首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The fractionation of boron isotopes between synthetic boromuscovite and fluid was experimentally determined at 3.0 GPa/500 °C and 3.0 GPa/700 °C. For near-neutral fluids Δ11B(mica-fluid) = δ11B(mica) − δ11B(fluid) is − 10.9 ± 1.3‰ at 500 °C, and − 6.5 ± 0.4‰ at 700 °C. This supports earlier assumptions that the main fractionation effect is due to the change from trigonal coordination of boron in neutral fluids to tetrahedrally coordinated boron in micas, clays and melts. The T-dependence of this effect is approximated by the equation Δ11B(mica,clay,melt–neutral fluid) = − 10.69 · (1000/T [K]) + 3.88; R2 = 0.992, valid from 25 °C for fluid–clay up to about 1000 °C for fluid–silicate melt. Experiments at 0.4 GPa that used strongly basic fluids produced significantly lower fractionations with Δ11B(mica–fluid) of − 7.4 ± 1.0‰ at 400 °C, and − 4.8 ± 1.0‰ at 500 °C, showing the reduced fractionation effect when large amounts of boron in basic fluids are tetrahedrally coordinated. Field studies have shown that boron concentrations and 11B/10B-ratios in volcanic arcs systematically decrease across the arc with increasing distance from the trench, thus reflecting the thermal structure of the subducting slab. Our experiments show that the boron isotopic signature in volcanic arcs probably results from continuous dehydration of micas along a distinct PT range. Continuous slab dehydration and boron transport via fluid into the mantle wedge is responsible for the boron isotopic signature in volcanic arcs.  相似文献   

2.
In situ oxygen isotopic measurements of primary and secondary minerals in Type C CAIs from the Allende CV3 chondrite reveal that the pattern of relative enrichments and depletions of 16O in the primary minerals within each individual CAI are similar to the patterns observed in Types A and B CAIs from the same meteorite. Spinel is consistently the most 16O-rich (Δ17O = −25‰ to −15‰), followed by Al,Ti-dioside (Δ17O = −20‰ to −5‰) and anorthite (Δ17O = −15‰ to 0‰). Melilite is the most 16O-depleted primary mineral (Δ17O = −5‰ to −3‰). We conclude that the original melting event that formed Type C CAIs occurred in a 16O-rich (Δ17O  −20‰) nebular gas and they subsequently experienced oxygen isotopic exchange in a 16O-poor reservoir. At least three of these (ABC, TS26F1 and 93) experienced remelting at the time and place where chondrules were forming, trapping and partially assimilating 16O-poor chondrule fragments. The observation that the pyroxene is 16O-rich relative to the feldspar, even though the feldspar preceded it in the igneous crystallization sequence, disproves the class of CAI isotopic exchange models in which partial melting of a 16O-rich solid in a 16O-poor gas is followed by slow crystallization in that gas. For the typical (not associated with chondrule materials) Type C CAIs as well for as the Types A and B CAIs, the exchange that produced internal isotopic heterogeneity within each CAI must have occurred largely in the solid state. The secondary phases grossular, monticellite and forsterite commonly have similar oxygen isotopic compositions to the melilite and anorthite they replace, but in one case (CAI 160) grossular is 16O-enriched (Δ17O = −10‰ to −6‰) relative to melilite (Δ17O = −5‰ to −3‰), meaning that the melilite and anorthite must have exchanged its oxygen subsequent to secondary alteration. This isotopic exchange in melilite and anorthite likely occurred on the CV parent asteroid, possibly during fluid-assisted thermal metamorphism.  相似文献   

3.
Elucidation of diagenetic alterations in the Petrohan Terrigenous Group (fluvial; highstand systems tract HST) sandstones and Svidol Formation (tide-dominated deltaic and tidal flat, transgressive systems tract TST and highstand systems tract HST, respectively) sandstones and calcarenite, Lower Triassic, NW Bulgaria was constrained within a sequence stratigraphic framework. Eogenetic alterations in the fluvial HST sandstones include (i) formation of grain-coating infiltrated clays as a result of percolation of mud-rich surface waters into underlying coarse-grained and permeable channel-fills and crevasse splay sandstones; (ii) formation of pseudomatrix by mechanical compaction of mud intraclasts that were incorporated into the coarse-grained channel sandstones during their lateral avulsion; and (iii) cementation by calcite (δ18OVPDB = − 6.5‰ to − 3‰; δ13CVPDB = − 5.1‰ to + 0.6‰) and dolomite (δ18OVPDB = − 6.1‰ to − 0.3‰; δ13CVPDB = − 7.2‰ to − 5.8‰) in the crevasse splay and floodplain sediments. Mesogenetic alterations that are encountered in the fluvial HST sandstones include (i) illitization of grain-coating clays, mud intraclasts, and mica, possibly because of simultaneous albitization of feldspars; (ii) cementation by calcite (δ18OVPDB = − 14.5‰ to − 8.4‰; δ13CVPDB = − 7.7‰ to + 0.6‰) and dolomite (δ18OVPDB = − 15.8‰ to − 5‰; δ13CVPDB = − 7.9‰ to + 1.5‰); and (iii) limited amounts of quartz overgrowths in the channel sandstones owing to occurrence of thick grain-coating clays.

