首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
磨刀门水道咸潮上溯动力特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究磨刀门水道咸潮上溯的动力特性,基于非结构网格海洋模型(Finite Volume Coastal Ocean Model,FVCOM),构建了覆盖珠江河口及其上游网河区的高分辨率三维斜压数值模型,采用实测资料对其进行率定和验证,并开展了咸潮上溯的数值模拟计算。根据计算结果和实测资料,对磨刀门水道大、中、小潮期间的盐淡水分层与混合特征、盐分物质的分层输移机制进行分析,探讨其咸潮上溯强度时空分布差异的原因。结果表明:小潮期,底层累积盐通量明显大于表层,净输移方向为陆向;大潮期,表层累积盐通量明显大于底层,净输移方向为海向;而平衡点一般出现于中潮期,这就是磨刀门水道咸潮上溯最强和最弱时刻分别出现于小潮和大潮后的中潮期的原因所在。  相似文献   

2.
We describe the tidal circulation and salinity regime of a coastal plain estuary that connects to the ocean through a flood tide delta. The delta acts as a sill, and we examine the mechanisms through which the sill affects exchange of estuarine water with the ocean. Given enough buoyancy, the dynamics of tidal intrusion fronts across the sill and selective withdrawal (aspiration) in the deeper channel landward appear to control the exchange of seawater with estuarine water. Comparison of currents on the sill and stratification in the channel reveals aspiration depths smaller than channel depth during neap tide. During neap tide and strong vertical stratification, seawater plunges beneath the less dense estuarine water somewhere on the sill. Turbulence in the intruding bottom layer on the sill promotes entrainment of fluid from the surface layer, and the seawater along the sill bottom is diluted with estuarine water. During ebb flow, salt is effectively trapped landward of the sill in a stagnant zone between the aspiration depth and the bottom where it can be advected farther upstream by flood currents. During spring tide, the plunge point moves landward and off the sill, stratification is weakened in the deep channel, and aspiration during ebb extends to the bottom. This prevents the formation of stagnant water near the bottom, and the estuary is flooded with high salinity water far inland. The neapspring cycle of tidal intrusion fronts on flood coupled with aspiration during ebb interacts with the sill to play an important role in the transport and retention of salt within the estuary.  相似文献   

3.
A tidally-induced frontal system regularly develops in a small area off Newport News Point in the lower James River, one of the tributaries of the Chesapeake Bay. In conjunction with the front, a strong counter-clockwise eddy develops on the shoals flanking the northern side of the channel as the result of tidal interaction with the local bathymetry and estuarine stratification. A three-dimensional hydrodynamic model was applied to simulate the eddy evolution and front development, and to investigate time-varying circulation and material transport over a spring-neap tidal cycle. The model results show that variation of tidal range, together with periodic stratification-destratification of the estuary, has a significant impact on the residual circulation of the lower James River. The net surface water circulation, which takes the form of a counterclockwise eddy on the Hampton Flats, is stronger during neap tide than during spring tide. Strong stratification and weak flood current during neap tide results in a dominant ebb flow at the surface, which delays flooding within the channel and advances the phase lead of flood tide on shoals adjacent to the channel, thus increasing both period and intensity of the eddy. Front development in the area off Newport News Point provides a linkage between shoal surface water and channel bottom water, producing a strong net upriver bottom transport. The existence of the vertical transport mechanism was independently demonstrated through tracer experiments. The impact of the dynamics on larval dispersion was investigated through a series of model simulations of the movement of shellfish larvae over multiple tidal cycles following their release at selected bottom sites. These results show that eddy-induced horizontal circulation and vertical transport associated with the frontal system are important mechanisms for the retention of larval organisms in the James River.  相似文献   

4.
The quantification of groundwater flow near the freshwater–saltwater transition zone at the coast is difficult because of variable-density effects and tidal dynamics. Head measurements were collected along a transect perpendicular to the shoreline at a site south of the city of Adelaide, South Australia, to determine the transient flow pattern. This paper presents a detailed overview of the measurement procedure, data post-processing methods and uncertainty analysis in order to assess how measurement errors affect the accuracy of the inferred flow patterns. A particular difficulty encountered was that some of the piezometers were leaky, which necessitated regular measurements of the electrical conductivity and temperature of the water inside the wells to correct for density effects. Other difficulties included failure of pressure transducers, data logger clock drift and operator error. The data obtained were sufficiently accurate to show that there is net seaward horizontal flow of freshwater in the top part of the aquifer, and a net landward flow of saltwater in the lower part. The vertical flow direction alternated with the tide, but due to the large uncertainty of the head gradients and density terms, no net flow could be established with any degree of confidence. While the measurement problems were amplified under the prevailing conditions at the site, similar errors can lead to large uncertainties everywhere. The methodology outlined acknowledges the inherent uncertainty involved in measuring groundwater flow. It can also assist to establish the accuracy requirements of the experimental setup.  相似文献   

