajectories is also a new field of flight dynamics, which involves complex treatments especially in multi-revolution cases as in a lunar transfer trajectory. One advantage of these trajectories is that they allow to explore regions of space where different bodies gravitationally compete with each other. We can exploit therefore these gravitational perturbations to save fuel or reduce time of flight. The SMART-1 spacecraft, first European mission to the Moon, will test for the first time all these techniques. The paper is a summary report on various activities conducted by the project team in these areas.  相似文献   

9.
《Planetary and Space Science》1999,47(8-9):1051-1060
It is planned that the LUNA-GLOB spacecraft will deliver an orbiter and 14 landers to the Moon.The schematic diagram of the spacecraft flight to the Moon is shown in Fig. 1
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
Fig. 1. Schematic diagram of the LUNA-GLOB SC flight to the Moon.
. The flight time is estimated at 4.5 days. Some 33 h before the spacecraft approaches the Moon a container with 10 small high-velocity penetrators (SHVP) will be separated from the spacecraft. It will continue the flight to the Moon autonomously. When the container is at a close distance to the Moon it will intensively rotate, and the penetrators will be separated from it. They will continue their flight to the Moon, and at a rate of 2.6 km⧸s, they will penetrate the surface.Then, two large penetrators (LP) will separate and continue the flight autonomously. In due time they will decelerate and penetrate the surface at a rate of 80–100 m⧸s.Finally, after leaving the satellite orbit the polar station (PS) will land to the South Polar Region at a rate of 80–100 m⧸s.All 12 penetrators, which will be dropped from the spacecraft, have seismometers. They are intended for the research into the internal structure of the Moon that is one of the main scientific objectives of the project. The (PS) accommodates a complex of instruments intended for the solution of another objective of the project: the search for volatiles.  相似文献   

10.
Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth–Moon \(\hbox {L}_{1}\) and \(\hbox {L}_{2}\) points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun–Earth–Moon restricted four-body problem until its insertion, with a second impulse, onto the \(\hbox {L}_{2}\) stable manifold in the Earth–Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid’s initial obit to the stable manifold associated with Earth–Moon \(\hbox {L}_{2}\) point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun–Earth circular restricted three-body problem and subsequent transfer to the Earth–Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth–Moon system.  相似文献   

11.
This paper is concerned with the problems of ballistics, navigation, and flight control of the space craft (SC) in the Phobos-Grunt mission. We consider an insertion into the Earth-Mars transfer trajectory, the Earth-Mars transfer, the strategy of corrections, and the accuracy of the insertion of the SC into Martian orbit. During the orbital maneuvering stage in the sphere of influence of Mars, we set up a scheme that allows for the insertion of the SC, with the prescribed accuracy, into a point 80-km above the Phobos surface over the theoretical landing area. We specify the sequence for a controlled landing and provide methods for solving the problems of navigation and control during a self-c ontained landing. We also consider the liftoff from Phobos, insertion into the parking orbit, and the Mars-Earth transfer.  相似文献   

12.
Several families of periodic orbits exist in the context of the circular restricted three-body problem. This work studies orbital motion of a spacecraft among these periodic orbits in the Earth–Moon system, using the planar circular restricted three-body problem model. A new cylindrical representation of the spacecraft phase space (i.e., position and velocity) is described, and allows representing periodic orbits and the related invariant manifolds. In the proximity of the libration points, the manifolds form a four-fold surface, if the cylindrical coordinates are employed. Orbits departing from the Earth and transiting toward the Moon correspond to the trajectories located inside this four-fold surface. The isomorphic mapping under consideration is also useful for describing the topology of the invariant manifolds, which exhibit a complex geometrical stretch-and-folding behavior as the associated trajectories reach increasing distances from the libration orbit. Moreover, the cylindrical representation reveals extremely useful for detecting periodic orbits around the primaries and the libration points, as well as the possible existence of heteroclinic connections. These are asymptotic trajectories that are ideally traveled at zero-propellant cost. This circumstance implies the possibility of performing concretely a variety of complex Earth–Moon missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining a suitable, convenient end-of-life strategy for spacecraft placed in any of the unstable orbits. The final disposal orbit is an externally confined trajectory, never approaching the Earth or the Moon, and can be entered by means of a single velocity impulse (of modest magnitude) along the right unstable manifold that emanates from the Lyapunov orbit at \(L_2\) .  相似文献   