Conversely, the tide-dominated deltaic TST sandstones and the tidal flat HST calcarenite were pervasively cemented by calcite (δ18OVPDB = − 6.6‰ to − 3.1‰; δ13CVPDB = − 5.1‰ to + 0.6‰) and siderite (δ18OVPDB = − 7.2‰ to − 5.7‰; δ13CVPDB = + 0.3‰ to + 0.9‰) particularly below marine and maximum flooding surfaces, due to the presence of abundant bioclasts and prolonged residence time of the sediments under certain geochemical conditions along these surfaces. The remaining open pores were cemented during mesodiagenesis by calcite (δ18OVPDB = − 6.6‰ to − 3.1‰ and δ13CVPDB = − 5.1‰ to + 0.6‰) and dolomite (δ18OVPDB = − 6.6‰ to − 3.1‰ and δ13CVPDB = − 5.1‰ to + 0.6‰).

This study shows that constructing a conceptual model for the distribution of diagenetic alterations is possible by integration of diagenesis with sequence stratigraphy. The model shows that tide-dominated deltaic TST sandstones and tidal flat HST calcarenite were pervasively cemented by carbonates during near-surface eodiagenesis, owing to the presence of abundant bioclasts. Conversely, fluvial LST sandstones remained poorly cemented during near-surface eodiagenesis due to the lack of bioclasts, but were cemented by mesogenetic calcite, dolomite and quartz overgrowths instead.  相似文献   


4.
《Chemical Geology》2002,182(2-4):293-300
Our previously reported lithium isotope data for the least enriched members of the Central American Volcanic Arc were in error due to problems in ion extraction from high MgO rocks. This paper presents reanalyses of the entire suite of the CAVA lavas after a systematic investigation of the elution behavior of Li as a function of the rock composition. The most significant correction pertains to the mantle end members of the Nicaragua and Costa Rica series, which now display MORB-like δ6Li values (−4.5‰) and not much lighter (+1‰ to +3‰) as previously reported. Also revised is the composition of a peridotite from Zabargad Island (Red Sea), considered to represent undepleted upper mantle, whose corrected δ6Li also resembles MORB. These new data therefore remove the speculation that Earth's primitive mantle has extremely light Li isotopic composition and that the mantle beneath CAVA contains such isotopically light domains. The δ6Li range for the arc segment from Costa Rica to Guatemala has now been reset to −4.5‰ to −6.4‰. Despite the narrower range, Li isotopic values remain well correlated with other subduction-related properties, including LILE and fluid-mobile elements. Model calculations show that the isotopic compositions of the lavas are consistent with small additions of slab-derived fluids to the enriched and depleted domains of the subarc mantle.  相似文献   

5.
Analyses of mineral inclusions, carbon isotopes, nitrogen contents and nitrogen aggregation states in 29 diamonds from two Buffalo Hills kimberlites in northern Alberta, Canada were conducted. From 25 inclusion bearing diamonds, the following paragenetic abundances were found: peridotitic (48%), eclogitic (32%), eclogitic/websteritic (8%), websteritic (4%), ultradeep? (4%) and unknown (4%). Diamonds containing mineral inclusions of ferropericlase, and mixed eclogitic-asthenospheric-websteritic and eclogitic-websteritic mineral associations suggests the possibility of diamond growth over a range of depths and in a variety of mantle environments (lithosphere, asthenosphere and possibly lower mantle).

Eclogitic diamonds have a broad range of C-isotopic composition (δ13C=−21‰ to −5‰). Peridotitic, websteritic and ultradeep diamonds have typical mantle C-isotope values (δ13C=−4.9‰ av.), except for two 13C-depleted peridotitic (δ13C=−11.8‰, −14.6‰) and one 13C-depleted websteritic diamond (δ13C=−11.9‰). Infrared spectra from 29 diamonds identified two diamond groups: 75% are nitrogen-free (Type II) or have fully aggregated nitrogen defects (Type IaB) with platelet degradation and low to moderate nitrogen contents (av. 330 ppm-N); 25% have lower nitrogen aggregation states and higher nitrogen contents (30% IaB; <1600 ppm-N).

