首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We determine the velocities in an upper crustal model, composed of three homogeneous layers, for one subregion of the western part of the Gulf of Corinth, NE of the town of Aigion, Greece. We have used local events that occurred there in the year 2001 and were recorded by the Corinth Rift Laboratory Network. Weighted P and S arrival time residuals are minimized using the Neighbourhood Algorithm of Sambridge (1999), combined with the grid search for source locations. The resolution of the inversion is tested by delete-one jackknifing. The model obtained is compared with some other models derived or applied to the subregion. A fast velocity increase between depths of 5 and 7 km is confirmed as the major structural element.  相似文献   

2.
The western part of the Corinth Gulf attracts attention due to its seismically active fault system and considerable seismic hazard. A moderate size earthquake occurred close to the town of Efpalio on January 18, 2010, followed by a sequence of smaller earthquakes. In the present paper we use this sequence to derive a local structural model for the region in the vicinity of Efpalio. The model is based on the minimization of traveltime residuals. In particular, we used arrival times from 51 selected events recorded on January 19 and 20 by at least 5 stations at epicentral distances less than about 25 km. A variant of the method of conjugate gradients has been used for this purpose. In comparison with several previous models, the new model is characterized by higher velocities to a depth of about 8 km. The velocity ratio in the model is vP / vS = 1.83. The hypocentres of the selected earthquakes lay at depths between about 5 and 9 km, but their distribution is rather irregular.  相似文献   

3.
On 18 January 2010, 15:56 UTC, a M w ?=?5.1 (National Observatory of Athens; NOA) earthquake occurred near the town of Efpalion (western Gulf of Corinth, Greece), about 10 km to the east of Nafpaktos, along the north coast of the Gulf. Another strong event occurred on 22 January 2010, 00:46 UTC with M w ?=?5.1 (NOA) approximately 3 km to the NE of the first event. We processed the seismological and geodetic data to examine fault plane geometry, dip direction, and earthquake interactions at the western tip of the Corinth rift. Our data include relocated epicenters of 1,760 events for the period January–June 2010 and daily global positioning system observations from the Efpalio station for the period 1 December 2009–1 March 2010. We suggest that the first event ruptured a blind, north-dipping fault, accommodating north–south extension of the Western Gulf of Corinth. The dip direction of the second event is rather unclear, although a south dip plane is weakly imaged in the post-22 January 2010 aftershock distribution. A Coulomb stress model based on homogeneous slip distribution of the first event showed static stress triggering of the second event of the order of 22–34 KPa that was transferred along the plane of failure. We also point out the existence of north dipping, high-angle faults at 10–15 km depths, which were reactivated because of Coulomb stress transfer, to the west and south of Efpalion. The January 2010 earthquakes ended a 15-year-old quiescence in that area of the Gulf. The crustal volume near Efpalion was also characterized by b values in the range 0.6–0.8 (1970–2010 period).  相似文献   

4.
The 2013 Aigion earthquake swarm that took place in the west part of Corinth Gulf is investigated for revealing faulting and seismicity properties of the activated area. The activity started on May 21 and was appreciably intense in the next 3 months. The recordings of the Hellenic Unified Seismological Network (HUSN), which is adequately dense around the affected area, were used to accurately locate 1501 events. The double difference (hypoDD) technique was employed for the manually picked P and S phases along with differential times derived from waveform cross-correlation for improving location accuracy. The activated area with dimensions 6?×?2 km is located approximately 5 km SE of Aigion. Focal mechanisms of 77 events with M?≥?2.0 were determined from P wave first motions and used for the geometry identification of the ruptured segments. Spatio-temporal distribution of earthquakes revealed an eastward and westward hypocentral migration from the starting point suggesting the division of the seismic swarm into four major clusters. The hypocentral migration was corroborated by the Coulomb stress change calculation, indicating that four fault segments involved in the rupture process successively failed by stress change encouragement. Examination of fluid flow brought out that it cannot be unambiguously considered as the driving mechanism for the successive failures.  相似文献   

5.
An extensive campaign—including detailed geologic and geotechnical surveys both existing and news as well as noise measurements—was conducted along a cross-section in order to define both geometry and soil properties (mainly the shear wave velocity) of the main formations in Aigion city. Aigion city is located in the Gulf of Corinth, Greece, a highly seismic region of the Aegean Sea. The main objective of the accurate 2D soil model is its use in site response modeling and in the interpretation of observations from a vertical down-hole accelerograph array. This model revealed a complex geologic structure with a multi-faulted shear zone related to the Aigion fault. The defined subsurface structure offered the possibility for its correlation with estimated site effects, in terms of spectral ratios. Two different data sets, earthquakes recorded at down-hole accelerograph network and noise measurements at 17 sites, were used. To translate the empirical transfer functions with the geologic structure, the 1D estimates were also computed. All these results are consistent, indicating a satisfactory correlation between the soil model and preliminary site response.  相似文献   