5.
梯形断面明渠中纵向离散系数研究   总被引:9,自引:0,他引:9       下载免费PDF全文
基于最大信息熵原理,提出了一种确定梯形断面纵向流速分布的方法,研究了梯形断面明渠中流动横向不均匀和垂向不均匀对纵向离散的影响,建立了一个针对梯形断面明渠流动的纵向离散系数计算公式。公式将纵向离散系数与反映断面流速分布不均匀和壁面影响的参数建立联系,机理更加清楚,预测结果与其他学者相应的实验结果吻合良好,该方法理论推导过程严密,不依赖于特定的试验结果或实际测量资料,为梯形断面明渠的污染物混合输移过程中参数确定提供了有效的方法和途径。  相似文献   

6.
Backwater tidal sloughs are commonly found at the landward boundary of estuaries. The Cache Slough complex is a backwater tidal region within the Upper Sacramento–San Joaquin Delta that includes two features that are relevant for resource managers: (1) relatively high abundance of the endangered fish, delta smelt (Hypomesus transpacificus), which prefers turbid water and (2) a recently flooded shallow island, Liberty Island, that is a prototype for habitat restoration. We characterized the turbidity around Liberty Island by measuring suspended-sediment flux at four locations from July 2008 through December 2010. An estuarine turbidity maximum in the backwater Cache Slough complex is created by tidal asymmetry, a limited tidal excursion, and wind-wave resuspension. During the study, there was a net export of sediment, though sediment accumulates within the region from landward tidal transport during the dry season. Sediment is continually resuspended by both wind waves and flood tide currents. The suspended-sediment mass oscillates within the region until winter freshwater flow pulses flush it seaward. The hydrodynamic characteristics within the backwater region such as low freshwater flow during the dry season, flood tide dominance, and a limited tidal excursion favor sediment retention.  相似文献   

7.
A model study of turbidity maxima in the York River estuary,Virginia   总被引:2,自引:0,他引:2  
A three-dimensional numerical model is used to investigate the mechanisms that contribute to the formation of the turbidity maxima in the York River, Virginia (U.S.). The model reproduces the basic features in both salinity and total suspended sediments (TSS) fields for three different patterns. Both the prominent estuary turbidity maximum (ETM) and the newly discovered secondary turbidity maximum (STM) are simulated when river discharge is relatively low. At higher river inflow, the two turbidity maxima move closer to each other. During very high river discharge event, only the prominent turbidity maximum is simulated. Diagnostic model studies also suggest that bottom resuspension is an important source of TSS in both the ETM and the STM, and confirm the observed association between the turbidity maxima and the stratification patterns in the York River estuary. The ETM is usually located near the head of salt intrusion and the STM is often associated with a transition zone between upriver well mixed and downriver more stratified water columns. Analysis of the model results from the diagnostic studies indicates that the location of the ETM is well associated with the null point of bottom residual flow. Convergent bottom residual flow, as well as tidal asymmetry, is the most important mechanisms that contribute to the formation of the STM. the STM often exists in a region with landward decrease of bottom residual flow and net landward sediment flux due to tidal asymmetry. The channel depth of this region usually decreases sharply upriver. As channel depth decreases, vertical mixing increases and hence the water column is better mixed landward of the STM.  相似文献   

8.
Lateral Saltwater Intrusion in the North Channel of the Changjiang Estuary   总被引:2,自引:0,他引:2  
Saltwater intrusion typically develops in the along-channel direction but exceptions can be found in bifurcated estuaries. Based on the observational data, we found that the saltwater intrusion in the upper reaches of the North Channel (NC) of Changjiang Estuary is dominated by the lateral saltwater intrusion from a small northern outlet (denoted as NONC) of this channel. This phenomenon has severe effects on the freshwater usage in this region. To investigate the underlying mechanisms of this pattern of intrusion, numerical experiments were conducted using a well-validated model. A flux decomposing method was used to decompose the process of saltwater intrusion into several mechanisms. During the neap tide, the saltwater begins to intrude landward into the NONC through shear transport induced by estuarine circulation. During the transition period between the neap tide and the following spring tide, the saltwater that previously reached the NONC further intrudes into the NC via Lagrangian and tidal pumping transports, causing a significant salinity increase in the middle and upper reaches of the NC. During the spring tide and the subsequent middle tide, saltwater intrusion in the NONC retreats. The impacts of the topography of the NONC and the wind stress on this lateral saltwater intrusion were also evaluated in this study.  相似文献   