The combined evidence suggests two generations of diamond growth. Type II and Type IaB diamonds with ultradeep, peridotitic, eclogitic and websteritic inclusions crystallised from eclogitic and peridotitic rocks while moving in a dynamic environment from the asthenosphere and possibly the lower mantle to the base of the lithosphere. Mechanisms for diamond movement through the mantle could be by mantle convection, or an ascending plume. The interaction of partial melts with eclogitic and peridotitic lithologies may have produced the intermediate websteritic inclusion compositions, and can explain diamonds of mixed parageneses, and the overlap in C-isotope values between parageneses. Strong deformation and extremely high nitrogen aggregation states in some diamonds may indicate high mantle storage temperatures and strain in the diamond growth environment. A second diamond group, with Type IaA–IaB nitrogen aggregation and peridotitic inclusions, crystallised at the base of the cratonic lithosphere. All diamonds were subsequently sampled by kimberlites and transported to the Earth's surface.  相似文献   


6.
The Berriedale Limestone formed at about 80°S paleolatitude and contains many glacial dropstones. It formed during a period of major Gondwana deglaciation.

The Berriedale Limestone contains mostly bryozoans, brachiopods and bivalves, with some intraclasts and rare pellets. The faunal diversity is low and the fauna are similar to the modern cold-water foramol faunal assemblage. Micrite, microspar and spar occur as equant to well developed rhombs of calcite. The coarse spar cements are bored and are ruptured by dropstones, indicating submarine origin of low-Mg calcite at water-temperatures of around 3°C. The mixing zone cementation was preceded by erosion of early formed crystals. The eroded crystals occur as inclusions in mixing zone cements.

The fauna are characterized by heavy δ13C and light δ18O. The whole-rock field of δ18O-δ13C falls at the edge of “Normal Marine Limestone” and deviates to lighter δ18O values (down to −16.7‰ PDB). Lightest δ18O values ( −22‰ PDB) of fresh-water sparry calcite cement are similar to those in the Early Permian continental tillites, suggesting that the Permian sea was diluted by isotopically light melt waters. Micrite δ18O values (−9.2 to −12.6‰ PDB) are within the range of whole-rock values. The δ18O values of calcite in shales are lighter than limestone values.

The δ18O values of the fauna give an unrealistic range of sea-water temperatures because the fauna have equilibrated with variable amounts of melt waters. However, calculated original δ18O values of the fauna indicate temperatures < 4°C. The heaviest δ18O of fauna gives cold temperatures of 9°C (with δw −2.8‰) and −3°C (with δw −6‰). The lightest values of sparry calcite cements (−22‰ PDB) indicate that the limestone reacted with cold melt waters.

The δ18O of Permian sea is estimated to be about +1.2‰ and was diluted by melt waters as light as −27‰ SMOW.  相似文献   


7.
Hydrogen and oxygen isotope studies were carried out on high and ultrahigh pressure metamorphic rocks in the eastern Dabie Mountains, China. The δ18O values of eclogites cover a wide range of −4.2 to +8.8‰, but the δD values of micas from the eclogites fall within a narrow range of −87 to −71‰. Both equilibrium and disequilibrium oxygen isotope fractionations were observed between quartz and the other minerals, with reversed fractionations between omphacite and garnet in some eclogite samples. The δ18O values of −4 to −1‰ for some of the eclogites represent the oxygen isotope compositions of their protoliths which underwent meteoric water–rock interaction before the high to ultrahigh pressure metamorphism. Heterogeneous δ18O values for the eclogite protoliths implies not only the varying degrees of the water–rock interaction before the metamorphism at different localities, but also the channelized flow of fluids during progressive metamorphism due to rapid plate subduction. Retrograde metamorphism caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in the stable isotope compositions and could be derived from structural hydroxyls dissolved in nominally anhydrous minerals.  相似文献   

8.
There are two types of gneisses, biotite paragneiss and granitic orthogneiss, to be closely associated with UHP eclogite at Shuanghe in the Dabie terrane. Both concentration and isotope composition of bulk carbon in apatite and host gneisses were determined by the EA-MS online technique. Structural carbonate within the apatite was detected by the XRD and FTIR techniques. Significant 13C-depletion was observed in the apatite with δ13C values of −28.6‰ to −22.3‰ and the carbon concentrations of 0.70–4.98 wt.% CO2 despite a large variation in δ18O from −4.3‰ to +10.6‰ for these gneisses. There is significant heterogeneity in both δ13C and δ18O within the gneisses on the scale of several tens meters, pointing to the presence of secondary processes after the UHP metamorphism. Considerable amounts of carbonate carbon occur in some of the gneisses that were also depleted in 13C primarily, but subjected to overprint of 13C-rich CO2-bearing fluid after the UHP metamorphism. The 13C-depleted carbon in the gneisses is interpreted to be inherited from their precursors that suffered meteoric–hydrothermal alteration before plate subduction. Both low δ13C values and structural carbonate in the apatite suggest the presence of 13C-poor CO2 in the UHP metamorphic fluid. The 13C-poor CO2 is undoubtedly derived from oxidation of organic matter in the subsurface fluid during the prograde UHP metamorphism.

