首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A fully implicit iterative integration procedure is presented for local and geographically distributed hybrid simulation of the seismic response of complex structural systems with distributed nonlinear behavior. The purpose of this procedure is to seamlessly incorporate experimental elements in simulations using existing fully implicit integration algorithms designed for pure numerical simulations. The difficulties of implementing implicit integrators in a hybrid simulation are addressed at the element level by introducing a safe iteration strategy and using an efficient procedure for online estimation of the experimental tangent stiffness matrix. In order to avoid physical application of iterative displacements, the required experimental restoring force at each iteration is estimated from polynomial curve fitting of recent experimental measurements. The experimental tangent stiffness matrix is estimated by using readily available experimental measurements and by a classical diagonalization approach that reduces the number of unknowns in the matrix. Numerical and hybrid simulations are used to demonstrate that the proposed procedure provides an efficient method for implementation of fully implicit numerical integration in hybrid simulations of complex nonlinear structures. The hybrid simulations presented include distributed nonlinear behavior in both the numerical and experimental substructures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these uncertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.  相似文献   

3.
It is well known that real‐time hybrid simulation (RTHS) is an effective and viable dynamic testing method. Numerous studies have been conducted for RTHS during the last 2 decades; however, the application of RTHS toward practical civil infrastructure is fairly limited. One of the major technical barriers preventing RTHS from being widely accepted in the testing community is the difficulty of accurate displacement control for axially stiff members. For such structures, a servo‐hydraulic actuator can generate a large force error due to the stiff oil column in the actuator even if there is a small axial displacement error. This difficulty significantly restricts the implementation of RTHS for structures such as columns, walls, bridge piers, and base isolators. Recently, a flexible loading frame system was developed, enabling a large‐capacity real‐time axial force application to axially stiff members. With the aid of the flexible loading frame system, this paper demonstrates an RTHS for a bridge structure with an experimental reinforced concrete pier, which is subjected to both horizontal and vertical ground motions. This type of RTHS has been a challenging task due to the lack of knowledge for satisfying the time‐varying axial force boundary condition, but the newly developed technology for real‐time force control and its incorporation into RTHS enabled a successful implementation of the RTHS for the reinforced concrete pier of this study.  相似文献   

4.
This paper presents real‐time hybrid earthquake simulation (RTHS) on a large‐scale steel structure with nonlinear viscous dampers. The test structure includes a three‐story, single‐bay moment‐resisting frame (MRF), a three‐story, single‐bay frame with a nonlinear viscous damper and associated bracing in each story (called damped braced frame (DBF)), and gravity load system with associated seismic mass and gravity loads. To achieve the accurate RTHS results presented in this paper, several factors were considered comprehensively: (1) different arrangements of substructures for the RTHS; (2) dynamic characteristics of the test setup; (3) accurate integration of the equations of motion; (4) continuous movement of the servo‐controlled hydraulic actuators; (5) appropriate feedback signals to control the RTHS; and (6) adaptive compensation for potential control errors. Unlike most previous RTHS studies, where the actuator stroke was used as the feedback to control the RTHS, the present study uses the measured displacements of the experimental substructure as the feedback for the RTHS, to enable accurate displacements to be imposed on the experimental substructure. This improvement in approach was needed because of compliance and other dynamic characteristics of the test setup, which will be present in most large‐scale RTHS. RTHS with ground motions at the design basis earthquake and maximum considered earthquake levels were successfully performed, resulting in significant nonlinear response of the test structure, which makes accurate RTHS more challenging. Two phases of RTHS were conducted: in the first phase, the DBF is the experimental substructure, and in the second phase, the DBF together with the MRF is the experimental substructure. The results from the two phases of RTHS are presented and compared with numerical simulation results. An evaluation of the results shows that the RTHS approach used in this study provides a realistic and accurate simulation of the seismic response of a large‐scale structure with rate‐dependent energy dissipating devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Servo‐hydraulic actuators have been widely used for experimental studies in engineering. They can be controlled in either displacement or force control mode depending on the purpose of a test. It is necessary to control the actuators in real time when the rate‐dependency effect of a test specimen needs to be accounted for under dynamic loads. Real‐time hybrid simulation (RTHS) and effective force testing (EFT) method, which can consider the rate‐dependency effect, have been known as viable alternatives to the shake table testing method. Due to the lack of knowledge in real‐time force control, however, the structures that can be tested with RTHS and EFT are fairly limited. For instance, satisfying the force boundary condition for axially stiff members is a challenging task in RTHS, while EFT has a difficulty to be implemented for nonlinear structures. In order to resolve these issues, this paper introduces new real‐time force control methods utilizing the adaptive time series (ATS) compensator and compliance springs. Unlike existing methods, the proposed force control methods do not require the structural modeling of a test structure, making it easy to be implemented especially for nonlinear structures. The force tracking performance of the proposed methods is evaluated for a small‐scale steel mass block system with a magneto‐rheological damper subjected to various target forces. Accuracy, time delay, and resonance response of these methods are discussed along with their force control performance for an axially stiff member. Overall, a satisfactory force tracking performance was observed by using the proposed force control methods.  相似文献   

