首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
2019年10月28日甘肃夏河MS5.7地震发生于临潭—宕昌断裂与西秦岭北缘断裂之间,震中周边断裂的发育情况不明,断裂研究程度低,且无明确的地表断裂与该地震相关。本文通过遥感解译和野外调查,完善了震中周边断裂即临潭—宕昌断裂、夏河断裂东段和达麦—合作断裂的几何展布图像和新活动特征,结合小震精定位和震源机制,综合分析并构建了夏河地震的发震构造模型。研究结果显示:夏河地震的周边断裂包括两条已知、但研究程度不高的西秦岭北缘断裂和临潭—宕昌断裂,以及仅标绘在地质图上、活动未知的夏河断裂和达麦—合作断裂;首次发现了夏河断裂东段的新活动,活动性质兼具左旋走滑和向北逆冲,前人基于小震定位判定的发震断层(走向312°,倾向42°,倾角48°)可能是夏河断裂东段派生的一条隐伏分支,该分支在平面上与夏河断裂东段呈小角度斜交(夹角22°),在深部归并到夏河断裂,滑动方向(滑动角48°)与夏河断裂东段的活动性质(兼具逆冲和左旋)一致。夏河断裂东段在构造上可能归属于临潭—宕昌断裂西段,是西秦岭北缘断裂正花状构造的组成部分,2019年夏河MS5.7地震代表临潭—宕昌断裂西段的构造活动。   相似文献   

2.
武都—康县断裂带活动性初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
武都—康县断裂是位于甘东南地区区域大断裂中的一条左旋走滑并兼有逆冲分量的活动断裂。通过卫片解译和野外地质调查,对活动断裂几何分段、地貌和地质特征进行了研究。结果表明:武都-康县断裂可分为西(F1)和东(F2)两段,分别为上板桥-长坝镇断裂段和沈家园-窑坪断裂段;晚更新世以来断裂的活动形成了丰富的断错地貌现象,例如水系和山脊左旋位错、断层三角面、断层崖、垭口、鞍部、跌水和地裂缝。断裂西段为全新世断层,年代距今(1.730±0.111)ka至(1.670±0.141)ka之间,活动性比较强烈,并在甘泉一带发现全新世活动特征明显,主要以左旋走滑为主,同时伴有逆冲分量;而东段可能是晚更新世断层,以逆冲作用为主,并伴有左旋水平运动。  相似文献   

