首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
王芝银  郭书太  李云鹏 《岩土力学》2006,27(12):2122-2126
位于地下水位线以下的岩体洞室围岩承受应力场与渗流场的耦合作用,而且其变形随时间的持续而发展。本文以岩体水力学和流变力学的基本理论为基础,研究建立了岩体应力场与渗流场耦合作用下的流变分析模型,导出了相应的流变有限元计算格式。所建立的两场耦合有限元流变分析模型,可用于对地下洞室和边坡工程等进行两场耦合流变条件下的长期稳定性分析。  相似文献   

2.
龙滩地下洞室群围岩稳定性分析   总被引:25,自引:3,他引:22  
大型地下洞室群的开挖和支护结构与围岩的稳定性密切相关,龙滩地下洞室群是布置在陡倾角层状结构岩体的巨型地下结构。应用FLAC3D方法,研究龙滩地下洞室群在开挖和支护过程中围岩的变形特征以及支护结构的受力特点,并将位移计算结果和现场监测结果进行比较,结果表明:数值计算的结果与监测结果规律基本一致,但数值计算位移的量值比监测结果略大。由此可知,采用本计算方法模拟急倾斜岩体内开挖大型地下洞室群具有较强的可靠性。  相似文献   

3.
杨继华  盛谦  朱泽奇  冷先伦 《岩土力学》2012,33(7):2127-2132
将加、卸载响应比理论引入地下岩体洞室群地震响应分析中。以输入的地震加速度作为加、卸载,以洞室围岩的加速度作为响应,合理地确定了加、卸载响应区段。通过有限差分程序FLAC3D建立了白鹤滩水电站13号机组剖面数值分析模型,选用汶川地震波进行动力时程计算,探讨地下岩体洞室群的地震动力稳定性,研究结果表明:在100年超越概率2%的地震作用下,白鹤滩水电站地下洞室群围岩响应比峰值范围在4.05~11.52之间;结合应力及位移分析,主厂房拱顶及层间错动带C4在尾调室上游边墙出露部位的围岩均进入了非线性变形状态,但响应比在整个时程中并没有趋于无穷大,围岩没有发生失稳破坏;错动带两侧的围岩产生了一定的相对位移,会对尾调室的边墙稳定性产生不利影响。该研究方法可应用于一般地下岩体结构的地震稳定性分析中。  相似文献   

4.
孙爱花  张强勇  朱维申 《岩土力学》2006,27(Z1):473-476
采用三维有限差分FLAC3D程序,以二滩工程地下洞群的结构形式为背景,考虑与不考虑节理岩体静水渗流对围岩稳定性进行了大量计算工况的准三维数值模拟。对毛洞开挖时主厂房边墙关键点的位移和主厂房的塑性区进行了系统分析,得到相应的结论,可供大型地下洞室群稳定分析时作为参考。  相似文献   

5.
大型地下洞室群围岩应力-损伤-渗流耦合分析   总被引:5,自引:2,他引:3  
张巍  肖明  范国邦 《岩土力学》2008,29(7):1813-1818
以渗透体力来考虑渗流场的力学效应,建立了应力-损伤-渗透系数关系方程来考虑应力和损伤对渗流场的影响,结合岩体结构的三维弹塑性损伤有限元分析,建立了大型地下洞室开挖围岩应力-损伤-渗流耦合的计算模型。该计算模型求解的难度主要体现在岩体材料弹塑性、损伤、渗流自由面边界、渗流溢出边界、应力-损伤-渗流相互影响关系等。提出分步迭代法对以上因素进行归纳后按一定顺序分别进行迭代求解,取得了良好的计算效果。将该方法应用于某水电站大型地下洞室群分析,得出了一系列有意义的结论。  相似文献   

6.
某大型地下洞室群围岩稳定性分类研究   总被引:17,自引:5,他引:12  
根据地下洞室群的特点 ,选取岩体质量综合级别、块体状况、开挖位移及破坏区、岩爆烈度四因素为分类指标 ,建立了大型地下洞室群围岩稳定性分类体系。针对不同稳定性等级 ,提供了相应的开挖方式和支护处理建议。最后 ,运用该分类体系对某地下洞室群的主厂房进行了分析评价。  相似文献   