Zircons from two samples of the granitic orthogneiss exhibit low δ18O values of −4.1‰ to −1.1‰, demonstrating that its protolith was significantly depleted in 18O prior to magma crystallization. U–Pb discordia datings for the 18O-depleted zircons yield Neoproterozoic ages of 724–768 Ma for the protolith of the granitic orthogneiss, consistent with protolith ages of most eclogites and orthogneisses from the other regions in the Dabie–Sulu orogen. Therefore, the meteoric–hydrothermal alteration is directly dated to occur at mid-Neoproterozoic, and may be correlated with the Rodinia supercontinental breakup and the snowball Earth event. It is thus deduced that the igneous protolith of the granitic orthogneiss and some eclogites would intrude into the older sequences composing the sedimentary protoliths of the biotite paragneiss and some eclogites along the northern margin of the Yangtze plate at mid-Neoproterozoic, and drove local meteoric–hydrothermal circulation systems in which both 13C- and 18O-depleted fluid interacted with the protoliths of these UHP rocks now exposed in the Dabie terrane.  相似文献   


9.
Hydrothermal gases offshore Milos Island, Greece   总被引:3,自引:0,他引:3  
Hydrothermal fluids emerge from the seafloor of Paleohori Bay on Milos. The gases in these fluids contain mostly CO2 but CH4 concentrations up to 2% are present. The stable carbon isotopic composition of the CO2 (near 0%) indicates an inorganic carbon source (dissociation of underlying marine carbonates). The carbon and hydrogen isotopes of most CH4 samples are enriched in the heavy species (δ13C = −9.4 to −17.8‰; δD = −102 to −189‰) which is believed to be characteristic for an abiogenic production of CH4 by CO2-reduction (Fischer-Tropsch reactions). Depletions in the deuterium content of three CH4 samples (to −377%) are probably caused by unknown subsurface rock alteration processes. Secondary hydrogen isotope exchange processes between methane, hydrogen and water are most likely responsible for calculated unrealistic methane formation temperatures.

We show that excess helium, slightly enriched in 3He, is present in the hydrothermal fluids emerging the seafloor of Paleohori Bay. When the isotopic ratio of the excess component is calculated a 3He/4Heexcess of 3.6 · 10−6 is obtained: This indicates that the excess component consists of about one third of mantle helium and two thirds of radiogenic helium. We infer that the mantle-derived component has been strongly diluted by radiogenic helium during the ascent of the fluids to the surface.  相似文献   


10.
The Quaternary Acatlán Volcanic Field (AVF) is located at the western edge of the Trans-Mexican Volcanic Belt (TMVB). This region is related to the subduction of the Pacific Cocos and Rivera plates beneath the North American plate since the late Miocene. AVF rocks are products of Pleistocene volcanic activity and include lava flows, domes, erupted basaltic andesite, trachyandesite, trachydacite, and rhyolite of calc–alkaline affinity. Most rocks show depletion in high field-strength elements and enrichment in large ion lithophile elements and light rare earth elements as is typical for magmas in subduction-related volcanic arcs. 87Sr/86Sr values range from 0.70361 to 0.70412, while Nd values vary from +2.3 to +5.2. Sr–Nd isotopic data plot along the mantle array. On the other hand, lead isotope compositions (206Pb/204Pb=18.62–18.75, 207Pb/204Pb=15.57–15.64, and 208Pb/204Pb=38.37–38.67) give evidence for combined influences of the upper mantle, fluxes derived from subducted sediments, and the upper continental crust involved in magma genesis at AVF. Additionally δ18O whole rock analyses range from +6.35‰ in black pumice to +10.9‰ in white pumice of the Acatlán Ignimbrite. A fairly good correlation is displayed between Sr as well as O isotopes and SiO2 emphasizing the effects of crustal contamination. Compositional and isotopic data suggest that the different AVF series derived from distinct parental magmas, which were generated by partial melting of a heterogeneous mantle source.  相似文献   