6.
In this study, a constitutive model of high damping rubber bearings (HDRBs) is developed that allows the accurate representation of the force–displacement relationship including rate‐dependence for shear deformation. The proposed constitutive model consists of two hyperelastic springs and a nonlinear dashpot element and expresses the finite deformation viscoelasticity laws based on the classical Zener model. The Fletcher–Gent effect, manifested as high horizontal stiffness at small strains and caused by the carbon fillers in HDRBs, is accurately expressed through an additional stiffness correction factor α in the novel strain energy function. Several material parameters are used to simulate the responses of high damping rubber at various strain levels, and a nonlinear viscosity coefficient η is introduced to characterize the rate‐dependent property. A parameter identification scheme is applied to the results of the multi‐step relaxation tests and the cyclic shear tests, and a three‐dimensional function of the nonlinear viscosity coefficient η with respect to the strain, and strain rate is thus obtained. Finally, to investigate the accuracy and feasibility of the proposed model for application to the seismic response assessment of bridges equipped with HDRBs, an improved real‐time hybrid simulation (RTHS) test system based on the velocity loading method is developed. A single‐column bridge was used as a test bed and HDRBs was physically tested. Comparing the numerical and RTHS results, advantage of the proposed model in the accuracy of the predicted seismic response over comparable hysteretic models is demonstrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Real‐time hybrid simulation (RTHS) is increasingly being recognized as a powerful cyber‐physical technique that offers the opportunity for system evaluation of civil structures subject to extreme dynamic loading. Advances in this field are enabling researchers to evaluate new structural components/systems in cost‐effective and efficient ways, under more realistic conditions. For RTHS, performance metric clearly needs to be developed to predict and evaluate the accuracy of various partitioning choices while incorporating the dynamics of the transfer system, and computational/communication delays. In addition, because of the dynamics of the transfer system, communication delays, and computation delays, the RTHS equilibrium force at the interface between numerical and physical substructures is subject to phase discrepancy. Thus, the transfer system dynamics must be accommodated by appropriate actuator controllers. In this paper, a new performance indicator, predictive performance indicator (PPI), is proposed to assess the sensitivity of an RTHS configuration to any phase discrepancy resulting from transfer system dynamics and computational/communication delays. The predictive performance indicator provides a structural engineer with two sets of information as follows: (i) in the absence of a reference response, what is the level of fidelity of the RTHS response? and (ii) if needed, what partitioning adjustments can be made to effectively enhance the fidelity of the response? Moreover, along with the RTHS stability switch criterion, this performance metric may be used as an acceptance criteria for conducting single‐degree‐of‐freedom RTHS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermalmechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.  相似文献   