9.
The Sungai Merbok estuary, in wet tropical Peninsular Malaysia, borders the Straits of Malacca. Tide, current, and salinity data are used to describe the salient hydrographic features of the mangrove-fringed system. The Sungai Merbok estuary is characterized by a 1.7 m semidiurnal tide with a 0.16 form number, peak currents of 1.3 m s?1, and mean freshwater discharge of 20 m3 s?1. The system is classified as 2a/2b estuary (Hansen and Rattray 1966) or 1a/1b during periods of low runoff. Gravitational circulation is highly variable (but coincides with the neap stratification) and vertical stratification varies from 10?2 to 1. The estuary displays a pronounced fortnightly neap-spring stratification-destratification cycle. The effective longitudinal dispersion coefficient is approximately 100 m2 s?1.  相似文献   

10.
A radioisotope tracer (82Br) was injected into a sand aquifer adjacent to a tidal creek at Hat Head, New South Wales, Australia. The injection was timed to coincide with the falling limb of a spring tide in August 2001 and was repeated in July 2002 during a period of neap tides. The tracer movement was detected using gamma logging and fixed gamma detectors in a bore 0.9 m from an injection bore and in a line approximately perpendicular to the creek. Movement of the tracer was detected by comparing measured gamma activity with calibrated activities determined under laboratory conditions. Net movement of the tracer indicated approximately 0.001 m/day laterally towards the creek and 0.07 m/day vertically upward during spring tide conditions. This pattern is reversed during neap tide conditions with little net vertical movement but horizontal movement of 0.15 m/day. The measurements indicated an oscillatory motion coinciding with the tide but lagging the tide by approximately 4.5–6.5 h. The vertical flow during spring tides indicates that vertical movement of the saline interface occurs and results in mixing of different water types beneath the banks of the creek.  相似文献   

11.
The effects of estuarine circulation and tidal trapping on transport in the Hudson estuary were investigated by a large-scale, high-resolution numerical model simulation of a tracer release. The modeled and measured longitudinal profiles of surface tracer concentrations (plumes) differ from the ideal Gaussian shape in two ways: on a large scale the plume is asymmetric with the downstream end stretching out farther, and small-scale (1–2 km) peaks are present at the upstream and downstream ends of the plume. A number of diagnostic model simulations (e.g., remove freshwater flow) were performed to understand the processes responsible for these features. These simulations show that the large-scale asymmetry is related to salinity. The salt causes an estuarine circulation that decreases vertical mixing (vertical density gradient), increases longitudinal dispersion (increased vertical and lateral gradients in longitudinal velocities), and increases net downstream velocities in the surface layer. Since salinity intrusion is confined to the downstream end of the tracer plume, only that part of the plume is effected by those processes, which leads to the largescale asymmetry. The small-scale peaks are due to tidal trapping. Small embayments along the estuary trap water and tracer as the plume passes by in the main channel. When the plume in the main channel has passed, the tracer is released back to the main channel, causing a secondary peak in the longitudinal profile.  相似文献   

12.
Buoyancy input as fresh water exerts a stratifying influence in estuaries and adjacent coastal waters. Predicting the development and breakdown of such stratification is an inherently more difficult problem than that involved in the analogous case of stratification induced by surface heating because the buoyancy input originates at the lateral boundaries. In the approach adopted here, we have adapted the energy considerations used in the surface heating problem to describe the competition between the stabilizing effect of fresh water and the vertical mixing brought about by tidal and wind stirring. Freshwater input induces horizontal gradients which drive the estuarine circulation in which lighter fluid at the surface is moved seaward over heavier fluid moving landward below. This contribution to stratification is expected to vary in time as the level of turbulence varies over the tidal cycle. The density gradient also interacts directly with the vertical shear in the tidal current to induce a periodic input to stratification which is positive on the ebb phase of the tide. Comparison of this input with the available stirring energy leads to a simple criterion for the existence of strain-induced stratification. Observations in a region of Liverpool Bay satisfying this criterion confirm the occurrence of a strong semidiurnal variation in stratification with complete vertical mixing apparent around high water except at neap tides when more permanent stratification may develop. A simulation of the monthly cycle based on a model including straining, stirring, and the estuarine circulation is in qualitative agreement with the main features of the observations.  相似文献   