11.
P. Deines  J.W. Harris 《Lithos》2004,77(1-4):125-142
Carbon isotope measurements on diamonds from the Letlhakane kimberlite, and the analyses of their inclusions, permit the examination of km-scale mantle-composition variations by comparing the results with those for the nearby Orapa kimberlite. Diamonds from Letlhakane have a wide range in carbon isotopic composition (−3‰ to −21‰); however, the relative abundance of diamonds depleted in 13C is significantly lower than in the Orapa kimberlite. Most of the 13C-depleted diamonds belong to the eclogictic or websteritic paragenesis. The relative abundance of inclusions in diamonds and their composition indicate that there are significant differences in petrology in the mantle below the two locations. At Letlhakane, peridotitic compositions are more prevalent than at Orapa and the protolith of P-Type inclusions in diamonds may have experienced a higher degree of partial melting at Letlhakane compared to Orapa. P/T estimates for both W- and E-Type diamonds indicate that a region of 13C-depletion may exist beneath the two kimberlites. The relationships between carbon isotopic composition of the host diamond and the Al2O3/Cr2O3 ratios of their websteritic and eclogitic garnet inclusions indicate that the low δ13C regions may represent a primary mantle feature, unrelated to a crustal component.  相似文献   

12.
We investigated the isotope composition (O, C, Sr, Nd, Pb) in mineral separates of the two Precambrian carbonatite complexes Tiksheozero (1.98 Ga) and Siilinjärvi (2.61 Ga) from the Karelian–Kola region in order to obtain information on Precambrian mantle heterogeneity. All isotope systems yield a large range of variations. The combination of cathodoluminescence imaging with stable and radiogenic isotopes on the same samples and mineral separates indicates various processes that caused shifts in isotope systems. Primary isotope signatures are preserved in most calcites (O, C, Sr, Pb), apatites (O, Sr, Nd), amphiboles (O), magnetites (O), and whole rocks (Sr, Nd).

The primary igneous C and O isotope composition is different for both complexes (Tiksheozero: δ13C = − 5.0‰, δ18O = 6.9‰; Siilinjärvi: δ13C = − 3.7‰, δ18O = 7.4‰) but very uniform and requires homogenization of both carbon and oxygen in the carbonatite melt. The lowest Sr isotope ratios of our carbonates and apatites from the Archaean Siilinjärvi (0.70137) and the Palaeoproterozoic Tiksheozero (0.70228) complexes are in the range of bulk silicate earth (BSE). Positive εNd values of the two carbonatites point to very early Archaean enrichment of Sm/Nd in the Fennoscandian mantle. No HIMU components could be detected in the two complexes, whereas Tiksheozero carbonatites give the first indication of Palaeoproterozoic U depletion for Fennoscandia.

Sub-solidus exchange processes with water during emplacement and cooling of carbonatites caused an increase in the oxygen isotope composition of some carbonates and probably also an increase of their 87Sr/86Sr ratio. A larger increase of initial Sr isotope ratios was found in carbonatized silicic rocks compared to carbonatite bodies. The Svecofennian metamorphic overprint (1.9–1.7 Ga) caused reset of Rb/Sr (mainly mica) and Pb/Pb (mainly apatite) isochron systems.  相似文献   


13.
Soils contain a diverse and complex set of chemicals and minerals. Being an ‘open system’, both in the chemical and nuclear sense, soils have defied quantitative nuclear dating. However, based on the published studies of the cosmogenic atmospheric 10Be in soils, its relatively long half-life (1.5 Ma), and the fact that 10Be gets quickly incorporated in most soil minerals, this radionuclide appears to be potentially the most useful for soil dating. We therefore studied the natural variations in the specific activities of 10Be with respect to the isotope 9Be in mineral phases in eight profiles of diverse soils from temperate to tropical climatic regimes and evaluated the implications of the data for determining the time of formation of soil minerals, following an earlier suggestion [Lal et al., 1991. Development of cosmogenic nuclear methods for the study of soil erosion and formation rates. Current Sci. 61, 636–639.]. We find that the 10Be/9Be ratios in both bulk soils and in the authigenic mineral phases are confined within a narrower range than in 10Be concentrations. Also, the highest 10Be/9Be ratios in authigenic minerals are observed at the soil-rock interface as predicted by the model. We present model 10Be/9Be ages of the B-horizon and the corresponding soil formation rates for several soil profiles. The present study demonstrates that the 10Be/9Be ratios in the authigenic phases, e.g. clay and Fe-hydroxides, can indeed be used for obtaining useful model ages for soils younger than 10–15 Ma. However, the present work has to be pushed considerably further, to take into account more realistic age models in which, for instance, downward transport 10Be and clays, and in-situ dissolution of clay minerals at depths, altering the 10Be/9Be ratios of the acidic solutions, are included. We show that in the case of younger soils (< 1 Ma) studied here, their 10Be inventories and 10Be/9Be ratios have been significantly disturbed possibly by mixing with transported soils.  相似文献   