3.
天山是远离板块边界的陆内造山带,特点是构造变形复杂强烈,强震多发。天山南北向的变形速率约为20mm/a,约为印度板块与欧亚板块汇聚速率的一半左右,这一变形量是如何被天山吸收的,天山的构造变形又是如何进行的,其构造样式如何?这些关键性问题目前仍存在较大的争论。天山地区主要发育有3组构造带,最显著的是位于南北两侧山前与山体近乎平行的逆断层—褶皱带,同时,在山体内部还发育有一系列NW向的右旋走滑断裂和NEE向的左旋走滑断裂,这些断裂共同控制了天山的新生代构造变形。目前,对于天山山前的逆断裂系统晚第四纪变形特征和滑动速率等方面研究非常丰富,对天山内部NW向的右旋走滑断裂晚第四纪活动特征也有一些定量数据,而对NEE向断裂晚第四纪以来的活动特征目前尚处空白状态。本文以迈丹断裂为切入点,通过对该断裂晚第四纪以来的运动学特征、滑动速率和古地震活动特征等资料的详细研究,获得西南天山地区NEE向断裂晚第四纪活动参数,同时,通过收集和补充调查天山其他主要活动断裂晚第四纪以来的运动特征,完善天山活动断裂几何学和运动学图像;结合已有研究资料、地震活动特征和GPS数据,研究天山内部不同方向、不同运动性质的断裂的活动特征,分析天山这些断裂在天山的构造变形中发挥了怎样的作用,在此基础上进一步研究天山地区的构造变形样式及其与地震的关系。本文得到的主要认识有:迈丹断裂东段控制的阿合奇谷地内发育有多级晚第四纪地貌面,利用光释光、10Be暴露年龄以及14C等方法对玉山古溪两岸的阶地年龄进行了限定,并与气候变化序列进行了比对,得到阶地的废弃形成发生在间冰期或者冰期—间冰期的转换阶段。玉山古溪T6阶地(~20ka)之前,河流平均下切速率与迈丹断裂的活动速率基本一致,表明晚更新世晚期之前,河流的下切与阶地的形成主要受迈丹断裂活动影响,是构造隆升导致的河流快速下切。~20ka之后河流的下切速率开始增大,至全新世中晚期,河流下切速率甚至达到~12mm/a,远远大于断裂的活动速率,表明晚更新世末期以来,河流的下切与阶地的形成主要受气候因素驱动。全新世以来河流下切速率的快速增大,很可能是由于全新世期间气候快速波动造成的。迈丹断裂是一条全新世活动断裂,该断裂晚第四纪以来,以逆冲兼左旋走滑为主,通过精细测量被断错的晚第四纪地貌面和年代学测定,得到断裂的逆冲滑动速率为(1.24±0.20)mm/a,左旋走滑速率为(1.74±0.61)mm/a。迈丹断裂晚第四纪期间发生过多期断错地表的古地震事件,古地震平均复发间隔为3370~4265a,断裂最新一次古地震事件发生在1.76ka之后。迈丹断裂是柯坪推覆构造的根部断裂,该断裂晚第四纪以来发生过多次断错地表的强震事件。古地震研究表明,推覆体前缘的柯坪断裂晚第四纪以来也发生过多期古地震事件,而且两条构造上古地震事件的发生年代很接近,尽管我们并不能确定迈丹断裂最新一次古地震事件是否与柯坪塔格断裂上的是否为同一次事件,但这一现象反映该地区地震破裂存在两种可能:(1)迈丹断裂与柯坪塔格断裂上最新一次古地震事件是同一次事件,这表明迈丹断裂与柯坪塔格断裂具有级联破裂的特征;(2)迈丹断裂上最新一次古地震事件与柯坪塔格断裂上的不是同一期事件,分别单独破裂,虽然两条断裂上的古地震事件不是同期破裂,但均发生在~1.7ka之后,时间间隔不长,表明柯坪推覆构造根部的迈丹断裂和前缘的柯坪塔格断裂之间可能存在相互的影响或关联,柯坪地区的强震活动具有丛集发生的特征。迈丹断裂晚第四纪活动的发现,表明西南天山柯坪推覆构造与天山其他地区的推覆构造变形模式不同,推覆体最前缘的柯坪断裂活动强烈,而根部断裂晚第四纪以来也有很强的活动,断裂的新活动并没有完全迁移到推覆体前缘的新生构造带上,这可能是一种无序或反序的构造变形模式。西南天山地区的左旋走滑运动主要发生在推覆体根部的迈丹断裂上,推覆体前缘的逆断裂—背斜以逆冲运动为主,没有明显的走滑运动。GPS资料表明,普昌断裂以西的地区,应变没有完全闭锁集中在根部的迈丹断裂上,一部分应变通过滑脱面传递到前缘的逆断裂-背斜带上;在柯坪推覆构造的东部地区,从根部的迈丹断裂至前缘的柯坪塔格断裂可能是一个孕震体系,震间的形变主要在推覆体根部的构造上闭锁,前缘构造基本没有明显变形,这可能是柯坪推覆构造东西两侧中小地震活动存在明显差异的主要原因。西南天山还发育有两条NEE走向的断裂,通过变形地貌测量与年代学测定得到那拉提断裂晚第四纪以来以左旋逆冲运动为主,断裂逆冲速率~2.1 mm/a,左旋走滑速率为~2.5mm/a;克敏断裂也是一条左旋走滑断裂,断裂的左旋走滑速率为~1.5mm/a。西南天山3条NEE向的断裂带吸收了~6mm/a的左旋走滑运动,与塔里木斜向俯冲造成的左旋走滑运动量基本一致,这表明塔里木斜向俯冲造成的左旋走滑运动在西南天山地区基本被分解吸收。西南天山地区吸收了塔里木向天山俯冲汇聚绝大部分的压缩速率和左旋剪切运动,挤压缩短在山体内部和山前的新生褶皱带上均有分配,左旋剪切则主要发生在天山内部高角度的边界断裂上,整个西南天山构成了一个大型的花状构造。在天山南北两侧,构造变形以逆断层为代表的地壳缩短和增厚为特征,而天山内部则为一个大型的剪切带,同时还具有明显的逆冲运动。天山地区主要存在两组走滑断裂,一是NEE向的左旋走滑构造,另一组是NW-NWW向的右旋走滑断裂,这两组断裂主要发育在天山内部,但这些断裂共同调节了山体内部的走滑剪切运动,山体内部高角度的走滑逆冲断裂与山前低倾角的逆冲断裂系共同组成了天山构造变形图像。天山地区的压缩变形主要分布在天山南北两侧的山前地区,而天山内部的活动断裂则具有明显的走滑分量,在剖面上,整个天山形成了一个大型的花状构造。尽管天山整体的构造变形为西强东弱,不同地区变形强度和幅度差异较大,但是天山南北和东西两侧的构造变形样式还是基本对称的。受塔里木块体向北的挤压作用,西南天山地区总体走向为NEE向,南天山东段整体则呈NWW走向,与塔里木与南天山的分界断裂在形态上构成一个"三角形"向北楔入。整个西南天山内部是一个大型的左旋剪切带,南天山东段整体为右旋走滑性质,塔里木和南天山之间的边界断裂以逆冲运动为主。在天山北部受到刚性准噶尔地块阻挡的作用下,北天山西段构造线整体NW-NWW向,而90°E以东的北天山地区构造线整体为NEE走向,与近东西走向的准噶尔与北天山的分界断裂在形态上构成一个倒"三角形"向南楔入。北天山西段右旋走滑性质的博—阿断裂和喀什河断裂所围限的楔形块体整体向西运动,北天山东段NEE向的左旋走滑断裂构成了倒"三角楔"的东边界,准噶尔与北天山的分界逆冲断裂带是"三角楔"的底界。在近南北向的挤压应力下,天山的构造变形整体以压缩变形为主,山体内部发育的一系列走滑构造带表明,天山在东西方向上还存在一定的侧向挤出,这些走滑断裂调节了天山不同地区压缩量的差异。地质数据和GPS资料均证实,天山地区逆冲运动量要明显大于走滑分量,山体内部走滑断裂所控制的块体虽然存在向东西两侧的侧向挤出,但与南北向最大达~18mm/a的压缩速率相比,变形速率不高,侧向挤出幅度有限。  相似文献   

