首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Small Magellanic Cloud is a close, irregular galaxy that has experienced a complex star formation history due to the strong interactions occurred both with the Large Magellanic Cloud and the Galaxy. Despite its importance, the chemical composition of its stellar populations older than ∼ 1–2 Gyr is still poorly investigated. I present the first results of a spectroscopic survey of ∼ 200 Small Magellanic Cloud giant stars performed with FLAMES@VLT. The derived metallicity distribution peaks at [Fe/H] ∼ –0.9/–1.0 dex, with a secondary peak at [Fe/H] ∼ –0.6 dex. All these stars show [α /Fe] abundance ratios that are solar or mildly enhanced (∼+0.1 dex). Also, three metal‐poor stars (with [Fe/H] ∼ –2.5 dex and enhanced [α /Fe] ratios compatible with those of the Galactic Halo) have been detected in the outskirts of the SMC: These giants are the most metal‐poor stars discovered so far in the Magellanic Clouds. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
邱红梅  赵刚  仲佳勇 《天文学报》2002,43(3):257-263
在第1篇论文的基础上,确定了样本星的恒星大气参数,得到这些星中9种元素的丰度。讨论了各种元素丰度随[Fe/H]的变化。平均的[Na/Fe]~-0.01dex,接近于太阳丰度。α元素Si和Ca具有几乎相同的丰度模式,而[Ti/Fe]弥散较大,但三者均有随[Fe/H]的减小而增加的趋势。铁峰元素V、Cr、Ni在不同丰度处有较大的弥散,[Cr/Fe]在所有样本星中均表现超丰;而[Mn/Fe]却明显过贫,且随金属丰度的增加而增加。  相似文献   

3.
Some insight on the first generation of stars can be obtained from the chemical composition of their direct descendants, extremely metal‐poor stars (EMP), with metallicity less than or equal to 1/1000 of the solar metallicity. Such stars are exceedingly rare, the most successful surveys, for this purpose, have so far provided only about 100 stars with 1/1000 the solar metallicity and 4 stars with about 1/10000 of the solar metallicity. The Sloan Digital Sky Survey has the potential to provide a large number of candidates of extremely low metallicity. X‐shooter has the unique capability of performing the necessary follow‐up spectroscopy providing accurate metallicities and abundance ratios for several elements (Mg, Al, Ca, Ti, Cr, Sr,...) for EMP candidates. We here report on the results for the first two stars observed in the course of our Franco‐Italian X‐shooter GTO. The two stars were targeted to be of metallicity around –3.0, the analysis of the X‐shooter spectra showed them to be of metallicity around –2.0, but with a low α to iron ratio, which explains the underestimate of the metallicity from the SDSS spectra. The efficiency of X‐shooter allows an in situ study of the outer halo, for the two stars studied here we estimate distances of 3.9 and 9.1 kpc, these are likely the most distant dwarf stars studied in detail to date (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Abundances of O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Fe, Ni and Ba are determined for 30 nearby lower-main-sequence stars in the Northern sky using high-resolution, high signal-to-noise ratio spectra. Our results show an equilibrium of  [Fe/H]I  and  [Fe/H]II  and a much smaller star-to-star scatter of the abundance ratios as a function of metallicity compared with the results of Kotoneva et al. The non-local thermodynamic equilibrium (non-LTE) corrections for oxygen are considered and found to be small  (∼−0.04 dex)  . A flat trend of [O/Fe] exists over the whole metallicity range. The non-LTE effects for some important elements are discussed, and it is found that the abundance pattern for our programme stars is very similar to that of F and G dwarfs.  相似文献   

5.
High-resolution, high signal-to-noise ratio spectra have been obtained for 32 metal-poor stars. The equivalent widths of Li A6708 A were measured and the lithium abundances were derived. The average lithium abundance of 21 stars on the lithium plateau is 2.33±0.02 dex. The Lithium plateau exhibits a marginal trend along metallicity, dA(Li)/d[Fe/H] ?0.12±0.06, and no clear trend with the effective temperature. The trend indicates that the abundance of lithium plateau may not be primordial and that a part of the lithium was produced in Galactic Chemical Evolution (GCE).  相似文献   