9.
Real‐time hybrid simulation (RTHS) is a powerful cyber‐physical technique that is a relatively cost‐effective method to perform global/local system evaluation of structural systems. A major factor that determines the ability of an RTHS to represent true system‐level behavior is the fidelity of the numerical substructure. While the use of higher‐order models increases fidelity of the simulation, it also increases the demand for computational resources. Because RTHS is executed at real‐time, in a conventional RTHS configuration, this increase in computational resources may limit the achievable sampling frequencies and/or introduce delays that can degrade its stability and performance. In this study, the Adaptive Multi‐rate Interface rate‐transitioning and compensation technique is developed to enable the use of more complex numerical models. Such a multi‐rate RTHS is strictly executed at real‐time, although it employs different time steps in the numerical and the physical substructures while including rate‐transitioning to link the components appropriately. Typically, a higher‐order numerical substructure model is solved at larger time intervals, and is coupled with a physical substructure that is driven at smaller time intervals for actuator control purposes. Through a series of simulations, the performance of the AMRI and several existing approaches for multi‐rate RTHS is compared. It is noted that compared with existing methods, AMRI leads to a smaller error, especially at higher ratios of sampling frequency between the numerical and physical substructures and for input signals with high‐frequency content. Further, it does not induce signal chattering at the coupling frequency. The effectiveness of AMRI is also verified experimentally. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The essence of real time hybrid simulation (RTHS) is the reliance on a physical test (virtual finite element) in support of a numerical simulation, which is unable to properly simulate it numerically. Hence, the computational support for a hybrid simulation is of paramount importance, and one with anything less than a state of the art computational support may defeat the purpose of such an endeavor. A critical, yet often ignored, component of RTHS is precisely the computational engine, which unfortunately has been a bottleneck for realistic studies. Most researches have focused on either the control or on the communication (mostly in distributed, non‐real time hybrid simulation) leaving the third leg of RTHS (computation) ignored and limited to the simulation of simple models (small number of degrees of freedom and limited nonlinearities). This paper details the development of a specialized software written explicitly to perform, single site, hybrid simulation ranging from pseudo‐dynamic to hard real time ones. Solution strategy, implementation details, and actual applications are reported. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In real‐time hybrid simulations (RTHS) that utilize explicit integration algorithms, the inherent damping in the analytical substructure is generally defined using mass and initial stiffness proportional damping. This type of damping model is known to produce inaccurate results when the structure undergoes significant inelastic deformations. To alleviate the problem, a form of a nonproportional damping model often used in numerical simulations involving implicit integration algorithms can be considered. This type of damping model, however, when used with explicit integration algorithms can require a small time step to achieve the desired accuracy in an RTHS involving a structure with a large number of degrees of freedom. Restrictions on the minimum time step exist in an RTHS that are associated with the computational demand. Integrating the equations of motion for an RTHS with too large of a time step can result in spurious high‐frequency oscillations in the member forces for elements of the structural model that undergo inelastic deformations. The problem is circumvented by introducing the parametrically controllable numerical energy dissipation available in the recently developed unconditionally stable explicit KR‐α method. This paper reviews the formulation of the KR‐α method and presents an efficient implementation for RTHS. Using the method, RTHS of a three‐story 0.6‐scale prototype steel building with nonlinear elastomeric dampers are conducted with a ground motion scaled to the design basis and maximum considered earthquake hazard levels. The results show that controllable numerical energy dissipation can significantly eliminate spurious participation of higher modes and produce exceptional RTHS results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A series of large‐scale real‐time hybrid simulations (RTHSs) are conducted on a 0.6‐scale 3‐story steel frame building with magneto‐rheological (MR) dampers. The lateral force resisting system of the prototype building for the study consists of moment resisting frames and damped brace frames (DBFs). The experimental substructure for the RTHS is the DBF with the MR dampers, whereas the remaining structural components of the building including the moment resisting frame and gravity frames are modeled via a nonlinear analytical substructure. Performing RTHS with an experimental substructure that consists of the complete DBF enables the effects of member and connection component deformations on system and damper performance to be accurately accounted for. Data from these tests enable numerical simulation models to be calibrated, provide an understanding and validation of the in‐situ performance of MR dampers, and a means of experimentally validating performance‐based seismic design procedures for real structures. The details of the RTHS procedure are given, including the test setup, the integration algorithm, and actuator control. The results from a series of RTHS are presented that includes actuator control, damper behavior, and the structural response for different MR control laws. The use of the MR dampers is experimentally demonstrated to reduce the response of the structure to strong ground motions. Comparisons of the RTHS results are made with numerical simulations. Based on the results of the study, it is concluded that RTHS can be conducted on realistic structural systems with dampers to enable advancements in resilient earthquake resistant design to be achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents the development and validation of a real‐time hybrid simulation (RTHS) system for efficient dynamic testing of high voltage electrical vertical‐break disconnect switches. The RTHS system consists of the computational model of the support structure, the physical model of the insulator post, a small shaking table, a state‐of‐the‐art controller, a data acquisition system and a digital signal processor. Explicit Newmark method is adopted for the numerical integration of the governing equations of motion of the hybrid structure, which consists of an insulator post (experimental substructure) and a spring‐mass‐dashpot system representing the support structure (analytical substructure). Two of the unique features of the developed RTHS system are the application of an efficient feed‐forward error compensation scheme and the ability to use integration time steps as small as 1 ms. After the development stage, proper implementation of the algorithm and robustness of the measurements used in the calculations are verified. The developed RTHS system is further validated by comparing the RTHS test results with those from a conventional shaking table test. A companion paper presents and discusses a parametric study for a variety of geometrical and material configurations of these switches using the developed RTHS system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
隔震储罐的抗震性能分析中,底部剪力和隔振层位移是两个重要指标。Housner模型是储罐抗震设计中常用的液体简化模型,其在计算储罐底部剪力时有良好的准确性,并被广泛验证,但是对于隔振层变形的计算效果鲜有研究。运用实时子结构试验方法,对四条地震激励下的不同摩擦系数的摩擦摆隔震储罐进行了试验研究,并通过Housner模型代替试验储罐对各个工况进行了仿真。分析结果表明:地震荷载作用下,Housner模型用于储罐底部剪力计算时准确性较高,与实验结果相比平均误差仅为11%。但是在隔振层滑移位移的计算中与实验结果差距较大,平均误差为22%,最大误差超过30%。  相似文献   