4.
丽江-小金河断裂与锦屏山断裂共同控制着青藏高原东南边界,研究该断裂的滑动速率有助于理解青藏高原东南缘区域变形模式。本文通过高分辨率遥感影像解译与野外地质调查,发现该断裂错断了一系列河流阶地与洪积扇,且以左旋走滑为主兼具倾滑分量。通过无人机断错地貌测量与碳同位素断代,获得红星-尖山营断裂段全新世左旋走滑速率为(3.32±0.22)mm/a,垂直滑动速率为(0.35±0.02)mm/a;汝南-南溪断裂段北支全新世左旋走滑速率为(2.37±0.20)mm/a。  相似文献   

5.
曲江断裂位于川滇菱形块体的东南端,沿该断裂地震活动强烈,是1970年MS7.7通海地震的发震断裂。基于遥感影像解译、野外地质和构造地貌观测结果、断裂几何学及运动学解析,总结认为曲江断裂第四纪以来以右旋走滑为主且具有倾滑运动分量,沿断裂走向运动学存在差异。NW段以右旋走滑为主,局部有明显正断分量;SE段为右旋走滑兼NE盘向SW盘逆冲。曲江断裂在全新世活动强烈,沿走向错断地貌广泛发育,累积水平位错量3.7~830m。通过对错断地质体、地貌单元的断距进行测量,并对其进行14C或光释光定年,得到断裂晚第四纪平均滑动速率为2.3~4.0mm/a。断裂活动速率的变化与运动学分段有很好的响应:NW段断裂以右旋走滑为主,滑动速率3.0mm/a,存在0.6~0.8mm/a的构造抬升;由于受到小江断裂的影响,断裂SE段逆冲分量增加,滑动速率相应降低(3.0mm/a),存在1.1mm/a的构造抬升,表明断裂NW段和SE段存在差异抬升。  相似文献   

6.
2013年7月22日甘肃岷县-漳县Ms6.6地震发生在临潭-宕昌断裂的东段,遥感和DEM研究表明,该断裂东段在晚第四纪以来仍有活动,自岷县至宕昌,断裂由左旋走滑兼具逆冲性质转为以左旋走滑性质为主。现场烈度和灾害调查发现,Ⅶ度区内形成Ⅷ度的异常点,在Ⅵ度区内形成Ⅶ度的异常点,这些异常点分布在沿断裂带附近约2km的范围内,主要分布在断层的上盘。进一步研究表明,由于临潭-宕昌断裂在岷县以南以走滑运动为主,强震动主要沿断裂传播,同时由于断裂活动形成软弱地基,强震动引起地基失效造成灾害,形成了烈度异常点。  相似文献   

7.
洗马林断裂为洗马林-水泉断裂的西北段,是洋河盆地北缘断裂带的组成断裂之一,位于张家口-渤海断裂构造带与山西断陷盆地带的复合部位,其构造几何和变形特征是研究两大构造带相互作用的良好素材。文中采用地质地貌调查和地球物理探测等手段对该断裂进行探查和研究,阐述了断裂的几何展布、构造特征与活动性,分析了其与邻近断裂的构造关系,讨论了其在洋河盆地北缘断裂带中的变形转换作用。研究结果显示:洗马林断裂是1条以走滑为主、兼具逆冲的断裂,晚更新世中晚期以来和全新世期间的垂直滑动速率分别为0.17mm/a和0.25~0.38mm/a,水平滑动速率为0.58~0.67mm/a和0.50mm/a。断裂由NW向的主体断层和NE向的次级断层交替组合形成,NW向断层表现为高角度逆左旋走滑,NE向断层显示出正断活动,2组构造具有特定的构造几何关系,运动方式和变形特征相互匹配;在洋河盆地北缘断裂带的活动过程中,NW向的洗马林断裂起到了类似转换断层的变形转换与应力传递作用,其左旋走滑活动使得两端的NE向正断层活动得以协调进行。  相似文献   