13.
The salinity intrusion in the Fraser estuary, Canada, migrates landward during the rising tide and is flushed downstream on the falling tide. Suspended sediment concentrations are higher during unstratified flows than during stratified conditions. Mixing between the upper layer and the salinity intrusion is restricted by a strong density interface on the rising tide but enhanced mixing occurs across a weak salinity gradient on the falling tide. A weakly-developed estuarine turbidity maximum (ETM) and positive internal waves occur at the tip of the salinity intrusion as it migrates seaward. Spectral analyses of optical backscatter probe time series indicate that sediment movement from the upper layer is restricted by the density interface on the rising tide. During the falling tide, sediment mixing is enhanced by internal waves at the surface of the ETM. Internal waves generated at the density interface have a higher frequency during the rising tide than the falling tide.  相似文献   

14.
An analysis of the vertical structure of nontidal longitudinal currents and salinity in a reach of the lower Potomac River Estuary suggests that values for vertical eddy viscosity and eddy diffusivity scale with water depth H, tidal current amplitude U and bulk Richardson number according to conventional empirical formulas. However, the constant which relates the vertical eddy coefficients under conditions of neutral stability to UH is found to be an order of magnitude less than that expected for tidal conditions. Analyses also suggest that the degree of enhancement of longitudinal dispersion by the shear effect associated with the nontidal currents is a strong function of bulk Richardson number.  相似文献   

15.
An ephemeral estuarine turbidity maximum (ETM) occurs at high water in the macrotidal Taf estuary (SW Wales, United Kingdom). A new mechanism of ETM formation, due to resuspension and advection of material by flood tidal currents, is observed that differs from classical mechanisms of gravitational circulation and tidal pumping. The flood tide advances across intertidal sand flats in the main body of the estuary, progressively entraining material from the rippled sands. Resuspension creates, a turbid front that has suspended sediment concentrations (SSC) of about 4,000 mg I−1 by the time it reaches its landward limit which is also the landward limit of salt penetration. This turbid body constitutes the ETM. Deposition occurs at high slack water but the ETM retains SSC values up to 800 mg I−1, 1–2 orders of magnitude greater than ambient SSC values in the river and estuarine waters on either side. The ETM retreats down the estuary during the ebb; some material is deposited thinly across emergent intertidal flats and some is flushed out of the estuary. A new ETM is generated by the next flood tide. Both location and SSC of the ETM scale on Q/R3 where Q is tidal range and R is river discharge. The greatest expression of the ETM occurs when a spring tide coincides with low river discharge. It does not form during high river discharge conditions and is poorly developed on neap tides. Particles in the ETM have effective densities (120–160 kg m−3) that are 3–4 times less than those in the main part of the estuary at high water. High chlorophyll concentrations in the ETM suggest that flocs probably originate from biological production in the estuary, including production on the intertidal sand flats.  相似文献   

16.
钱塘江下切河谷充填物沉积序列和分布模式   总被引:1,自引:1,他引:0       下载免费PDF全文
以最新钻取的SE2孔沉积物为重点研究对象,对晚第四纪以来钱塘江下切河谷充填物的沉积特征和沉积相进行了精细研究,重建了研究区地层结构和层序地层格架,总结了强潮型钱塘江河口湾和下切河谷的沉积模式。钱塘江下切河谷充填物自下而上依次发育河床、河漫滩、古河口湾、近岸浅海和现代河口湾5种沉积相类型,表现为一个较完整的Ⅰ型层序,其内部层序界面、初始海泛面、最大海泛面、海侵和海退潮流侵蚀面、体系域内海侵面发育。钱塘江下切河谷充填物自海向陆可划分为海向段、近海段、近陆段和陆向段4段,各段沉积序列和海陆相互作用程度不同。在钱塘江下切河谷充填物中海陆过渡部位首次明确划分出了古河口湾相,并对其沉积特征和分布模式进行了初步探讨;其形成时间在9000 a BP左右,具有与现代河口湾不同的沉积特征,表现为中部为潮道砂体沉积,向陆渐变为受潮流影响的河流沉积,两侧被潮坪或盐沼沉积包围,沉积物在平面上自陆向海呈现粗-细-粗的分布模式。现代河口湾平面上自陆向海依次发育受潮流影响的河流沉积、粉砂质砂坎、潮道-潮流砂脊复合体和湾口泥质沉积区,沉积物呈现粗-细-粗-细的分布模式,与大多数河口湾常见的粗-细-粗的分布格局明显不同。  相似文献   