6.
We report the first survey of chemical abundances in M and K dwarf stars using atomic absorption lines in high-resolution spectra. We have measured Fe and Ti abundances in 35 M and K dwarf stars using equivalent widths measured from  λ/Δλ≈ 33 000  spectra. Our analysis takes advantage of recent improvements in model atmospheres of low-temperature dwarf stars. The stars have temperatures between 3300 and 4700 K, with most cooler than 4100 K. They cover an iron abundance range of  −2.44 < [Fe/H] < +0.16  . Our measurements show [Ti/Fe] decreasing with increasing [Fe/H], a trend similar to that measured for warmer stars, where abundance analysis techniques have been tested more thoroughly. This study is a step towards the observational calibration of procedures to estimate the metallicity of low-mass dwarf stars using photometric and low-resolution spectral indices.  相似文献   

7.
The abundances of heavy elements in EMP stars are not well explained by the simple view of an initial basic “rapid” process. In a careful and homogeneous analysis of the “First Stars” sample (eighty per cent of the stars have a metallicity [Fe/H] ≃ –3.1 ± 0.4), it has been shown that at this metallicity [Eu/Ba] is constant, and therefore the europium‐rich stars (generally called “r‐rich”) are also Ba‐rich. The very large variation of [Ba/Fe] (existence of “r‐poor” and “r‐rich” stars) induces that the early matter was not perfectly mixed. On the other hand, the distribution of the values of [Sr/Ba] vs. [Ba/Fe] appears with well defined upper and lower envelopes. No star was found with [Sr/Ba] < –0.5 and the scatter of [Sr/Ba] increases regularly when [Ba/Fe] decreases. To explain this behavior, we suggest that an early “additional” process forming mainly first peak elements would affect the initial composition of the matter. For a same quantity of accreted matter, this additional Sr production would barely affect the r‐rich matter (which already contains an important quantity of Sr) but would change significantly the composition of the r‐poor matter. The abundances found in the CEMP‐r+s stars reflect the transfer of heavy elements from a defunct AGB companion. But the abundances of the heavy elements in CEMP‐no stars present the same characteristics as the the abundances in the EMP stars. Direct stellar ages may be found from radioactive elements, the precision is limited by the precision in the measurements of abundances from faint lines in faint stars, and the uncertainty in the initial abundances of the radioactive elements. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present high-resolution Utrecht Echelle Spectrograph spectra of the quasar PHL 957, obtained in order to study the foreground damped Lyα (DLA) galaxy at z =2.309. Measurements of absorption lines lead to accurate abundance determinations of Fe, S and N which complement measurements of Zn, Cr and Ni already available for this system. We find [Fe/H]=−2.0±0.1, [S/H]=−1.54±0.06 and [N/H]=−2.76±0.07. The ratio [Fe/Zn]=−0.44 provides evidence that ≈74 per cent of iron and ≈28 per cent of zinc are locked into dust grains with a dust-to-gas ratio of ≈3 per cent of the Galactic one. The total iron content in both gas and dust in the DLA system is [Fe/H]=−1.4. This confirms a rather low metallicity in the galaxy, which is in the early stages of its chemical evolution. The detection of S ii allows us to measure the S ii /Zn ii ratio, which is a unique diagnostic tool for tracing back its chemical history, since it is not affected by the presence of dust. Surprisingly, the resulting relative abundance is [S/Zn]=0.0±0.1, at variance with the overabundance found in the Galactic halo stars with similar metallicity. We emphasize that the [S/Zn] ratio is solar in all the three DLA absorbers with extant data. Upper limits are also found for Mn, Mg, O and P and, once the dust depletion is accounted for, we obtain [Mg/Fe]c<+0.2, [O/Fe]c<+0.4, [Mn/Fe]c<+0.0 and [P/Fe]c<−0.7. The [α/Fe] values do not support Galactic halo-like abundances, implying that the chemical evolution of this young galaxy is not reproducing the evolution of our own Galaxy.  相似文献   