8.
2013年8月31日5.9级地震的震中地区位于川滇菱形块体西北边界附近,地质构造复杂,近SN向的金沙江断裂带与NW向的德钦-中甸-大具断裂在此交会。野外地质、地貌调查结果表明,金沙江断裂带的曾大同断裂、里甫-日雨断裂带、郎中断裂、古学断裂等晚更新世—全新世表现出明显的活动迹象,运动性质以右旋走滑为主,兼有逆冲滑动分量,其全新世右旋水平滑动速率为3.5~4.3mm/a,垂直滑动速率为0.9~1.1mm/a。德钦-中甸-大具断裂具明显的右旋走滑兼正断性质,最新活动时代为晚更新世—全新世,水平滑动速率为1.7~2.0mm/a,垂直滑动速率为0.6~0.7mm/a。该断裂与金沙江断裂带一起,共同构成了川滇菱形块体的西北边界。它是青藏高原EW向伸展作用下的一条重要的右旋走滑断裂,起着调节高原物质向SE运动的作用。据地震烈度等震线长轴方向、震源机制解资料和滑坡崩塌体展布位置分析认为,2013年奔子栏M5.9地震的发生与德钦-中甸-大具断裂的活动密切相关。  相似文献   

9.
2013年7月22日甘肃岷县漳县Ms6.6级地震发生在临潭—宕昌断裂的东段,遥感和DEM研究表明,该断裂东段在晚第四纪以来仍有活动,自岷县至宕昌,断裂由左旋走滑兼具有逆冲性质转变为以左旋走滑性质为主。现场烈度和灾害调查发现,Ⅶ度区内形成Ⅷ度的异常点,在Ⅵ度区内形成Ⅶ度的异常点,这些异常点沿断裂带附近约2km的范围展布,主要分布在断层的上盘。进一步的研究表明,由于临潭-宕昌断裂在岷县以南以走滑运动为主,强震动主要沿断裂传播,同时由于断裂活动形成软弱地基,强震动引起地基失效造成灾害,形成了烈度异常点。  相似文献   

10.
2013年7月22日,在甘肃岷县漳县交界处发生MS6.6地震,地震震中位置靠近临潭—宕昌断裂.本文通过构建有限断层模型,利用国家强震动台网中心提供的12条强地面运动三分量资料,通过波形反演方法来研究这次地震的震源破裂过程.结果显示这次地震是发生在甘东南地区岷县—宕昌断裂带东段附近的一次MW6.1级逆冲兼具左旋走滑破裂事件,最大滑动量约为80cm.发震断层走向及滑动性质与岷县—宕昌断裂吻合,推断本次地震与东昆仑断裂向北的扩展和推挤密切相关,是岷县—宕昌断裂进一步活动的结果.  相似文献   