6.
In this paper we investigate finite-frequency effects in crustal tomography. We developed an inversion procedure based on an exact numerical computation of the sensitivity kernels. In this approach we compute the 3D travel-time sensitivity kernels by using (1) graph theory and an additional bending to estimate accurately both rays and travel-times between source/receiver and diffraction points and (2) paraxial ray theory to estimate the amplitude along theses rays. We invert both the velocity and the hypocentre parameters, using these so-called banana-doughnut kernels and the LSQR iterative solver. We compare the ray-theoretical and the finite-frequency tomography to image the intermediate structures beneath the Gulf of Corinth (Greece), which has long been recognized as the most active continental rifting zone in the Mediterranean region. Our dataset consists of 451 local events with 9233 P- first-arrival times recorded in the western part of the Gulf (Aigion area) in the framework of the 3F-Corinth European project. Previous tomographic images showed a complex velocity crustal model and a low-dip surface that may accommodate the deformation. Accurate velocity models will help to better constrain the rifting process, which is still a subject of debate. The main results of this study show that finite-frequency tomography improves crustal tomographic images by providing better resolved images of the 3D complicated velocity structure. Because the kernels spread the information over a volume, finite-frequency tomography results in a sharpening of layer boundaries as we observed for the shallower part of the crust (down to 5 km depth) beneath the Gulf of Corinth.  相似文献   

7.
Horizontal-to-vertical spectral ratios (HVSR) of ambient vibrations measured in the ancient town of Ston (Croatia) on 99 locations, are shown to be well matched to the theoretical ones computed for body-waves as well as for the surface waves. This match is poorer for sites on the slopes of nearby hills. The ratios of measured peak horizontal ground acceleration during the damaging earthquake in 1996 (M L = 6.0) and the ones obtained using empirical attenuation laws is approximately equal to the mapped value of the dynamic amplification factor determined on the basis of observed HVSR in the vicinity of the accelerometric station. The HVSR of the accelerogram is very similar to the HVSR of the ambient noise. The damage to the building stock in the old town centre caused by the earthquake series of 1996 is closely related to the estimated soil amplification and its fundamental frequency. More measurements in buildings are needed to arrive at confident conclusions about possible soil-structure resonance.  相似文献   

8.
We present the results of a multidisciplinary study of the Ms = 6.2, 1995, June 15, Aigion earthquake (Gulf of Corinth, Greece). In order to constrain the rupture geometry, we used all available data from seismology (local, regional and teleseismic records of the mainshock and of aftershocks), geodesy (GPS and SAR interferometry), and tectonics. Part of these data were obtained during a postseismic field study consisting of the surveying of 24 GPS points, the temporary installation of 20 digital seismometers, and a detailed field investigation for surface fault break. The Aigion fault was the only fault onland which showed detectable breaks (< 4 cm). We relocated the mainshock hypocenter at 10 km in depth, 38 ° 21.7 N, 22 ° 12.0 E, about 15 km NNE to the damaged city of Aigion. The modeling of teleseismic P and SH waves provides a seismic moment Mo = 3.4 1018 N.m, a well constrained focal mechanism (strike 277 °, dip 33 °, rake – 77°), at a centroidal depth of 7.2 km, consistent with the NEIC and the revised Harvard determinations. It thus involved almost pure normal faulting in agreement with the tectonics of the Gulf. The horizontal GPS displacements corrected for the opening of the gulf (1.5 cm/year) show a well-resolved 7 cm northward motion above the hypocenter, which eliminates the possibility of a steep, south-dipping fault plane. Fitting the S-wave polarization at SERG, 10 km from the epicenter, with a 33° northward dipping plane implies a hypocentral depth greater than 10 km. The north dipping fault plane provides a poor fit to the GPS data at the southern points when a homogeneous elastic half-space is considered: the best fit geodetic model is obtained for a fault shallower by 2 km, assuming the same dip. We show with a two-dimensional model that this depth difference is probably due to the distorting effect of the shallow, low-rigidity sediments of the gulf and of its edges. The best-fit fault model, with dimensions 9 km E–W and 15 km along dip, and a 0.87 m uniform slip, fits InSAR data covering the time of the earthquake. The fault is located about 10 km east-northeast to the Aigion fault, whose surface breaks thus appears as secondary features. The rupture lasted 4 to 5 s, propagating southward and upward on a fault probably outcropping offshore, near the southern edge of the gulf. In the shallowest 4 km, the slip – if any – has not exceeded about 30 cm. This geometry implies a large directivity effect in Aigion, in agreement with the accelerogram aig which shows a short duration (2 s) and a large amplitude (0.5 g) of the direct S acceleration. This unusual low-angle normal faulting may have been favoured by a low-friction, high pore pressure fault zone, or by a rotation of the stress directions due to the possible dip towards the south of the brittle-ductile transition zone. This fault cannot be responsible for the long term topography of the rift, which is controlled by larger normal faults with larger dip angles, implying either a seldom, or a more recently started activity of such low angle faults in the central part of the rift.  相似文献   