17.
A process-based numerical model is applied to investigate sediment transport dynamics and sediment budget in tide-dominated estuaries under different salt marsh erosion scenarios. Using a typical funnel-shaped estuary (Ribble Estuary, UK) as a study site, it is found that the remobilization of sediments within the estuary is increased as a result of the tidal inundation of the eroded salt marsh. The landward export of the finest sediment is also intensified. The relationship between salt marsh erosion and net landward export of sediments has been found to be non-linear—with the first 30% salt marsh erosion causing most of the predicted export. The presence of vegetation also influences the sediment budget. Results suggest that vegetation reduces the amount of sediment being transported upstream. Again, the trapping effect of salt marsh in terms of plant density is non-linear. Whilst a vegetated surface with a stem density of 64 plants/m2 decreased the net landward export of very fine sand by around 50%, a further increase in stem density from 64 to 512 plants/m2 had a relatively small effect.  相似文献   

18.
This paper analyzes thermal energy transport in the narrow and tidally energetic Guadalquivir River Estuary (SW Spain). Measurements from a comprehensive monitoring campaign (2008–2011) reveal the forcing factors of the temperature field and its spatio-temporal variability. The along-channel thermal energy gradient reaches magnitudes of ~375 J/m4 near the mouth during the summer and winter. The water temperature is primarily controlled by shortwave radiation, latent heat transfer through the free surface, and tidal advection, whereas it depends less on freshwater discharge and longitudinal dispersion. The tidally averaged effective longitudinal thermal dispersion coefficient was evaluated at several stretches for each tidal cycle. The mean values of the coefficient tend to increase landward and are on the order of ~103, larger than (but of the same order of magnitude as) the salinity coefficient values. Based on these analyses, a deterministic operational model for thermal energy transport was developed. The model solves the tidally and cross-sectionally averaged advection–dispersion equation for the thermal energy balance and obtains accurate fits of the subtidal temperature field at any location within the estuary. The modeled water temperatures agreed well with the observations at all the stations (coefficients of determination, R 2 greater than 0.98), even after the seasonal oscillation in radiation was removed (R 2?>?0.77).  相似文献   

19.
Settling velocities of suspended cohesive sediment in estuaries vary over a range of several orders in magnitude. Variations in the suspended sediment concentration are often considered as the principal cause. Turbulence and the suspended sediment concentration, as well as other factors such as salinity, dissolved organic substances, flocculation ability, and the rate of floc growth affect setting velocities. A laterally–averaged finite difference model for hydrodynamics and cohesive sediment transport is developed and applied in the Tanshui River estuary, Taiwan. The model has been calibrated and verified with water surface elevation, longitudinal velocity, salinity, and cohesive sediment measured. The overall performance of the model is in qualitative agreement with the available data. The model is used to investigate the influence of settling velocity on cohesive sediment transport dynamics. The simulation indicates that the turbidity maximum zone is near Kuan–Du. When settling velocities increase the surface cohesive sediment concentration at Kuan–Du station trends to decrease and bottom cohesive sediment concentration increases. Both surface and bottom cohesive sediment concentrations decrease at Taipei Bridge and Pa–Ling Bridge. This implies that suspended sediment advected seaward and deposited. There is consequently a net seaward flux of suspended sediment near surface, and a net landward flux near the bed.  相似文献   

20.
李杨  唐仲华  罗美芳 《地下水》2006,28(6):101-103
近岸海水与潜水含水层之间存在着密切的水力联系.近岸含水层水位随潮水的波动而波动,同时还与海水之间发生着水量交换.因此海水与地下水之间是一个相互联系的整体.本文建立平面二维潜水含水层与海水耦合数值模型,并通过结果分析近岸潜水水位波动特点.结果表明,随着岸上离海岸距离的增加,地下水位波动存在着相位差和振幅衰减,并且水位上升速度较快.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号