11.
Strike-slip fault plays an important role in the process of tectonic deformation since Cenozoic in Asia. The role of strike-slip fault in the process of mountain building and continental deformation has always been an important issue of universal concern to the earth science community. Junggar Basin is located in the hinterland of Central Asia, bordering on the north the Altay region and the Baikal rift system, which are prone to devastating earthquakes, the Tianshan orogenic belt and the Tibet Plateau on the south, and the rigid blocks, such as Erdos, the South China, the North China Plain and Amur, on the east. Affected by the effect of the Indian-Eurasian collision on the south of the basin and at the same time, driven by the southward push of the Mongolian-Siberian plate, the active structures in the periphery of the basin show a relatively strong activity. The main deformation patterns are represented by the large-scale NNW-trending right-lateral strike-slip faults dominated by right-lateral shearing, the NNE-trending left-lateral strike-slip faults dominated by left-lateral shearing, and the thrust-nappe structure systems distributed in piedmont of Tianshan in the south of the basin. There are three near-parallel-distributed left-lateral strike-slip faults in the west edge of the basin, from the east to the west, they are:the Daerbute Fault, the Toli Fault and the Dongbielieke Fault. This paper focuses on the Dongbielieke Fault in the western Junggar region. The Dongbielieke Fault is a Holocene active fault, located at the key position of the western Junggar orogenic belt. The total length of the fault is 120km, striking NE. Since the late Quaternary, the continuous activity of the Dongbielieke Fault has caused obvious left-lateral displacement at all geomorphologic units along the fault, and a linear continuous straight steep scarp was formed on the eastern side of the Tacheng Basin. According to the strike and the movement of fault, the fault can be divided into three segments, namely, the north, middle and south segment. In order to obtain a more accurate magnitude of the left-lateral strike-slip displacement and the accumulative left-lateral strike-slip displacement of different geomorphic surfaces, we chose the Ahebiedou River in the southern segment and used the UAV to take three-dimensional photographs to obtain the digital elevation model(the accuracy is 10cm). And on this basis, the amount of left-lateral strike-slip displacement of various geological masses and geomorphic surfaces(lines)since their formation is obtained. The maximum left-lateral displacement of the terrace T5 is(30.7±2.1)m and the minimum left-lateral displacement is(20.1±1.3)m; the left-lateral displacement of the terrace T4 is(12±0.9)m, and the left-lateral displacement of the terrace T2 is(8.7±0.6)m. OSL dating samples from the surface of different level terraces(T5, T4, T2 and T1)are collected, processed and measured, and the ages of the terraces of various levels are obtained. By measuring the amount of left-lateral displacements since the Late Quaternary of the Dongbielieke Fault and combining the dating results of the various geomorphic surfaces, the displacements and slip rates of the fault on each level of the terraces since the formation of the T5 terrace are calculated. Using the maximum displacement of(30.7±2.1)m of the T5 terrace and the age of the geomorphic surface on the west bank of the river, we obtained the slip rate of(0.7±0.11)mm/a; similarly, using the minimum displacement of(20.1±1.3)m and the age of the geomorphic surface of the east bank, we obtained the slip rate of(0.46±0.07)mm/a. T5 terrace is developed on both banks of the river and on both walls of the fault. After the terraces are offset by faulting, the terraces on foot wall in the left bank of the river are far away from the river, and the erosion basically stops. After that, the river mainly cuts the terraces on the east bank. Therefore, the west bank retains a more accurate displacement of the geomorphic surface(Gold et al., 2009), so the left-lateral slip rate of the T5 terrace is taken as(0.7±0.11)mm/a. The left-lateral slip rate calculated for T4 and T2 terraces is similar, with an average value of(0.91±0.18)mm/a. In the evolution process of river terraces, the lateral erosion of high-level terrace is much larger than that of low-level terrace, so the slip rate of T4 and T2 terraces is closer to the true value. The left-lateral slip rate of the Dongbielieke Fault since the late Quaternary is(0.91±0.18)m/a. Compared with the GPS slip rate in the western Junggar area, it is considered that the NE-trending strike-slip motion in this area is dominated by the Dongbielieke Fault, which absorbs a large amount of residual deformation while maintaining a relatively high left-lateral slip rate.  相似文献   

12.
As we all know, Eastern Tienshan and Altaid in central Asia accommodate~10mm/a crustal shortening, accounting for 1/4 shortening between India and Eurasia(~40mm/a). A substantial portion of these deformations was absorbed in Altaid in the north through a combination of right-lateral strike-slip and counterclockwise vertical axis rotation of crustal blocks, but how the crustal deformation was accommodated in Eastern Tienshan is still in debate. Based on the field investigation in Jianquanzi, Barkol Tagh and Karlik Tagh in Eastern Tienshan in recent years, we identified a sinistral strike-slip fault system mapped in Eastern Tienshan. From west to east, the Jianquanzi-Tuolaiquan Fault(JTF), South Barkol Basin Fault (SBF) and Central Karliktagh Fault(CKF)constitute the tectonic frame of this large-scale fault system, which plays an important role in adjusting the strain distribution during the process of orogening in Eastern Tienshan in Quaternary even since Ceonozoic era. The fault system displays different late-Quaternary characteristics when its orientation changes with regional tectonic principal stress(NE). Specifically, the EW-trending JTF exhibits sinistral slip with little vertical component which can extend to Xiongkuer segment on EW-NW-trending SBF. The EW-NW SBF displays sinistral slip from east of Luobaoquanto, Barkol County and reverse slip with little horizontal component at east of Barkol County. In easternmost, the WNW-EW trending CKF shows sinistral slip with no obvious vertical motion. This fault system's activity coupled in the orogenic process of easternmost Tienshan, adjusting and accommodating a portion of deformation included in the orogenic process, and in turn we suggest that the deformation associated with range front fault in the orogen root may not be the only decisive way of deformation releasing.  相似文献   