9.
On June 15, 1995 at 00:15 GMT a devastating earthquake (6.2M L ) occurred in the western end of the Gulf of Corinth. This was followed 15 min later by the largest aftershock (5.4M L ). The main event was located by the University of Patras Seismological Network (PATNET) at the northern side of the Gulf of Corinth graben. The second event (5.4M L ) was located also by PATNET near the city of Egion, on a fault parallel to the Eliki major fault that defines the south bound of the Gulf of Corinth graben. A seismogenic volume that spans the villages of Akrata (SE) and Rodini (NW) and extends to Eratini (NE) was defined by the aftershock sequence, which includes 858 aftershocks of magnitude greater than 2M L that occurred the first seventeen days. The distribution of hypocentres in cross section does not immediately suggest a planar distribution but rather defines a volume about 15 km (depth) by 35 km (NW-SE) and by 20 km (NE-SW).  相似文献   

10.
The western part of the Corinth Gulf attracts attention because of its seismically active complex fault system and considerable seismic hazard. Close to the city of Aegion, damaged by the M L 6.2 earthquake of 1995, a sequence of small earthquakes occurred from February to May 2001. The sequence, comprising 171 events of M L 1.8 to 4.7, was recorded by a short-period network of the University of Patras, PATNET. As most stations have single component-recording, the S-wave arrival time readings were scarce. A sub-set of 139 events was recorded by at least 5 stations, and in this study we limit ourselves just to that sub-set. A preliminary location is performed by a standard linearized kinematic approach, with several starting depths and crustal models. Then the mainshock is re-located, and finally it is used as a master event to locate the remaining events. The mainshock relocation is performed by a systematic 3D grid search, and the trade-off between depth and origin time is eliminated by a special procedure, the so-called station difference (SD) method. In the SD method, instead of inverting arrival times directly, their intra-station differences are employed. The station corrections, determined from the master event, are also used. As a result, the sub-set is imaged as a relatively tight cluster, occupying space of about 5 by 5 km horizontally and 10 km vertically, with the mainshock inside (at a depth of 7 km). The results should be interpreted with caution, mainly as regards the absolute depth position of the cluster. A more accurate location would require a local network with both P and S readings.  相似文献   

11.
We present the results of a tomographic study performed in the framework of the 3F-Corinth project. The aim of this work is to better understand the rifting process by imaging the crustal structure of the western Gulf of Corinth. Forty-nine stations were deployed for a period of six months, allowing us to monitor the microseismicity. Delayed P and S first-arrival times have been simultaneously inverted for both hypocenter locations and 3-D velocity distributions. We use an improved linearized tomography method based on an accurate finite-difference travel-time computation to invert the data set. The obtained Vp and Vs models confirm the presence of a two-layer vertical structure characterized by a sharp velocity gradient lying at 5–7 km depth, which may be interpreted as a lithological contrast. The shallower part of the crust (down to 5 km depth) is controlled by the N-S extension and lacks seismicity. The deeper part (7–13 km depth) matches the seismogenic zone and is characterized by faster and more heterogeneous anomalies. In this zone, the background seismicity reveals a low-angle active surface dipping about 20° toward the north and striking WNW-ESE. The position of this active structure is consistent with both high Vp/Vs and low Vp.Vs anomalies identified at 8–12 km depth and suggesting a highly fracturated and fluid-saturated zone. Both the geometry of the active structure beneath the gulf and the presence of fluids at 8–12 km depth are in accordance with a low-angle detachment model for the western part of the Gulf of Corinth. S. Gautier and D. Latorre formerly at Géosciences Azur  相似文献   