7.
曾静  盛谦  廖红建  冷先伦 《岩土力学》2006,27(4):637-642
选取佛子岭抽水蓄能水电站地下厂房区,采用三维快速拉格朗日法(FLAC3D)模拟施工开挖过程,研究了洞室群围岩的开挖变形形态和应力状态,分析了围岩和调压井高边坡在自重荷载作用下的开挖稳定性。通过对地下厂房洞室群区的加固处理,分析了围岩在加固后的力学特性。利用FLAC3D程序的Ubiquitous模型,引入了一组主要节理裂隙,分析了此组节理裂隙对地下洞室群围岩的开挖变形及整体稳定性的影响,并与无节理裂隙的数值模拟结果进行对比,综合评价了节理裂隙对洞室群围岩稳定性的影响。  相似文献   

8.
水电站大型地下洞室长期稳定性数值分析   总被引:1,自引:0,他引:1  
围岩的流变特性是影响地下洞室变形及长期稳定的重要因素。在长期荷载作用下岩体会发生流变现象,特别软弱夹层在较高应力作用下其流变特性更为显著。以某水电站大型地下洞室为例,针对该地下洞室附近围岩存在着软弱夹层,且有些软弱夹层与开挖的洞室相互交汇,基于大型岩土工程分析软件FLAC3D,采用黏弹塑性流变本构模型(Cvisc),模拟了地下洞室围岩的流变力学行为;根据主厂房顶拱位移变化率规律确定出了开挖洞室2次支护的时间,对比分析了瞬时弹塑性条件下与考虑流变特性条件下洞室开挖后围岩的位移变形、应力场及塑性区的分布。数值模拟结果表明,由于着软弱夹层的影响,洞室围岩发生较大的变形,特别是在开挖洞室与软弱夹层的交汇处围岩随着时间的长期变形量会更大,这对洞室的稳定性有着一定的影响;对于水电站地下洞室的长期稳定性分析,充分考虑岩体流变效应是非常重要和必要的。  相似文献   

9.
王帅  盛谦  朱泽奇  肖培伟 《岩土力学》2012,33(10):2897-2902
目前地下结构地震动力分析主要研究围岩响应特征,对围岩中赋存的岩体结构的动力响应规律、塌落机制还缺乏深入研究。结合大岗山水电站工程地下洞室群,基于块体理论选取3种不利地质结构组合作为地下洞室群动力分析的主要结构形式,接着运用离散元程序UDEC研究两种地震动工况作用下不同不利地质结构组合切割的地下洞室围岩动力响应、变形特征以及节理的张开、滑移特征,分析开挖面附近块体的塌落机制。研究结果表明,陡倾角结构面切割形成不利地质结构对地下洞室围岩变形破坏机制影响较大;在地震荷载作用下,陡倾不利地质结构沿节理面的滑塌具有突发性,并且塌落模式随地震强度增加可能发生变化。  相似文献   

10.
大型地下洞室复杂地质断层数值模拟分析方法   总被引:13,自引:0,他引:13  
肖明  陈俊涛 《岩土力学》2006,27(6):880-884
根据大型地下洞室中复杂断层对围岩稳定的影响,提出了隐含断层单元的数值模拟计算方法。该方法将复杂断层单元隐含在岩体单元中,使得岩体单元的剖分不受断层切割的影响。使用这种隐含的断层单元,不但将受复杂断层切割的大型复杂地下洞室群的有限单元离散简单化,加快分析计算周期,而且能够有效地反映断层对复杂地下洞室围岩稳定的影响。通过对三峡地下厂房复杂断层结构的分析计算,证明该方法为复杂断层结构的分析提供了一种十分有效的计算方法和思路。  相似文献   