13.
On the basis of dividing and comparison of the Neogene strata and their bottoms revealed by 7 drill holes in Taikang area, we completed 101 seismic profiles with a total length of 4991km. Seismic data were compared and interpreted. The results indicate that Xinzheng-Taikang Fault, as a blind fault extending from Xinzheng to Taikang, which was considered as an EW striking fault from Xuchang to Taikang before, is the boundary of Taikang uplift and Zhoukou depression, controlling the sedimentation since Neogene Period. So we named the fault the Xinzheng-Taikang Fault, which is composed of two branches, mainly, the east and west branches. The west branch strikes northwest, dipping northeast with steep angles, and the fault plane extending more than 140km in length. As revealed on the seismic profiles, the eastern segment of the west branch is normal fault, while the west segment of the branch shows characteristics of strike-slip fault. The east branch trends NW-NEE, dipping SW-SSE with the length of about 50km. Two branches form a minus flower structure, indicating the strike slip-extension tectonic background. The bottom of Neogene strata is offset about 120m by the east branch, 20m by the west branch, and the bottom of Quaternary is probably offset too. Meanwhile, latest studies suggest that the composite strip of the two branches of Xinzheng-Taikang Fault, which is a tectonic transfer zone, is the subduction zone between the two strike-slip faults. The tectonic stress tends to be released by the east-west branch fault, and the zone should be the seismogenic structure for the recent seismicity in Taikang area. In 2010, the latest earthquake ofMS4.7 occurred in this area, causing 12 people wounded. The seismogenic structure was considered to be the Xinzheng-Taikang Fault. So locating the fault exactly is of great importance to disaster prevention.  相似文献   

14.
The northeastern margin of Tibetan plateau is an active block controlled by the eastern Kunlun fault zone, the Qilian Shan-Haiyuan fault zone, and the Altyn Tagh fault zone. It is the frontier and the sensitive area of neotectonic activity since the Cenozoic. There are widespread folds, thrust faults and stike-slip faults in the northeastern Tibetan plateau produced by the intensive tectonic deformation, indicating that this area is suffering the crustal shortening, left-lateral shear and vertical uplift. The Riyueshan Fault is one of the major faults in the dextral strike-slip faults systems, which lies between the two major large-scale left-lateral strike-slip faults, the Qilian-Haiyuan Fault and the eastern Kunlun Fault. In the process of growing and expanding of the entire Tibetan plateau, the dextral strike-slip faults play an important role in regulating the deformation and transformation between the secondary blocks. In the early Quaternary, because of the northeastward expansion of the northeastern Tibetan plateau, tectonic deformations such as NE-direction extrusion shortening, clockwise rotation, and SEE-direction extrusion occurred in the northeastern margin of the Tibetan plateau, which lead to the left-lateral slip movement of the NWW-trending major regional boundary faults. As the result, the NNW-trending faults which lie between these NWW direction faults are developed. The main geomorphic units developed within the research area are controlled by the Riyueshan Fault, formed due to the northeastward motion of the Tibet block. These geomorphic units could be classified as:Qinghai Lake Basin, Haiyan Basin, Datonghe Basin, Dezhou Basin, and the mountains developed between the basins such as the Datongshan and the Riyueshan. Paleo basins, alluvial fans, multiple levels of terraces are developed at mountain fronts. The climate variation caused the formation of the geomorphic units during the expansion period of the lakes within the northeastern Tibetan plateau. There are two levels of alluvial fans and three levels of fluvial terrace developed in the study area, the sediments of the alluvial fans and fluvial terraces formed by different sources are developed in the same period. The Riyueshan Fault connects with the NNW-trending left-lateral strike-slip north marginal Tuoleshan fault in the north, and obliquely connects with the Lajishan thrust fault in the south. The fault extends for about 180km from north to south, passing through Datonghe, Reshui coal mine, Chaka River, Tuole, Ketu and Xicha, and connecting with the Lajishan thrusts near the Kesuer Basin. The Riyueshan Fault consists of five discontinuous right-step en-echelon sub-fault segments, with a spacing of 2~3km, and pull-apart basins are formed in the stepovers. The Riyueshan Fault is a secondary fault located in the Qaidam-Qilian active block which is controlled by the major boundary faults, such as the East Kunlun Fault and the Qilian-Haiyuan Fault. Its activity characteristics provide information of the outward expansion of the northeastern margin of Tibet. Tectonic landforms are developed along the Riyueshan Fault. Focusing on the distinct geomorphic deformation since late Pleistocene, the paper obtains the vertical displacement along the fault strike by RTK measurement method. Based on the fault growth-linkage theory, the evolution of the Riyueshan Fault and the related kinetic background are discussed. The following three conclusions are obtained:1)According to the characteristics of development of the three-stage 200km-long steep fault scarp developed in the landforms of the late Pleistocene alluvial fans and terraces, the Riyueshan Fault is divided into five segments, with the most important segment located in the third stepover(CD-3); 2)The three-stage displacement distribution pattern of the Riyueshan Fault reveals that the fault was formed by the growths and connections of multiple secondary faults and is in the second stage of fault growth and connection. With CD-3 as the boundary, the faults on the NW side continue to grow and connect; the fault activity time on the SE side is shorter, and the activity intensity is weaker; 3)The extreme value of the fault displacement distribution curve indicates the location of strain concentration and stress accumulation. With the stepover CD-3 as the boundary, the stress and strain on NW side are mainly concentrated in the middle and fault stepovers. The long-term accumulation range of stress on the SE side is relatively dispersed. The stress state may be related to the counterclockwise rotation inside the block under the compression of regional tectonic stress.  相似文献   