12.
The plate dynamics in the central western Mediterranean region is characterised by a collision between the Eurasian and African plates. In response to this dynamics, many systems of faults and folds having a NE-SW and E-W trending have been generated along the Tellian Atlas of Algeria. The Oranie region (north western Algeria) has experienced some significant earthquakes in the last centuries, the most important one is that of Oran city on February 9th 1790, Io = XI which destroyed the town completely and caused the loss of many lives. Since 1790 no other event was so disastrous except that of August 18th 1994, Mw = 5.7, which struck Mascara province (Algeria) at 01 h 13 mn GMT. Since the beginning of this century the region has been dominated by a seismic quietness. Thus, no event with magnitude larger than 5.5 have occurred in this area. In relation with this recent event, a seismotectonic framework summarising the tectonic, seismicity and focal solution results is presented. The Maximum Observed Intensities Map (MOI) made for Algeria (Bezzeghoud et al., 1996) is also used to show that the Mascara region is located in an VIII-X intensity zone, which explain partially the casualties caused by the 18/08/1994 (Mw = 5.7) earthquake. This earthquake is not anomalous compared to historical records but is unusual compared to recorded seismicity of this century. The seismotectonic map made in this study and also the review of the focal solutions given by the EMSC, Harvard, and other authors shows that our event is probably associated with a source belonging to a system of faults located in the vicinity of the village of Hacine where the maximum damage was observed.  相似文献   

13.
Aftershock rates seem to follow a power law decay, but the assessment of the aftershock frequency immediately after an earthquake, as well as during the evolution of a seismic excitation remains a demand for the imminent seismic hazard. The purpose of this work is to study the temporal distribution of triggered earthquakes in short time scales following a strong event, and thus a multiple seismic sequence was chosen for this purpose. Statistical models are applied to the 1981 Corinth Gulf sequence, comprising three strong (M = 6.7, M = 6.5, and M = 6.3) events between 24 February and 4 March. The non-homogeneous Poisson process outperforms the simple Poisson process in order to model the aftershock sequence, whereas the Weibull process is more appropriate to capture the features of the short-term behavior, but not the most proper for describing the seismicity in long term. The aftershock data defines a smooth curve of the declining rate and a long-tail theoretical model is more appropriate to fit the data than a rapidly declining exponential function, as supported by the quantitative results derived from the survival function. An autoregressive model is also applied to the seismic sequence, shedding more light on the stationarity of the time series.  相似文献   

14.
研究了发生在海西断裂天祝拉分盆地1996年6月1日5.4级地震的震源机制,利用位于天祝-古浪地区的数字式微震监测台网纪录的余震的精确定位确定了本次地震的发震断层,研究表明这次地震是天祝拉分盆地中垂直于主断裂的近南北向断裂所形成,根据破裂模型和海原西断裂的应力积累状况,讨论了海原西断裂近期的大震危险性。  相似文献   

15.
Seismic hazard analysis requires the estimation of the probabilities that earthquakes will take place within a region of interest, and the expected level of ground motion which will be received at a site during the nextt years. The earthquake magnitude has been used as a basic parameter, because it is available, under the assumption that the earthquake occurrence is a compound Poisson process with exponential or multinomial distribution of magnitude.For improving the hazard prediction, we used the seismic moment as a basic parameter to estimate the mean rate, , of occurrence of earthquakes in a function of seismic moment rate and slip rate released in a seismogenic region.As an illustration of the model, the seismic hazard analysis at different sites in and around the Gulf of Corinth, central Greece, is presented on the basis of the earthquake magnitude and the seismic moment. Comparison of the results shows that determination of the mean rate of earthquake occurrence, using the conventional Gutenberg-Richter recurrence model, underestimates the seismic hazard at a site.  相似文献   

16.
A new seismic source model has been developed for the western part of the Arabian Peninsula, which has experienced considerable earthquake activity in the historical past and in recent times. The data used for the model include an up-to-date seismic catalog, results of recent studies of Cenozoic faulting in the area, aeromagnetic anomaly and gravity maps, geological maps, and miscellaneous information on volcanic activity. The model includes 18 zones ranging along the Red Sea and the Arabian Peninsula from the Gulf of Aqaba and the Dead Sea in the north to the Gulf of Aden in the south. The seismic source model developed in this study may be considered as one of the basic branches in a logic tree approach for seismic hazard assessment in Saudi Arabia and adjacent territories.  相似文献   

