首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique ‘mean’ kinematic vorticity experienced by a deformed rock volume.  相似文献   

2.
研究了阿尔泰地区NW走向高角度冲断构造中主干的阿巴宫—库尔提断裂带。详细研究了断裂构造岩的变形构造和组构及其所显示的运动学和动力学特征。结果表明:存在早、晚更替且性质不同的变形显微构造。早期以糜棱岩中的韧性变形构造为主,发育有递进变形的不对称构造(压力影、旋转变斑晶、S—C构造等),是断裂中剪切变形运动指向的主要判据。晚期为脆性破裂构造,与早期变形组构具继承、叠加关系。研究了石英光轴的组构形式,证实存在:早期共轴纯剪变形的小圆环带组构和非共轴简单剪切变形中,呈递变关系的点极密—大圆环带—交叉大圆环带组构型式。对变形构造和组构所作的运动学和动力学分析结果表明:阿—库断裂带的形成和变形历史为:①地壳早期NE挤压收缩环境,形成劈理化带;②在持续NE向挤压作用下,大规模剪切、逆冲叠置,和地壳加厚,产生重熔岩浆和流体再分配效应,促使糜棱岩带形成和发展;③晚期地壳NE向挤压下,以垂直差异抬升和大量碎裂岩化高角度逆冲断裂的继承、叠加为特征。在区域大地构造的关系上:①、②对应于地槽褶皱、封闭的地槽体制(海西期),③对应于地洼体制(后海西期)。  相似文献   

3.
It is suggested that the kinematic framework controls the orientation of crystallographic fabrics developed in plastically deformed quartzites. Important directions in this framework are those of the instantaneous stretching axes, and the flow plane and flow direction if these can be uniquely defined. Rotation of the crystal axes takes place at any instant of time dependent on the orientation of the grain relative to the stretching axes. Because of this dependence the skeletal outline* of a pattern of preferred orientation is sensitive to the closing stages of deformation. Thus fabrics measured in major movement zones cannot be related to early thrust or shear displacements without considering the effects of the geological history subsequent to those events.Nevertheless, asymmetric fabrics in movement zones may allow determination of the shear direction and sense of shear. Asymmetry in the intensity distribution is less susceptible to modification than asymmetry in the fabric skeleton, and may remain as a persistent measure of the sense of shear in mylonites subjected to coaxial deformation after non-coaxial events. However, fabric asymmetry need not always be related to the deformation history, and effects related to the population of initial grain-orientations must be considered, as well as the influence of recrystallization and grain growth.A problem of scale is involved in extrapolating the movement picture inferred from the behaviour of a few hundred crystal grains to larger dimensions. This question is also encountered when trying to specify deformation paths in mesoscopic shear zones. It is difficult to obtain simple shear experimentally because of the role discontinuities play in deformation. In certain cases in natural shear zones the quartz grains may be subjected to a coaxial deformation path while the bulk deformation is progressive simple shear. Caution must therefore be exercised when attempting to use quartz fabrics to infer characteristics of the bulk kinematics or movement picture applicable during deformation.  相似文献   

4.
The effect of deformation history on the development of crystallographic preferred orientation in quartzities has been simulated using a computer program based on the Taylor-Bishop-Hill analysis. Model quartzities with different combinations of glide systems have been subjected to various coaxial and non-coaxial deformation histories. It is possible to obtain information from the fabrics that develop during simple histories; for example, the location of the axis of extension is generally associated with a pole free area on a c-axis plot, and progressive axial shortening, plane strain and axial shortening produce characteristic fabrics. In progressive simple shear the fabric skeleton becomes asymmetric relative to the sense of shear and a-axes preferentially align in the flow plane parallel to the flow direction. However, this example illustrates that the fabric orientation and characteristics are controlled by the kinematic framework and bear only an indirect relationship to the finite strain accumulated to that point in the history.The imprint of the closing stages of deformation limits to some degree the use of crystallographic fabrics as a tool for structural geologists, but in favourable circumstances data can be obtained concerning characteristics of the deformation history, on the scale of the hand-specimen, for the last part of this history.  相似文献   