9.
We present a revised metallicity distribution of dwarfs in the solar neighbourhood. This distribution is centred on solar metallicity. We show that previous metallicity distributions, selected on the basis of spectral type, are biased against stars with solar metallicity or higher. A selection of G-dwarf stars is inherently biased against metal-rich stars and is not representative of the solar neighbourhood metallicity distribution. Using a sample selected on colour, we obtain a distribution where approximately half the stars in the solar neighbourhood have metallicities higher than [Fe/H]=0 . The percentage of mid-metal-poor stars ([Fe/H]<−0.5) is approximately 4 per cent, in agreement with present estimates of the thick disc.
In order to have a metallicity distribution comparable to chemical evolution model predictions, we convert the star fraction to mass fraction, and show that another bias against metal-rich stars affects dwarf metallicity distributions, due to the colour (or spectral type) limits of the samples. Reconsidering the corrections resulting from the increasing thickness of the stellar disc with age, we show that the simple closed-box model with no instantaneous recycling approximation gives a reasonable fit to the observed distribution. Comparisons with the age–metallicity relation and abundance ratios suggest that the simple closed-box model may be a viable model of the chemical evolution of the Galaxy at solar radius.  相似文献   

10.
Abundance analysis of the cool extreme helium (EHe) star LSS 3378 is presented. The abundance analysis is done using local thermodynamic equilibrium (LTE) line formation and LTE model atmospheres constructed for EHe stars.
The atmosphere of LSS 3378 shows evidence of H-burning, He-burning, and s -process nucleosynthesis. The derived abundances of iron peak and α-elements indicate the absence of selective fractionation or any other processes that can distort chemical composition of these elements. Hence, the Fe abundance [log ε(Fe) = 6.1] is adopted as an initial metallicity indicator. The measured abundances of LSS 3378 are compared with those of R Coronae Borealis (RCB) stars and with rest of the EHe stars as a group.  相似文献   

11.
We show that there is a relationship between the age excess, defined as the difference between the stellar isochrone and chromospheric ages, and the metallicity as measured by the index [Fe/H] for late-type dwarfs. The chromospheric age tends to be lower than the isochrone age for metal-poor stars, and the opposite occurs for metal-rich objects. We suggest that this could be an effect of neglecting the metallicity dependence of the calibrated chromospheric emission–age relation. We propose a correction to account for this dependence. We also investigate the metallicity distributions of these stars, and show that there are distinct trends according to the chromospheric activity level. Inactive stars have a metallicity distribution which resembles the metallicity distribution of solar neighbourhood stars, while active stars appear to be concentrated in an activity strip on the log  R 'HK × [Fe/H] diagram. We provide some explanations for these trends, and show that the chromospheric emission–age relation probably has different slopes on the two sides of the Vaughan–Preston gap.  相似文献   

12.
High-resolution spectra of five candidate metal-weak thick-disc stars suggested by Beers & Sommer-Larsen are analysed to determine their chemical abundances. The low abundance of all the objects has been confirmed, with metallicity reaching [Fe/H]=−2.9. However, for three objects the astrometric data from the Hipparcos catalogue suggest they are true halo members. The remaining two, for which proper-motion data are not available, may have disc-like kinematics. It is therefore clear that it is useful to address properties of putative metal-weak thick-disc stars only if they possess full kinematic data. For CS 22894−19 an abundance pattern similar to those of typical halo stars is found, suggesting that chemical composition is not a useful discriminant between thick-disc and halo stars. CS 29529−12 is found to be C-enhanced with [C/Fe]=+1.0; other chemical peculiarities involve the s-process elements: [Sr/Fe]=−0.65 and [Ba/Fe]=+0.62, leading to a high [Ba/Sr], considerably larger than that found in more metal-rich carbon-rich stars, but similar to those in LP 706-7 and LP 625-44, discussed by Norris et al. Hipparcos data have been used to calculate the space velocities of 25 candidate metal-weak thick-disc stars, thus allowing us to identify three bona fide members, which support the existence of a metal-poor tail of the thick disc, at variance with a claim to the contrary by Ryan & Lambert.  相似文献   

13.
We have collected nearly all the available observed data of the elements from Ba to Dy in halo and disk stars in the metallicity range -4.0 <[Fe/H]< 0.5. Based on the observed data of Ba and Eu, we evaluated the least-squares regressions of [Ba/Fe] on [Fe/H], and [Eu/H] on [Ba/H]. Assuming that the heavy elements (heavier than Ba) are produced by a combination of the main components of s- and r-processes in metal-poor stars, and choosing Ba and Eu as respective representative elements of the main s- and the main r-processes, a statistical model for predicting the Galactic chemical evolution of the heavy elements is presented. With this model, we calculate the mean abundance trends of the heavy elements La, Ce, Pr, Nd, Sm, and Dy with the metallicity. We compare our results with the observed data at various metallicities, showing that the predicted trends are in good agreement with the observed trends, at least for the metallicity range [Fe/H]> -2.5. Finally, we discuss our results and deduce some importa  相似文献   