14.
Cementation of bryozoan-echinoid-benthic foraminiferal temperate shelf carbonates of the Oligocene Te Kuiti Group, North Island, New Zealand, occurred mainly during subsurface burial. The calcite cements in the limestones are dominated by equant and syntaxial rim spar which typically becomes ferroan (given an iron supply) and, compared to the skeletal material with normal marine δ18O values from +2 to −1‰, more depleted in 18O with depth of burial, the δ18O composition of bulk cement samples ranging from −1 to −7‰. These trends reflect the establishment in pore waters during sediment burial of reducing conditions and gradually increasing temperatures (20–50°C), respectively. The δ13C values (0 to +3‰) of the cements remain the same as the host marine shells, suggesting the source of carbon in the cements was simply redistributed marine carbonate derived from shell dissolution.

Two gradational burial diagenetic environments influenced by marine-derived porewaters are arbitrarily distinguished: shallow burial phase and moderate burial phase. During the shallow burial phase, down to 500–600 m sub-bottom depth, the carbonates lost at least 25% of their original porosity by mechanical compaction and were selectively cemented by non-ferroan or usually ferroan, variably luminescent, slightly 18O-depleted sparry calcite cement (δ18O −2 to −4‰), mainly as syntaxial rims about echinoid grains. These shallow-burial cements form less than about 10% of total cement in the majority of the limestones and their source was probably mainly mild intergranular dissolution of calcitic skeletal fragments accompanying the onset of chemical compaction. During the moderate burial phase, between about 600 and 1100 m sub-bottom depth, porosity loss continued (typically to about 70% of its original value) as a result of pressure-solution of calcitic bioclasts associated with more advanced stages of chemical compaction. This involved development of a wide variety of non-sutured and microstylolitic solution seams, including both single and composite, wispy or continuous, bedding-parallel types and non-parallel reticulate forms. The released carbonate was precipitated as ferroan (or non-ferroan where iron supply was negligible), dull luminescent, strongly 18O-depleted (δ18O −4 to −7‰), mainly equant calcite spar cement, occluding available pore space in the limestones.  相似文献   


15.
S. Jung  E. Hoffer  S. Hoernes 《Lithos》2007,96(3-4):415-435
Major element, trace element and Nd–Sr–Pb–O isotope data for a suite of Neo-Proterozic, pre-orogenic, rift-related syenites from the Northern Damara orogen (Namibia) constrain their sources and petrogenesis. New U–Pb ages obtained on euhdreal titanite of inferred magmatic origin constrain the age of intrusion of the Lofdal and Oas syenites to ca. 750 Ma compatible with previous high-precision zircon analyses from the Oas complex. Major rock types from Lofdal and Oas are mildly sodic nepheline-normative and quartz-normative syenites and were primarily generated by fractional crystallization from a mantle-derived alkaline magma. Primitive samples from Lofdal and Oas show depletion of Rb, K and Th relative to Ba and Nb together with variable negative anomalies of P and Ti on a primitive mantle-normalized diagram. Evolved samples from Oas develop significant negative Ba, Sr, P and Ti anomalies and positive U and Th anomalies mainly as a function of crystal fractionation processes. The lack of a pronounced negative Nb anomaly in samples from Lofdal suggests that involvement of a crustal component is negligible. For the nepheline-normative samples from Lofdal, the unradiogenic Sr and radiogenic Nd isotope composition and low δ18O values suggest derivation of these samples from a moderately depleted lithospheric upper mantle with crustal-like U/Pb ratios (87Sr/86Sr: 0.7031–0.7035, ε Nd: ca. + 1, δ18O: 7‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.58–15.60). Primitive samples of the Oas quartz-normative syenites have identical isotope characteristics (87Sr/86Sr: 0.7034, ε Nd: ca. + 1, δ18O: 6.5‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.59) whereas more differentiated samples have higher 87Sr/86Sr ratios (0.709–0.714), slightly higher δ18O values (7.0–7.1‰), less radiogenic ε Nd values (− 1.1 to − 1.4) and more radiogenic 206Pb/204Pb ratios up to 18.27. These features together with model calculations using Sr–Nd–Pb isotopes suggest modification of a primary syenite magma by combined AFC processes involving ancient continental crust. In this case, high Nb abundances of the parental syenite liquid prevent the development of significant negative Nb anomalies that may be expected due to interaction with continental crust.  相似文献   