5.
Fault rocks associated with the Pelling thrust (PT) in the Sikkim Himalayan fold thrust belt (FTB) change from SL tectonites to local, transport-parallel L-tectonites that are exposed in discontinuous klippen south of the PT zone. By estimating the incremental kinematic vorticity number (Wk) from quartz c-axes fabric, oblique fabric, and subgrains, we reconstruct a first-order, kinematic path of these L-tectonites. Quartz c-axes fabric suggests that the deformation initiated as pure-shear dominated (∼56–96%) that progressively became simple-shear dominated (∼29–54%), as recorded by the oblique fabric and subgrains in the L-tectonites. These rocks record a non-steady deformation where the kinematic vorticity varied spatially and temporally within the klippen.The L-tectonites record ∼30% greater pure-shear than the PT fault rocks outside the klippen, and the greatest pure-shear dominated flow among the published vorticity data from major fault rocks of the Himalayan FTB. The relative decrease in the transport-parallel simple-shear component within the klippen, and associated relative increase of transport-perpendicular, pure-shear component, support the presence of a sub-PT lateral ramp in the Sikkim Himalayan FTB. This study demonstrates the influence of structural architecture for fault systems for controlling spatial and temporal variations of deformation fabrics and kinematic path of deforming thrust wedges.  相似文献   

6.
《Journal of Structural Geology》1999,21(8-9):1209-1218
Macroscopic deformation mechanisms such as folding, fracturing–faulting and formation of rock fabrics compete with one another in a fashion similar to the competition among crystalline deformation mechanisms such as cataclasis, grain boundary sliding, dislocation creep and diffusive mass transfer. Many authors seek to develop a unique structural chronology for a given field area based on what are considered exclusive overprinting relationships between structures. In contrast the approach taken here suggests that relative changes in external or internal variables within a rock mass can cause significantly different `dominant' types of macroscopic deformation to be developed in hand specimen and/or outcrop at the same time. Rather than representing distinct structural `facies', observed dominant macroscopic features are waypoints in continuum processes.  相似文献   

7.
Foreland basin growth strata are ideal recorders of deformation rates and kinematics in tectonically active regions. This study develops a high-resolution chronostratigraphic age model to determine folding rates in the Eocene-Oligocene terrestrial growth strata of the Berga Conglomerate Group, NE Spain. The Berga Conglomerate Group was sampled for rock magnetic, magnetostratigraphic, and magnetic susceptibility (χ) cyclostratigraphy analyses. Analysis of rock magnetic measurements indicate a mixed mineral assemblage with both paramagnetic and ferromagnetic minerals. A new magnetic reversal stratigraphy constrains the time frame of folding and is in agreement with previous interpretations. Time series analysis of χ variations show statistically significant power at expected orbital frequencies and provides precession-scale (20 kyr) temporal resolution. Strain measurements including anisotropy of magnetic susceptibility (AMS) fabrics and bedding plane strain worm burrow distortion are consistent with fixed hinge, flexural folding kinematics. Fault-related folding was modeled using χ cyclostratigraphy timing and strain measurement kinematic constraints. The onset of folding was at 33.85 Ma and the end of deformation is less constrained but is younger than 31.06 Ma. Deformation and sediment accumulation rates are unsteady at 20 kyr time scales but appear artificially steady at polarity chron time scales.  相似文献   

8.
Although calcite tectonites are widespread in nature their use to quantify flow vorticity is limited. We use new (micro-)structural, petrofabric and vorticity data to analyse the kinematics of flow in outcrop-scale calcite mylonite zones. These zones are genetically related to a crustal-scale NE-directed ductile thrust (Basal Thrust) that emplaced the Blueschist over the Basal unit during the exhumation of the Attico-Cycladic Massif. Calcite microstructures reveal that the last stage of deformation occurred at temperatures 200–300 °C achieved by mild heating, which is possibly related with the reburial of the Basal Thrust's footwall. Vorticity analyses were based on the degree of asymmetry of calcite c-axis fabrics as well as on the assumption that the orientation of the long axes of calcite neoblasts within an oblique foliation delineates the direction of instantaneous stretching axis. Both methodological approaches provide consistent estimates with a simple shear component between 55% and 82% (Wn = 0.76–0.96). The use of the stress axis (σ1) orientation recorded by twin-c-axis-pairs to quantify vorticity generally gives significantly lower simple shear component. Comparison of our vorticity estimates with previous estimates inferred from quartz fabrics and rigid porphyroclasts reveals that exhumation-related deformation in the nappe pile was steady state.  相似文献   