11.
选取岩石抗压强度、完整系数、结构面状态、地下水发育情况、洞轴线与软弱结构面的夹角作为地下储油库工程围岩稳定性的评价因素,并采用权重反分析的方法确定各指标的权重,建立了基于权重反分析方法和功效系数法的洞库围岩稳定性评价模型。最后,将建立的围岩分类模型应用于实际工程,通过与实际开挖结果对比表明,模型判别结果与实际开挖揭露围岩类别相吻合,证明了该方法用于地下储油洞库围岩分类的合理性和有效性,为地下储油洞库围岩稳定性判别提供了一种新思路。  相似文献   

12.
针对大型地下厂房洞室开挖后围岩力学参数发生劣化的事实,以及大型地下厂房允许变形无相关规范参考的缺陷,在分析地下厂房围岩失稳机制基础之上,基于强度折减法思想,提出大型地下厂房围岩劣化折减计算方法,建立围岩变形的动态预警路线体系。该体系应用屈服接近度指标确定围岩的劣化区域,折减劣化区域内的变形模量、凝聚力及抗拉强度值,在折减计算过程中依据围岩的变形、劣化区体积、释放能量三者之一发生突变作为围岩失稳判据,获得围岩失稳的变形预警值,并与现场变形监测值对比分析,从而实现围岩稳定状况的快速判别。地下厂房实例分析表明,该方法可为洞室稳定性判断提供定量依据,较好地满足了地下工程建设需要。  相似文献   

13.
众多地下工程建设始终处于高地应力环境中,岩体初始应力是地下工程围岩变形破坏的先天条件和主导因素。“高地应力”术语及概念出现和地下工程围岩特殊破坏现象紧密联系,属于工程概念范畴。随着地下工程数量越来越多并逐渐向深部发展,高地应力诱发的围岩破坏现象日益显著,严重影响工程稳定性。现有的高地应力定量分级判据多采用强度应力比值形式,没有充分考虑岩石强度、应力两个指标的绝对值大小和耦合关系。本文在讨论现有分级判据、收集实际工程案例数据以及分析高地应力破坏现象显现过程的基础上,提出了高地应力“强度& 应力”耦合判据及其定量分级标准。高地应力“强度& 应力”耦合判据的表现形式为3条考虑岩石饱和单轴抗压强度Rc以及和初始最大主应力σ1耦合的边界线,边界线以内的区域为高地应力区、边界线以外的区域为低地应力区。该判据特点是既考虑初始最大主应力、岩石饱和单轴抗压强度的绝对值边界条件,同时也考虑两者耦合区间。研究结果表明:基于二维尺度提出的“强度& 应力”耦合判据,针对86个典型地下工程的高地应力判别结果和工程现场高地应力显现形式完全相符,可以在实际地下工程中推广应用。基于“强度& 应力”耦合判据的高地应力区分级标准能较好地判别围岩破坏现象的剧烈程度,可为工程灾害的预防提供参考。  相似文献   

14.
地下储存液化石油气是各类地下工程中较复杂的一类工程。洞库围岩稳定性是工程成败的关键因素之一。洞库围岩稳定性一方面取决于洞库周边围岩应力集中的情况,另一方面取决于岩体强度和变形特征,其核心问题在于岩体完整性。可采用多参数综合分类法评价洞库围岩的稳定性,并用数值模拟分析液化石油气地下洞库拟开挖断面的应力场和位移场。定性分析及模拟验算表明:洞库围岩整体强度与抗变形能力均能满足稳定要求。   相似文献   

15.
地下水封油库围岩地下水渗流量计算   总被引:6,自引:0,他引:6  
许建聪  郭书太 《岩土力学》2010,31(4):1295-1302
为准确地计算特大型地下水封储油岩洞库地下水的渗流量,根据现场调查、测试与监测以及室内外物理力学试验,采用了三维多孔连续介质流-固耦合有限差分数值模拟计算分析软件模拟地下水渗流场。提出了一种适用于特大型地下水封储油岩洞库地下水渗流量计算的合理方法。经与法国专家经验法、大岛洋志经验式、《铁路工程水文地质勘测规范》(TB10049-96)等方法的计算结果进行比较,结果比较接近。该计算方法适用于试验数据和资料匮乏的可行性研究阶段的特大型地下水封储油岩洞库围岩地下水渗流量或涌水量的计算;考虑地下水流-固耦合分析时,单洞室的涌水量比只考虑地下水流动作分析时稍小;考虑流-固耦合作用比不考虑流-固耦合作用时围岩地下水的最大渗流速度稍小。  相似文献   