16.
U-type paragenesis inclusions predominate (94.7%) among the crystalline inclusion suite of 115 diamonds (−4+2 mm) obtained from the recently discovered Snap Lake/King Lake (SKL) kimberlite dyke system, Southern Slave, Canada. The most common inclusions are olivine (90) and enstatite (22). Sulfide, Cr-pyrope, chromite and Cr-diopside inclusion are less abundant (15, 10, 5 and 1, respectively). Results of the inclusion composition study demonstrate the following. (a) The relatively enriched character of the mantle parent rocks of the U-type diamonds. The average Mg# of olivine inclusions is 92.1, and of enstatite inclusions average 93.3. CaO content in Cr-pyrope inclusions is relatively high (3.73–5.75 wt.%). (b) Four of ten U-type Cr-rich pyrope inclusions contain a majoritic component up to 16.8 mol.% which requires pressures of 110 kbar. Carbon isotopes compositions for 34 diamonds with U-type inclusions have a δ13C range from −3.2‰ to −9‰ with a strong peak around −3.5‰. This is much heavier than the ratios of U-type diamonds from Siberia and South Africa (4.5‰). Diamonds with olivine inclusions can be divided into two groups based on their δ13C values as well as the Mg# and Ni/Fe ratio in the olivines. Most show a narrow range of δ13C values from −3.2‰ to −4.8‰ (average −3.72‰) and have olivine inclusions with Mg# less than 92.3 and relatively high Fe/Ni ratios. A second group is characterized by a much wider variation of C isotope composition (δ13C varies from −3.8‰ to −9.0‰, average −5.97‰), and the olivine inclusions having a higher Mg# (up to 93.6) and relatively low Fe/Ni ratios. This difference in the C isotope composition may have several explanations: (a) peculiarities of asthenosphere degassing coupled with an abnormal thickness of lithosphere; (b) the abnormal thickness and enriched character of lithospheric mantle; (c) involvement of subducted C of crustal origin in the processes of the diamond formation. The presence of subcalcic Cr-rich majorite (up to 17 mol.%) pyropes of low-Ca harzburgite paragenesis among the crystalline inclusion suite of SKL diamonds is strong evidence for the existence of diamondiferous depleted peridotite in lithospheric mantle at depth near 300 km beneath Southern Slave area and is postulated to be one of the main reasons for the much heavier C isotope composition of SKL U-type diamonds in comparison with those from Siberian and South African kimberlites.  相似文献   

17.
Three types of chemically and isotopically distinct pore fluids from the southern San Joaquin basin previously recognized by J.B. Fisher and J.R. Boles also have distinctive 87Sr/86Sr ratios and Sr concentrations. Meteoric fluids have stable isotopic compositions which lie on or near the meteoric water line and low chlorinities. Sr concentrations are between 0.01 and 2.6 mg l−1, and 87Sr/86Sr ratios range from 0.7061 to 0.7078. Diagenetically modified connate marine fluids have δD-and δ18O-values more positive than −35‰ and 0‰, respectively, and have chlorinities generally comparable to seawater. Sr concentration are much higher than the meteoric group (16–198 mg l−1), although the 87Sr/86Sr ratios (0.7070–0.7081) are not distinctive. Mixed meteoric-modified connate fluids have δD, δ18O and chlorinity intermediate between the meteoric and modified connate groups. Sr concentrations are also intermediate, between 16 and 22 mg l−1, but 87Sr/86Sr ratios (0.7080–0.7087) are generally more radiogenic than either the meteoric or modified connate groups.

All of the fluids have 87Sr/86Sr ratios comparable to or lower than Tertiary seawater. Alteration of detrital plagioclase is the probable origin of the low isotopic ratios. Mass-balance calculations based on the Sr data suggest that essentially no transport of Sr occurred during diagenesis of sandstones containing modified connate pore fluids, while large amounts of Sr have been transported out of meteoric reservoirs by fluid flow. The chemically anomalous mixed meteoric-modified connate fluids contain the most radiogenic strontium in the basin. These fluids are spatially associated with major faults, and may represent clay mineral dehydration waters which have been transported upward from greater depth.