13.
A.G.W. Cameron 《Icarus》1985,62(2):319-327
According to the single-impact hypothesis for forming the Moon, the angular momentum needed for the present Earth-Moon system can be imparted to the proto-Earth by a collision with a body having one-tenth of the mass or more. The collision must vaporize a large amount of rock which must stay in the form of vapor after expanding in density by a factor of several, so that pressure gradients can accelerate significant amounts of the matter into orbital motion about the proto-Earth. A successful theory must put considerably more than a lunar mass into orbit, having considerably more angular momentum than is needed to assemble a lunar mass in orbit at 3 Earth radii. Such a collision has been simulated by a particular form of a particle-in-cell representation of hydrodynamics and 78 cases have been run representing variations in a variety of parameters. A significant fraction of the cases were successful in creating a satisfactory prelunar accretion disk. A fairly common characteristic of these cases was the presence of an excess velocity in the collision (above that of a parabolic orbit), implying that the projectile involved in the collision existed in an Earth-crossing orbit of significant ellipticity. A majority of the mass of the prelunar accretion disk is contributed by the projectile.  相似文献   

14.
The basic geochemical model of the structure of the Moon proposed by Anderson, in which the Moon is formed by differentiation of the calcium, aluminium, titanium-rich inclusions in the Allende meteorite, is accepted, and the conditions for formation of this Moon within the solar nebula models of Cameron and Pine are discussed. The basic material condenses while iron remains in the gaseous phase, which places the formation of the Moon slightly inside the orbit of Mercury. Some condensed metallic iron is likely to enter the Moon in this position, and since the Moon is assembled at a very high temperature, it is likely to have been fully molten, so that the iron can remove the iridium from the silicate material and carry it down to form a small core. Interactions between the Moon and Mercury lead to the present rather eccentric Mercury orbit and to a much more eccentric orbit for the Moon, reaching past the orbit of the Earth, establishing conditions which are necessary for capture of the Moon by the Earth. In this orbit the Moon, no longer fully molten, will sweep up additional material containing iron oxide. This history accounts in principle for the two major ways in which the bulk composition of the Moon differs from that of the Allende inclusions.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

15.
We have estimated a preliminary error budget for the Italian Spring Accelerometer (ISA) that will be allocated onboard the Mercury Planetary Orbiter (MPO) of the European Space Agency (ESA) space mission to Mercury named BepiColombo. The role of the accelerometer is to remove from the list of unknowns the non-gravitational accelerations that perturb the gravitational trajectory followed by the MPO in the strong radiation environment that characterises the orbit of Mercury around the Sun. Such a role is of fundamental importance in the context of the very ambitious goals of the Radio Science Experiments (RSE) of the BepiColombo mission. We have subdivided the errors on the accelerometer measurements into two main families: (i) the pseudo-sinusoidal errors and (ii) the random errors. The former are characterised by a periodic behaviour with the frequency of the satellite mean anomaly and its higher order harmonic components, i.e., they are deterministic errors. The latter are characterised by an unknown frequency distribution and we assumed for them a noise-like spectrum, i.e., they are stochastic errors. Among the pseudo-sinusoidal errors, the main contribution is due to the effects of the gravity gradients and the inertial forces, while among the random-like errors the main disturbing effect is due to the MPO centre-of-mass displacements produced by the onboard High Gain Antenna (HGA) movements and by the fuel consumption and sloshing. Very subtle to be considered are also the random errors produced by the MPO attitude corrections necessary to guarantee the nadir pointing of the spacecraft. We have therefore formulated the ISA error budget and the requirements for the satellite in order to guarantee an orbit reconstruction for the MPO spacecraft with an along-track accuracy of about 1 m over the orbital period of the satellite around Mercury in such a way to satisfy the RSE requirements.  相似文献   