15.
As the northeast boundary of the Tibetan plateau, the Haiyuan-Liupan Shan fault zone has separated the intensely tectonic deformed Tibetan plateau from the stable blocks of Ordos and Alxa since Cenozoic era. It is an active fault with high seismic risk in the west of mainland China. Using geology and geodetic techniques, previous studies have obtained the long-term slip rate across the Haiyuan-Liupan Shan fault zone. However, the detailed locking result and slip rate deficit across this fault zone are scarce. After the 2008 Wenchuan MS8.0 earthquake, the tectonic stress field of Longmen Shan Fault and its vicinity was changed, which suggests that the crustal movement and potential seismic risk of Haiyuan-Liupan Shan fault zone should be investigated necessarily. Utilizing GPS horizontal velocities observed before and after Wenchuan earthquake(1999~2007 and 2009~2014), the spatial and temporal distributions of locking and slip rate deficit across the Haiyuan-Liupan Shan fault zone are inferred. In our model, we assume that the crustal deformation is caused by block rotation, horizontal strain rate within block and locking on block-bounding faults. The inversion results suggest that the Haiyuan fault zone has a left-lateral strike-slip rate deficit, the northern section of Liupan Shan has a thrust dip-slip rate deficit, while the southern section has a normal dip-slip rate deficit. The locking depths of Maomao Shan and west section of Laohu Shan are 25km during two periods, and the maximum left-lateral slip rate deficit is 6mm/a. The locking depths of east section of Laohu Shan and Haiyuan segment are shallow, and creep slip dominates them presently, which indicates that these sections are in the postseismic relaxation process of the 1920 Haiyuan earthquake. The Liupan Shan Fault has a locking depth of 35km with a maximum dip-slip rate deficit of 2mm/a. After the Wenchuan earthquake, the high slip rate deficit across Liupan Shan Fault migrated from its middle to northern section, and the range decreased, while its southern section had a normal-slip rate deficit. Our results show that the Maomao Shan Fault and west section of Laohu Shan Fault could accumulate strain rapidly and these sections are within the Tianzhu seismic gap. Although the Liupan Shan Fault accumulates strain slowly, a long time has been passed since last large earthquake, and it has accumulated high strain energy possibly. Therefore, the potential seismic risks of these segments are significantly high compared to other segments along the Haiyuan-Liupan Shan fault zone.  相似文献   

16.
Jinta Nanshan Fault is an important fault in northeast front of Qing-Zang Plateau, and it is crucial for determining the eastern end of Altyn Tagh Fault. However, there is still debate on its significant strike-slip movement. In this paper, we study the Late Quaternary activity of Jinta Nanshan Fault and its geological and geomorphic expressions by interpreting aerial photographs and high-resolution remote sensing images, surveying and mapping of geological and geomorphic appearances, digging and clarifying fault profiles and mapping deformation characteristics of micro-topographies, then we analyze whether strike-slip activity exists on Jinta Nanshan Fault. We get a more complete fault geometry than previous studies from most recent remote sensing images. Active fault traces of Jinta Nanshan mainly include 2 nearly parallel, striking 100°~90° fault scarps, and can be divided into 3 segments. West segment and middle segment form a left stepover with 2~2.5km width, and another stepover with 1.2km width separates the middle and east segment. We summarize geomorphic and geologic evidence relating to strike slip activity of Jinta Nanshan Fault. Geomorphic expressions are as follows:First, fault scarps with alternating facing directions; second, sinistral offset of stream channels and micro-topographies; third, pull-apart basins and compressive-ridges at discontinuous part of Jinta Nanshan Fault. Geologic expressions are as follows:First, fault plane characteristics, including extremely high fault plane angle, unstable dip directions and coexistence of normal fault and reverse fault; second, flower structures. Strike-slip rate was estimated by using geomorphic surface age of Zheng et al.(2013)and left-lateral offset with differential GPS measurements of the same geomorphic surface at field site in Fig. 4e. We calculated a strike-slip rate of (0.19±0.05)mm/a, which is slightly larger than or almost the same with vertical slip rate of (0.11±0.03)mm/a from Zheng et al.(2013). When we confirm the strike-slip activity of Jinta Nanshan, we discuss its potential dynamic sources:First, eastern extension of Altyn Tagh Fault and second, strain partitioning of northeastward extension of Qilian Shan thrust belt. The first one is explainable when it came to geometric pattern of several E-W striking fault and eastward decreasing strike slip rate, but the former cannot explain why the Heishan Fault, which locates between the the Altyn Tagh Fault and Jinta Nanshan Fault, is a pure high angle reverse fault. The latter seems more explainable, because oblique vectors may indeed partition onto a fault and manifest strike-slip activity.  相似文献   