These results suggest that the three types of fluids identified by Fisher and Boles represent three distinct mass transport regimes: a largely stagnant deep-basin system containing modified connate pore fluids; an actively recharging meteoric system along the basin flanks; and a third system restricted to the southern basin which may be characterized by largescale cross-formational fluid flow, rather than dilution by meteoric waters.  相似文献   


18.
The three layered intrusions studied in the Laouni area have been emplaced within syn-kinematic Pan-African granites and older metamorphic rocks. They have crystallized at the end of the regional high-temperature metamorphism, but are free from metamorphic recrystallization, revealing a post-collisional character. The cumulate piles can be interpreted in terms of two magmatic liquid lines of descent: one is tholeiitic and marked by plagioclase–olivine–clinopyroxene cumulates (troctolites or olivine bearing gabbros), while the other is calc-alkaline and produced orthopyroxene–plagioclase rich cumulates (norites). One intrusion (WL (West Laouni)-troctolitic massif), shows a Lower Banded Zone where olivine-chromite orthocumulates are interlayered with orthopyroxene-rich and olivine–plagioclase–clinopyroxene cumulates, whereas the Upper Massive Zone consists mainly of troctolitic and gabbroic cumulates. The other two massifs are more homogeneous: the WL-noritic massif has a calc-alkaline differentiation trend whereas the EL (East Laouni)–troctolitic massif has a tholeiitic one. Separated pyroxene and plagioclase display similar incompatible trace element patterns, regardless of the cumulate type. Calculated liquids in equilibrium with the two pyroxenes for both noritic and troctolitic cumulates are characterized by negative Nb, Ta, Zr and Hf anomalies and light REE enrichment inherited from the parental magmas. Troctolitic cumulates have mantle-derived δ18O (+5 to +6‰), initial 87Sr/86Sr (Sri=0.7030 to 0.7054), Nd (+5 to −1) values whereas noritic cumulates are variably enriched in δ18O (+7 to +9‰), show negative Nd (−7 to −12) and slightly higher Sri (0.7040–0.7065). Based on field, isotopic ratios are interpreted as resulting from a depleted mantle source (Sri=0.7030; Nd=+5.1; δ18O=+5.1‰) having experience short term incompatible element enrichment and variable crustal contamination. The mantle magma was slightly contaminated by an Archaean lower crust in troctolitic cumulates, more strongly and with an additional contamination by an Eburnian upper crust in noritic cumulates. Lower crust input is recorded mainly by Sr and Nd isotopes and upper crust input by O isotopes. This is probably due to the different water/rock ratios of these two crust types. Assimilation of low amounts (<10%) of quartz-bearing felsic rocks, coming from both lower and upper crust, can explain the rise of SiO2 activity, the enrichment in 18O and 87Sr and the lowering of Nd in the noritic cumulates compared to troctolitic ones. The geodynamic model proposed to account for the Laouni tholeiitic magmatism involves a late Pan-African asthenospheric rise due to a rapid lithospheric thinning associated with functioning of shear zones, which allowed tholeiitic magmas to reach high crustal levels while experiencing decreasing degrees of crustal contamination with time.  相似文献   

19.
David R. Nelson 《Lithos》1989,22(4):265-274
Kimberlites which intruded the Sisimiut (formerly Holsteinsborg) region of central west Greenland during the Early Palaeozoic have initial 87Sr/86Sr between 0.7028 and 0.7033 and εNd between + 1.3 and + 3.9. Mid-Proterozoic potassic lamproites from the same region have initial 87Sr/86Sr between 0.7045 and 0.7060, εNd between −13 and −10 and unradiogenic initial Pb isotopic compositions. The isotopic data favour an asthenospheric mantle source for the kimberlite magmas, in common with “basaltic” kimberlites from other localities, whereas the lamproite magma sources evolved in isolation from the convecting mantle for > 1000 Ma, probably within the subcontinental lithospheric mantle of the Greenland craton, prior to emplacement of the lamproites.  相似文献   

20.
The Neoproterozoic carbonate sequence on the southeastern border of the Amazon Craton is divided into three lithostratigraphic units: a basal cap dolomite, an intermediate limestone, limestone-mudstone unit, and an upper dolarenite-dolorudite unit. Sections of the cap-carbonate were measured from the inner shelf to the outer shelf. Carbon isotope ratios (relative to PDB) vary between − 10.5 and − 1.7‰ in cap dolomite, and between − 5.4 and + 0.1‰ in laminated limestone and mud-limestone. Limestones and mud-limestones exhibit 87Sr/86Sr ratios ranging from 0.70740 to 0.70780. A comparative isotope stratigraphy between the inner-shelf and the middle-shelf basin shows differences in carbon isotope ratios: The cap dolomite and limestones have lower δ13C ratios on the border of the basin (inner shelf) than in the middle shelf of the basin. These lower values can be related to shallower environmental conditions and to a stronger influence of the continental border. The 87Sr/86Sr ratios are the same in both areas, and are consistent with seawater composition at around 600 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号