17.
The characteristics of spatio-temporal seismicity evolution before the Wenchuan earthquake are studied. The results mainly involve in the trend abnormal features and its relation to the Wenchuan earthquake. The western Chinese mainland and its adjacent area has been in the seismically active period since 2001, while the seismic activity shows the obvious quiescence of M≥?7.0, M≥?6.0 and M?≥5.0 earthquakes in Chinese mainland. A quiescence area with M?≥7.0 has been formed in the middle of the North-South seismic zone since 1988, and the Wenchuan earthquake occurred just within this area. There are a background seismicity gap of M?≥5.0 earthquakes and a seismogenic gap of ML?≥4.0 earthquakes in the area of Longmenshan fault zone and its vicinity prior to the Wenchuan earthquake. The seismic activity obviously strengthened and a doughnut-shape pattern of M?≥4.6 earthquakes is formed in the middle and southern part of the North-South seismic zone after the 2003 Dayao, Yunnan, earthquake. Sichuan and its vicinity in the middle of the doughnut-shape pattern show abnormal quiescence. At the same time, the seismicity of earthquake swarms is significant and shows heterogeneity in the temporal and spatial process. A swarm gap appears in the M4.6 seismically quiet area, and the Wenchuan earthquake occurred just on the margin of the gap. In addition, in the short term before the Wenchuan earthquake, the quiescence of earthquake with ML≥?4.0 appears in Qinghai-Tibet block and a seismic belt of ML?≥3.0 earthquakes, with NW striking and oblique with Longmenshan fault zone, is formed.  相似文献   

18.
针对2015年4月25日发生于印度板块北边界中段的尼泊尔8.1级地震后,青藏高原中强以上地震活动呈现NE向条带分布的现象,本文将区域地质构造动力环境和以GPS水平位移为约束的数值模拟相结合,初步分析研究了这一地震活动条带的基本特征和形成机理;进而将其与1996年前后出现在青藏高原及东北部邻区的"西藏榭通门-内蒙古包头"NE向地震活动条带、以及该条带形成后强震活动由东向西的迁移状况进行比较,探讨了目前的NE向地震活动条带对未来强震活动趋势的预示意义。结果认为:尼泊尔8.1级地震后青藏高原NE向中强以上地震活动条带,是在印度板块北推挤压动力持续作用下,因青藏高原NE向构造应力加强引起的构造活动响应,并与尼泊尔大地震低角度逆冲错动和地壳介质能量传递影响有关;而未来地震趋势可能使该条带附近强震活动"填空",进而使该条带东、西两侧较大范围强震活动性增强。  相似文献   

19.
—In order to study both the interplate seismic loading cycle and the distribution of intraplate deformation of the Andes, a 215 site GPS network covering Chile and the western part of Argentina was selected, monumented and observed in 1993 and 1994. A dense part of the network in northern Chile and northwest Argentina, comprising some 70 sites, was re-observed after two years in October/November, 1995. The M w = 8.0 Antofagasta (North Chile) earthquake of 30th July, 1995 took place between the two observations. The city of Antofagasta shifted 80 cm westwards by this event and the displacement still reached 10 cm at locations 300 km from the trench. Three different deformation processes have been considered for modeling the measured displacements (1) interseismic accumulation of elastic strain due to subduction coupling, (2) coseismic strain release during the Antofagasta earthquake and (3) crustal shortening in the Sub-Andes.¶Eastward displacement of the sites to the north and to the south of the area affected by the earthquake is due to the interseismic accumulation of elastic deformation. Assuming a uniform slip model of interseismic coupling, the observed displacements at the coast require a fully locked subduction interface and a depth of seismic coupling of 50 km. The geodetically derived fault plane parameters of the Antofagasta earthquake are consistent with results derived from wave-form modeling of seismolog ical data. The coseismic slip predicted by the variable slip model reaches values of 3.2 m in the dip-slip and 1.4 m in the strike-slip directions. The derived rake is 66°. Our geodetic results suggest that the oblique Nazca–South American plate convergence is accommodated by oblique earthquake slip with no slip partitioning. The observed displacements in the back-arc indicate a present-day crustal shortening rate of 3–4 mm/year which is significantly slower than the average of 10 mm/year experienced during the evolution of the Andean plateau.  相似文献   

20.
2002年5月31日在四川省仁寿县与双流县交界地区发生一次ML4.6地震,震中烈度Ⅵ度。宏观震中大致在仁寿县高家镇以西一带,地震使部分民房遭到破坏,造成直接经济损失约545万元。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号