17.
青海拉脊山断裂带新活动特征的初步研究   总被引:10,自引:0,他引:10  
拉脊山断裂带由拉脊山北缘断裂和拉脊山南缘断裂两条向NE凸出的弧形断裂所组成,分别长约230km和220km。它们是介于NNW向的热水一日月山右旋走滑断裂带和NWW向的西秦岭北缘左旋走滑断裂带之间的一个大型挤压构造区和构造转换带,也是分隔拉脊山南北两侧的西宁一民和盆地和循化一化隆盆地的重要边界断裂。沿断裂带的追踪考察,发现了其新活动的部分地质地貌证据。其最新活动时代为晚更新世晚期(仅局部为全新世早期),性质以挤压逆冲为主稍具左旋特征。该断裂的新活动可能导致了该区20余次5级左右中等地震的发生。可以说,拉脊山地区既是反映构造活动,又是反映地震活动的地震构造窗。  相似文献   

18.
The Riyue Mt. Fault is a secondary fault controlled by the major regional boundary faults (East Kunlun Fault and Qilian-Haiyuan Fault). It lies in the interior of Qaidam-Qilianshan block and between the major regional boundary faults. The Riyue Mt. fault zone locates in the special tectonic setting which can provide some evidences for recent activity of outward extension of NE Tibetan plateau, so it is of significance to determine the activity of Riyue Mt. Fault since late Pleistocene to Holocene. In this paper, we have obtained some findings along the Dezhou segment of Riyue Mt. Fault by interpreting the piedmont alluvial fans, measuring fault scarps, and excavating trenches across the fault scarp. The findings are as follows:(1) Since the late Pleistocene, there are an alluvial fan fp and three river terraces T1-T3 formed on the Dezhou segment. The abandonment age of fp is approximately (21.2±0.6) ka, and that of the river terrace T2 is (12.4±0.11) ka. (2) Since the late Pleistocene, the dextral strike-slip rate of the Riyue Mt. Fault is (2.41±0.25) mm/a. In the Holocene, the dextral strike-slip rate of the fault is (2.18±0.40) mm/a, and its vertical displacement rate is (0.24±0.16) mm/a. This result indicates that the dextral strike-slip rate of the Riyue Mt. Fault has not changed since the late Pleistocene. It is believed that, as one of the dextral strikeslip faults, sandwiched between the the regional big left-lateral strike-slip faults, the Riyue Mt. Fault didn't cut the boundary zone of the large block. What's more, the dextral strike-slip faults play an important role in the coordination of deformation between the sub-blocks during the long term growth and expansion of the northeast Tibetan plateau.  相似文献   

19.
The nearly EW-trending East Kunlun fault zone is the north boundary of the Bayan Har block.The activity characteristics and the position of the eastern end of its eastward extension are of great significance to probing into the dynamic mechanism of formation of the east edge of the Tibetan Plateau,and also lay the foundation for seismic risk assessment of the fault zone.The following results are obtained by analysis based on satellite image interpretation of landforms,surface rupture survey,terrace scarp deformation survey,and terrace dating data on the eastern part of the East Kunlun fault zone:(1)the Luocha segment is a Holocene active fault,where a reverse L-shape paleoearthquake surface rupture zone of about 50 km long is located;(2)the Luocha segment is characterized by left-lateral slip movement under the compression-shear condition since the later period of the Late Pleistocene,with a rate of 7.68–9.37 mm/a and a vertical slip rate of 0.7–0.9 mm/a,which are basically in accord with the activity rate of segments on its west side.The results indicate that it is a part of eastward extension of the East Kunlun fault zone;(3)the high-speed linear horizontal slip of the nearly EW-trending East Kunlun fault zone is blocked by the South China block at east,and transforms into the vertical movement of the nearly SN-NNE trending Minjiang fault zone and the Longmenshan fault zone,and the uplift of Longmenshan and Minjiang.The area where transform of the two tectonic systems occurred confines the position of the east end;(4)Luocha segment and Maqu segment constitute the"Maqu seismic gap",so,seismic risk at Maqu segment is higher than that at Luocha segment,which should attract more attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号