14.
We present CCD photometry and high-resolution spectroscopy of low-mass stars in the open cluster NGC 2516, which has an age of about 150 Myr and may have a much lower metallicity than the Pleiades. 24 probable F to early K type, single cluster members have been identified from their photometry and radial velocities, along with three possible spectroscopic binaries. The projected equatorial velocities are measured and compared with younger and older clusters. Several fast rotating late G /early K stars are seen, but all hotter stars have v e sin  i  < 20 km s−1. The data are consistent with angular momentum loss models with spin-down time-scales that increase from tens of Myr for G stars to hundreds of Myr for K stars. The observed X-ray activity is consistent with the currently accepted rotation–activity paradigm. Lithium abundances are derived from the Li  i 6708-Å line. The pattern of Li depletion is indistinguishable from that in the Pleiades, including a spread in the K0 stars, where the most rapid rotators suffer the least Li depletion. The observations argue in favour of either a metallicity in the range −0.1 < [Fe/H]< 0.0 for NGC 2516, or a lower metallicity and extra Li depletion through non-standard mixing modes which occurs on time-scales of only ∼ 50 Myr. Neither our low signal-to-noise ratio spectroscopy nor our photometry can constrain [Fe/H] sufficiently to decide between these possibilities. A detailed spectroscopic chemical abundance analysis is urgently required.  相似文献   

15.
HE1005-1439是一颗金属丰度极低([Fe/H] ~ - 3.0)的碳增丰贫金属星(Carbon Enhanced Metal-Poor,CEMP), 该星的s-过程元素显著超丰([Ba/Fe] = 1.16±0.31, [Pb/Fe] = 1.98±0.19), 而r-过程元素温和超丰([Eu/Fe] = 0.46±0.22), 使用单一的s-过程模型和i-过程模型均不能拟合该星中子俘获丰度分布. 采用丰度分解的方法探究该星化学元素的天体物理来源可有助于理解CEMP星的形成和化学演化. 利用s-过程和r-过程的混合模型对其中子俘获元素的丰度分布进行拟合, 发现该星的中子俘获元素主要来源于低质量低金属丰度AGB伴星的s-过程核合成, 而r-过程核合成也有贡献.  相似文献   

16.
Several stars at the low-metallicity extreme of the Galactic halo show large spreads of lead and associated 'heavy' s-process elements ([Pb/hs]). Theoretically, an s-process pattern should be obtained from an AGB star with a fixed metallicity and initial mass. For the third dredge-up and the s-process model, several important properties depend primarily on the core mass of AGB stars. Zijlstra reported that the initial-to-final mass relation steepens at low metallicity, due to low mass-loss efficiency. This might affect the model parameters of the AGB stars, e.g. the overlap factor and the neutron irradiation time, in particular at low metallicity. The calculated results do indeed show that the overlap factor and the neutron irradiation time are significantly small at low metallicities, especially for  3.0 M AGB  stars. The scatter of [Pb/hs] found in low metallicities can therefore be explained naturally when varying the initial mass of the low-mass AGB stars.  相似文献   