9.
This paper analyses a major shear zone from the Iberian Hercynian belt which forms the basal thrust of the Mondoñedo Nappe. The shear zone developed by ductile deformation under amphibolite facies metamorphic conditions and later by brittle-ductile deformation in greenschists facies. Folds in the shear zone are asymmetric, very tight, 1C or similar class and frequently developing sheath geometries. The sheath folds originated by non-coaxial flow superimposed on earlier irregularities. The fabric of quartzitic rocks in the shear zone changes from bottom to top from ultramylonites through blastomylonitic rocks to non-mylonitic tectonites. c-axis fabrics vary across the shear zone, but show a dominant monoclinic symmetry. The blastomylonitic rocks include the fabrics representing the highest temperatures. The main foliation of the schists results from flattening of an earlier foliation, recording occasional microfolds. The use of different kinematic criteria has allowed an analysis of their validity as well as an assessment of movement direction towards the foreland of the orogen.  相似文献   

10.
Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes (Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.  相似文献   

11.
Quartz c axis fabrics and microstructures have been investigated within a suite of quartzites collected from the Loch Eriboll area of the Moine Thrust zone and are used to interpret the detailed processes involved in fabric evolution. The intensity of quartz c axis fabrics is directly proportional to the calculated strain magnitude. A correlation is also established between the pattern of c axis fabrics and the calculated strain symmetry.Two kinematic domains are recognized within one of the studied thrust sheets which outcrops immediately beneath the Moine Thrust. Within the upper and central levels of the thrust sheet coaxial deformation is indicated by conjugate, mutually interfering shear bands, globular low strain detrital quartz grains whose c axes are aligned sub-parallel to the principal finite shortening direction (Z) and quartz c axis fabrics which are symmetric (both in terms of skeletal outline and intensity distribution) with respect to mylonitic foliation and lineation. Non-coaxial deformation is indicated within the more intensely deformed and recrystallized quartzites located near the base of the thrust sheet by single sets of shear bands and c axis fabrics which are asymmetric with respect to foliation and lineation.Tectonic models offering possible explanations for the presence of kinematic (strain path) domains within thrust sheets are considered.  相似文献   

12.
In view of the apparent difficulty of satisfying the von Mises criterion for general plasticity by dislocation glide alone, the climb mechanism proposed by Nabarro (1967) has been considered as an important contributor to the steady state deformation of quartzites in the earth's crust. The proposed deformation mechanism can provide the necessary strain rates; it is consistent with the observed dislocation structures and leads to a simple explanation of the water weakening phenomenon in terms of the increase in diffusivity of the atom species. In addition, the experimentally observed effects of strain rate and temperature on the opening angle of the characteristic ‘girdle’ fabrics of quartzite are a natural consequence of the model and this relationship could provide analytical procedures for the establishment of crustal deformation conditions.  相似文献   

13.
舒兰北东向韧性剪切带位于佳木斯-伊通断裂带(佳-伊断裂带)中南段, 剪切带内糜棱岩具有明显左行走滑特征, 片麻理产状近NNE向.糜棱岩中长石有限应变Flinn图解判别岩石类型为L-S型构造岩, 属拉长型应变.石英C轴EBSD组构分析表明, 石英组构以中低温菱面为主, 滑移系为{0001} < 110>.剪切带内糜棱岩的剪应变为0.44, 不同方法计算所得运动学涡度值均大于0.95, 指示剪切变形以简单剪切为主.综合矿物变形温度计、石英C轴EBSD组构、石英的粒度-频数图及Kruhl温度计综合估计该韧性剪切带变形机制以位错蠕变机制为主, 变质相为低绿片岩相, 发生韧性变形和糜棱岩化温度范围在400~500 ℃之间.糜棱岩内石英动态重结晶新晶粒边界普遍具有锯齿状或港湾状结构, 利用分形方法对其重结晶新晶边界研究表明, 这些晶粒边界具有自相似性, 表现出分形特征, 分形维数值为1.195~1.220.根据石英重结晶粒径估算差应力值为24.35~27.59 MPa, 代表了舒兰韧性剪切带糜棱岩化作用过程的差异应力下限.使用不同实验方法估算、比较和分析了该剪切带古应变速率, 认为该速率应为10-12.00~10-13.18 s-1, 与区域性应变速率10-13.00~10-15.00 s-1对比, 说明舒兰韧性剪切带的应变速率与世界上大多数韧性剪切带中的糜棱岩应变速率一致, 是缓慢变形的结果, 其形成可能与早白垩世伊泽纳崎板块向欧亚大陆俯冲发生转向有关.   相似文献   