16.
A statistical study has been carried out of the availability of favourable flight opportunities to near-Earth asteroids with orbits similar to the Earth's. Emphasis is given to rendezvous-type mission profiles employing two-burn impulsive transfers. Velocity-optimized Lambert trajectories for a sample of 27 actual objects were calculated and compiled in a database. The velocity and flight time statistics of the resulting 1200 different solutions covering a period of 11 years have been investigated and discussed. Comparison with typical flight profiles to the Moon and near planets has revealed flight opportunities to 5 objects within a decade from the present requiring less ΔV than favourable flight opportunities to Mars or Venus. One of the objects involved, 1999 AO10, can be rendezvoused with using a total velocity increment that is smaller than that required to establish a lunar orbiter. The use of slow flybys for the most scientifically appealing targets is illustrated through an example trajectory involving the C-class binary object 1996 FG3. The challenges and opportunities for doing science in proximity to such small objects are also discussed.  相似文献   

17.
A preliminary analysis of the data from the UCLA magnetometer on board the Apollo 15 subsatellite indicates that remnant magnetization is a characteristic property of the Moon, that its distribution is such as to produce a rather complex pattern or fine structure, and that a detailed mapping of its distribution is feasible with the present experiment. The analysis also shows that lunar induction fields produced by transients in the interplanetary magnetic field are detectable at the satellite orbit so that in principle the magnetometer data can be used to determine the latitudinal and longitudinal as well as radial dependences of the distribution of electrical conductivity within the Moon. Finally, the analysis indicates that the plasma void or diamagnetic cavity which forms behind the Moon when the Moon is in the solar wind, is detectable at the satellite's orbit and that the flow of the solar wind near the limbs is usually rather strongly disturbed.Publication No. 981. Institute of Geophysics and Planetary Physics.  相似文献   

18.
Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.  相似文献   

19.
The problem of how to determine parameters of motion for an automated interplanetary probe (AIP) on a quasi-satellite orbit during flight to the small natural satellite of a planet is examined. The problem is solved by searching for an optimal state-space trajectory of automated interplanetary probe according to the least-squares criterion. The results of longitude and latitude measurements at several points are used as boundary conditions.  相似文献   

20.
The analysis of range or Doppler data between sites on the Earth and Moon requires an accurate computation of the lunar orbit and detailed models of the orientation of the Earth and Moon. Models constructed to understand range and range rate can lack detail, but if they include the largest lunar orbit variations, tracking stations on a rotating Earth, and lunar sites on a synchronously rotating Moon, then they will display the largest effects for orbit elements, Earth orientation, tracking station locations, and lunar site coordinates. The range and range rate are expanded into periodic series. To understand accurate solutions, the largest periodic terms that are sensitive to various solution parameters indicate the sensitivity of data to solution parameters and the time spans needed for their determination. Conclusions include: cylindrical coordinates work well for sites on the rapidly rotating Earth, but Cartesian coordinates are more natural for the synchronously rotating Moon since the series for the three coordinate projections are distinct. For range and range rate data, daily, semimonthly, monthly, and longer periods are present. For Doppler data, the daily periods may be stronger and more useful than the long periods, particularly for terms associated with the terrestrial tracking station. Doppler data do not determine the lander coordinate toward the Earth well. Observational strategies for range and Doppler data are not identical. For all data types, one wishes a variety of hour angles, lunar declinations, times of month, and longer periods. A long span of high-quality range data can improve the lunar orbit, orientation of the Earth’s equator, and physical librations. The locations of new lunar sites or new tracking stations can be determined from shorter spans of data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号