17.
We present and discuss V BLUW photometry of eleven massive stars in the Magellanic Clouds: the SMC stars AzV121, AzV136 = HD5277 = R10, AzV197, AzV310 = R26 and AzV 369; the LMC stars GV80 = HD32034 = R62, GV91 = HDE 268 819, GV346 = HDE 269661 = R111, GV352 = HDE 269697, GV423 = HDE 269953 = R150 and GV460 = HDE 270111. Only one G0 Ia SMC supergiant is found to be variable, whereas all members of the LMC sample show definite variability. We find that roughly above M /M = 25, supergiants become photometrically unstable. The reddening‐independent metal‐index [BL ] is used to investigate the metallicity of the late‐type supergiants in both galaxies relative to similar supergiants in the solar neighbourhood. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The abundance patterns of the most metal‐poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star‐ and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. This review presents the current state of the field of “stellar archaeology” – the diverse use of metal‐poor stars to explore the high‐redshift Universe and its constituents. In particular, the conditions for early star formation are discussed, how these ultimately led to a chemical evolution, and what the role of the most iron‐poor stars is for learning about Population III supernovae yields. Rapid neutron‐capture signatures found in metal‐poor stars can be used to obtain stellar ages, but also to constrain this complex nucleosynthesis process with observational measurements. Moreover, chemical abundances of extremely metal‐poor stars in different types of dwarf galaxies can be used to infer details on the formation scenario of the halo and the role of dwarf galaxies as Galactic building blocks. I conclude with an outlook as to where this field may be heading within the next decade. A table of ~ 1000 metal‐poor stars and their abundances as collected from the literature is provided in electronic format (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The oxygen abundance distribution in solar neighbourhood halo subdwarfs is deduced, using two alternative, known empirical relationships, involving the presence or the absence of [O/Fe] plateau for low [Fe/H] values, from a sample of 372 kinematically selected halo stars, for which the iron abundance distribution has been determined by Ryan & Norris (1991). The data are interpreted by a simple, either homogeneous or inhomogeneous model of chemical evolution, using an updated value of the solar oxygen abundance. The effect of changing the solar oxygen abundance, the power‐law exponent in the initial mass function, and the rate of oxygen nucleosyntesis, keeping the remaining input parameters unchanged, is investigated, and a theorem is stated. In all cases, part of the gas must necessarily be inhibited from forming stars, and no disk contamination has to be advocated for fitting the empirical oxygen abundance distribution in halo subdwarfs of the solar neighbourhood (EGD). Then a theorem is stated, which allows a one‐to‐one correspondence between simple, homogeneous models with and without inhibited gas, related to same independent parameters of chemical evolution, except lower stellar mass limit, real yield, and inhibition parameter. The mutual correlations between the latter parameters are also specified. In addition the starting point, and the point related to the first step, of the theoretical distribution of oxygen abundance (TGD) predicted by simple, inhomogeneous models, is calculated analytically. The mean oxygen abundance of the total and only inhibited gas, respectively, are also determined. Following the idea of a universal, initial mass function (IMF), a power‐law with both an exponent p = 2.9, which is acceptably close to Scalo IMF for mm, and an exponent p = 2.35, i.e. Salpeter IMF, have been considered. In general, both the age‐metallicity relationship and the empirical distribution of oxygen abundance in G dwarfs of the disk solar neighbourhood, are fitted by power‐law IMF exponents in the range 2.35 ≤ p ≤ 2.9. Acceptable models predict about 15% of the total mass in form of long‐lived stars and remnants, at the end of halo evolution, with a mean gas oxygen abundance which is substantially lower than the mean bulge and initial disk oxygen abundance. To avoid this discrepancy, either the existence of a still undetected, baryonic dark halo with about 15% of the total mass, or an equal amount of gas loss during bulge and disk formation, is necessary. The latter alternative implies a lower stellar mass limit close to 0.2 m, which is related to a power‐law IMF exponent close to 2.77. Acceptable models also imply a rapid halo formation, mainly during the first step, Δt = 0.5 Gyr, followed by a period (three steps) where small changes occur. Accordingly, statistical fluctuations are found to produce only minor effects on the evolution.  相似文献   

20.
The semi‐regular variable star RU Vulpeculae (RU Vul) is being observed visually since 1935. Its pulsation period and amplitude are declining since ∼1954. A leading hypothesis to explain the period decrease in asymptotic giant branch (AGB) stars such as RU Vul is an ongoing flash of the He‐burning shell, also called a thermal pulse (TP), inside the star. In this paper, we present a CCD photometric light curve of RU Vul, derive its fundamental parameters, and test if the TP hypothesis can describe the observed period decline. We use CCD photometry to determine the present‐day pulsation period and amplitude in three photometric bands, and high‐resolution optical spectroscopy to derive the fundamental parameters. The period evolution of RU Vul is compared to predictions by evolutionary models of the AGB phase. We find that RU Vul is a metal‐poor star with a metallicity [M/H] = –1.59 ± 0.05 and an effective surface temperature of Teff = 3634 ± 20 K. The low metallicity of RU Vul and its kinematics indicate that it is an old, low‐mass member of the thick disc or the halo population. The present day pulsation period determined from our photometry is ∼108 d, the semiamplitude in the V ‐band is 0.39 ± 0.03 mag. The observed period decline is found to be well matched by an evolutionary AGB model with stellar parameters comparable to those of RU Vul. We conclude that the TP hypothesis is in good agreement with the observed period evolution of RU Vul. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号