14.
Fabric transitions can arise in materials such as quartz in which more than one set of symmetrically equivalent glide systems must be considered. The external conditions, such as temperature and stress, affect the relative ability of different mechanisms to operate. Adopting the Taylor-Bishop-Hill analysis allows an approximation to the resulting effects in the choice of critical resolved shear stress (CRSS) values for glide on the different dislocation systems. Different CRSS values may be appropriate to simulating fabric development in different deformational environments.For any specific set of CRSS values, for a particular deformation, a set of reorientation trajectories can be defined for differently oriented crystals with respect to the instantaneous stretching axes. There is a basic number of pattern types, and deformation leads to c-axes populating specific end-orientations.The CRSS values on different glide systems can vary smoothly relative to one another, but abrupt changes result in the deformation fabrics at critical CRSS ratios. Quartz fabrics may thus be used to delineate regions subjected to particular conditions of temperature and strain-rate in deformed metamorphic terrains, provided that allowance can be made for other factors such as trace impurity content of quartz.  相似文献   

15.
《Journal of Structural Geology》1999,21(8-9):1151-1160
Studies of progressive deformation aim to identify and establish temporal sequences of structural stages, each characterized by a suite of structures which form under specific rock and environmental conditions. Because of the natural spatial variation in rock type and environmental parameters in an orogen, several structural stages may operate concurrently in different parts of an orogenic wedge. At any given instant in time, rocks experiencing different stages of deformation are bounded by deformation fronts. As intrinsic and extrinsic conditions of deformation vary through time, spatial migration of deformation fronts causes rocks to record temporal overprinting of structural stages. In convergent orogens, deformation fronts, as mapped in their finite state, are typically forelandward-dipping due to the regional orogenic wedge geometry and thermal structure. Depending on the competing deformation processes, deformation rate changes on either side of the front may cause deformation fronts to change orientation, relief and surface area with time. Differences in migration rates of different deformation fronts could cause rearrangement of the sequence of structural stages with depth and laterally across the same mountain belt.  相似文献   

16.
中天山北缘大型右旋走滑韧剪带研究   总被引:22,自引:4,他引:18  
中天山北缘是一个近 EW向的大型右旋走滑韧剪带。宏、微观构造尺度的运动学研究表明 ,该带经历过至少二期韧性变形作用。第一期为从南向北的逆冲推覆韧剪变形 ,时代为中—晚志留世 ,以米什沟剖面为代表 ,对应于早古生代洋壳从北向南俯冲及稍后吐哈陆块朝中天山岛弧的碰撞事件。第二期为沿 EW方向的右旋走滑韧性变形 ,其构造形迹广泛分布于中天山北缘带各个地段 ;北天山石炭纪火山岩已卷入该期构造活动 ,走滑时代为晚石炭世—早二叠世 ,对应于晚石炭世塔里木与西伯利亚两大板块碰撞造山诱发的陆内变形、走滑剪切。走滑带中新生白云母 4 0 Ar/39Ar年龄为 ( 2 69± 5) Ma。剪切面理、拉伸线理、矿物韧剪构造、石英 C轴组构提供了构造运动学证据 ;地层不整合及同位素测年值提供了变形时间证据。二叠纪以后的构造事件也影响到中天山北缘带 ,但只有脆性变形形迹 ,无韧性剪切。最后对本区古生代构造演化进行了讨论  相似文献   

17.
Polyphase deformation chronologies established within the mid-crustal portions of orogenic belts have classically been attributed to regional-scale ‘events’ which generate distinct structural sequences that can be directly correlated across large tracts of the orogenic belt. However, concepts of progressive deformation in which minor structures may be continually generated, amplified and redeformed within a unifying kinematic framework suggest that regional correlation of minor structures is both misguided and misleading. Detailed structural analysis of lower amphibolite facies Dalradian metasediments in north-west Ireland does, however, demonstrate that a coherent and meaningful deformation chronology can be established within the framework of individual fold nappes. Protracted deformation has resulted in the generation of a series of overprinting, secondary structures (D4–D9), which are kinematically linked to the continued structural evolution and south-east directed translation of the crustal-scale (D3) Ballybofey (fold) Nappe. Secondary (D4) crenulation axes initiated at an oblique angle to the direction of nappe transport both rotate and amplify into larger scale folds, which are subparallel to transport and demonstrate successive stages of diachronous folding. Continued nappe-related deformation induces southwards verging contractional (D5) folds, which are particularly well developed and focused into reactivated ductile (D3) thrust zones generated during the initial stages of nappe translation. Subsequent to thickening-induced ductile extension and collapse of the nappe, a return to contractional tectonics is marked by major episodes of broad, open buckle folding developed orthogonal to both the overturned limb (D7) and upper limb (D8) of the nappe. Detailed structural analysis and investigation of secondary folds and overprinting fabrics provides a valuable insight into the protracted kinematic evolution of major fold nappes.  相似文献   