16.
以地下水位线以下的石楼隧道典型三趾马红土围岩段为例,通过现场监测对三趾马红土围岩的体积含水量、孔隙水压力、围岩应力(土压力)、拱顶沉降与水平收敛进行了分析。在此基础上,通过原位大剪试验获得了可靠的围岩抗剪强度参数,并建立了隧道三维有限元数值模型,分别对考虑水-力耦合效应、不考虑水-力耦合效应的三趾马红土围岩变形规律进行了探讨,分析了孔隙水压力随着隧道开挖的变化和三趾马红土围岩位移场、应力场受水-力耦合效应的影响程度,并提出了围岩破坏变形机制。结果表明:(1)实测拱顶下沉大于围岩水平变形,围岩应力可分为增长期( < 20d)、调整期(20~60d)、稳定期(>60d)3个阶段,且整体应力水平较高,下台阶含水量大于上台阶,孔隙水压力经历了由负变正的过程。(2)现场剪切试验所测围岩的黏聚力为64.0kPa,内摩擦角为27.7°。(3)数值分析表明,隧道开挖后孔隙水压力场变化十分明显,这是由地下水流速场的改变引起的,水力坡降在衬砌面附近最为明显,渗透动水压力导致土体产生一定的渗透变形;考虑水-力耦合后围岩剪应力、最大剪应变、拱顶沉降、水平收敛、底板隆起均较大。(4)受开挖及支护的影响,地下水产生渗流并依次经过拱顶、边墙,最终汇集于隧底;受开挖、地下水渗流的影响,围岩节理裂隙进一步扩张,成为地下水良好的运移通道;围岩的有效应力随着孔隙水压力的减小而增大,围岩的力学强度在土体趋于饱和状态时骤降,反过来,高有效应力、低围岩强度以及贯通性节理裂隙三者共同改变着地下水渗流场的状态。(5)为保障围岩整体稳定性,建议及时排出隧道底部积水并施做仰拱。  相似文献   

17.
地下工程岩体渗流-损伤-应力耦合问题的研究对于巷道围岩的稳定性分析具有重要意义。本文在总结分析了巷道变形破坏类型影响因素的基础上,基于弹塑性力学、渗流力学以及损伤理论建立了岩体渗流-损伤-应力耦合模型。该模型充分考虑了多物理场耦合过程中,工程岩体的非均质性,岩体力学参数发生的动态弱化过程,围岩塑性屈服的峰后特性以及渗透系数在损伤过程中的突变性。基于多物理场耦合软件,数值模拟结果分析得到,使用该模型能更好地反映巷道围岩的屈服破坏程度和渐进破坏过程。应用该模型分析不同深度下的巷道围岩渐进性破坏过程可以得出:水平地应力为主导的地层中的巷道,屈服破坏主要发生在顶拱和底板,竖直地应力为主导的地层中的巷道,屈服破坏主要发生在两侧边墙,水平地应力和竖直地应力相近的地层中,巷道四周均发生不同程度的破坏,这与工程实际有很好的符合。  相似文献   

18.
地下水封油库通常建造于完整性好的结晶岩体内部,利用隙存水封的原理将油气封闭于地下洞室内部,洞库围岩在施工及运营期间具有典型的流固耦合特征。论文基于裂隙岩体流固耦合理论,采用COMSOL Multiphysics 软件对洞库围岩不同工况下流固耦合特征进行了模拟研究。研究结果表明:地下洞库在不设置人工水幕情况下,开挖后洞室顶部地下水位明显下降,并形成降落漏斗,可能导致洞室油气外溢; 设置人工水幕后,洞室顶部地下水位下降趋势得到明显控制,有效确保了水封的可靠性; 在设置水幕的情况下,洞室直墙及洞室拱顶与底板角点处出现明显的应力集中,但围岩仍未出现连贯塑性区,洞室最大位移不超过5mm,洞室围岩稳定性良好。分析成果对于指导洞库优化设计及施工具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号