18.
We test the hypothesis that small ductile shear zones are developed from initial rheologically weak domains. We regard weak domains as ellipsoidal inhomogeneities and apply Eshelby's formalism extended for power-law viscous materials to investigate the kinematics and finite strain evolution of the partitioned flow fields in weak domains. We show that, under an imposed bulk flow field, weak domains, regardless of their initial shapes and orientations, deform into zone-like features at relatively small bulk strains and the deformation paths inside weak domains have all characteristics expected in ductile shear zones. We apply our model to the Cap de Creus area Spain, where abundant small ductile shear zones exist. To relate the fabrics inside these shear zones with the regional deformation, we take a multi-scale approach. We assume that the area contained many weak domains which were randomly shaped and oriented initially and were deformed into shear zones eventually in response to the regional flow. We constrain the regional flow field by the fabric patterns across the area and compute numerically the partitioned flow fields in individual weak domains. The latter are related to fabrics inside shear zones. Our model reproduces first-order features of field-observed fabrics. Although the deformation path of each shear zone was close to simple shearing, the deformation of the whole belt was not. Our approach also resolves the strain compatibility problem for a finite-sized shear zone embedded in a far less deformed country rock.  相似文献   

19.
Detailed analysis of the oolite deformation in Windgällen revealed that the finite-strain states vary significantly and systematically over the major recumbent structures. The strain is lowest at the fold cores and highest along the limbs, which have suffered extensions of up to 150%. These high strains are interpreted as the result of strong overfolding during the development of the nappe-like structure. The maximum ratio of the strain ellipsoids computed from the oolite shapes is 14.6:1, though individual oolites having axial ratios as high as 30 : 1 have been encountered. The intermediate axes of the strain ellipsoids throughout the area have been extended between 3 and 64% and the strain ellipsoids are of the flattening type with K being less than unity. The pre-deformation fabric of the oolites is very weak and their initial axial ratios in any two-dimensional section is generally less than 2:1. Slaty cleavage is coincident with the plane of maximum compression in the rock. The relationship of cleavage, folds and oolite deformation suggest that cleavage develops progressively during deformation and forms at the same time as the folds associated with it.  相似文献   

20.
The present study aims to evaluate a relationship between the mineralogy and structural analysis in the Halaban area and to document the tectonic evolution of Halaban and Al Amar faults. The collected samples were taken from deformed granitiods rocks (such as granite, gneisses and tonalite), metasedimentary, metavolcanic, metagabbro and carbonate rocks are trend to NE-SW with low dip angle in the Halaban area. These samples were 8 from granite, 14 metagabbro, 6 metavolcanics, 5 tonalite, 6 metasedimentary, 10 gneisses and 8 carbonate rocks. Our results are described for the different axial ratios of deformed rocks as the following: XZ sections range from 1.10 to 4.60 in the Fry method and range from 1.70 to 2.71 in the Rf/? method. YZ sections range from 1.10 to 3.34 in the Fry method and range from 1.62 to 2.63 in the Rf/Phi method. In addition, XY sections range from 1 to 3.51 in the Fry method and range from 1 to 1.27 in the Rf/? method for deformed granite rocks, metasedimentry rocks, and metagabbro. The stretch axes for measured samples in the X direction axes (SX) variety from 1.06 to 2.53 in the Fry method and vary from 1.20 to 1.45 in the Rf/? method. The values of the Y direction axes (SY) vary from 0.72 to 1.43 in the Fry method, which indicates contraction and extension in this direction and vary from 1.13 to 1.37 in the Rf/? method which indicates extension in this direction. Furthermore, the Z direction axes (SZ) varies from 0.09 to 0.89 in the Fry method and from 0.52 to 0.71 in the Rf/? method. The stretches axes in the Z direction (SZ) show a vertical shortening about 11% to 91% in the Fry method and show vertical shortening about 29% to 48% in the Rf/? method. The studied rock units are generally affected by brittle-ductile shear zones, which are sub-parallel to parallel NW or NNW trend. It assumed that different rock types of have similar deformation behavior. Based on these results, it is concluded that the finite strain is accumulated during the metamorphism after that was started the deformation by thrusting activity. The contacts between the different rock types were deformed during thrusting under semi-brittle to ductile deformation conditions by simple shear. A component of vertical shortening is also involved causing subhorizontal foliation in the Halaban area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号