15.
模型更新混合试验在传统混合试验方法的基础上更新与试验构件具有相同恢复力特性的构件,扩展了混合试验方法的应用范围。本文旨在提高模型更新混合试验的精度,降低试验的成本并简化模型更新混合试验方法的流程。自适应UKF(AUKF)算法在传统UKF的基础上加入方差自适应模块,能够减轻初始参数设定对参数识别结果的影响,本文基于AUKF提出一种模型更新混合试验方法。对以Bouc-Wen为恢复力模型的防屈曲约束支撑(BRB)进行低周反复加载虚拟试验,通过Matlab编制AUKF算法程序进行参数识别,验证了AUKF算法的高效准确性。对一榀8层4跨带BRB的钢框架进行混合试验数值仿真,结果表明离线模型更新试验结果较在线模型更新更接近真实结果,且简化了试验流程。  相似文献   

16.
In this paper, a new hybrid control technique, based on a combination of base-isolation and semi-active variable stiffness/damping in a superstructure, is presented. To illustrate the efficiency of the proposed control system, model tests on a mini-electromagnetic shaking table and a numerical simulation were performed. The test and numerical calculation results indicate that this new hybrid control mode with additional damping and smaller additional stiffness can achieve a better control efficiency.  相似文献   

17.
在结构弹塑性动力计算中,恢复力曲线是一个重要问题。简化的折线型恢复力模型虽然应用简单,计算工作量小,但是有个突出缺点,即存在很多刚度突变点,即折点,这给计算带来麻烦。本文针对这一问题,提出了一种折点处理新方法。利用结构动力学方程和线性加速度法等推导出求解折线型恢复力模型中加载点和卸载点两类折点的计算公式。该公式基于结构动力学方程推导而来,逻辑严密,结果可信,精度有保证。此外,计算突变折点出现时刻,仅涉及结构动力特性等几个已知量,计算简单,不需迭代,计算工作量小。而且加载点与卸载点两类折点的计算公式形式简单又统一,方便编程。  相似文献   

18.
提出一种新型型钢-混凝土组合柱,并对其进行数值模拟分析,研究翼缘厚度、钢管径厚比、轴压比、混凝土强度等参数对该组合柱抗震性能的影响。将新型型钢-混凝土组合柱截面进行合理简化,基于平截面假定建立组合柱正截面承载力计算公式,通过对比试验与模拟数据,发现公式计算结果具有较高精度。进一步提出组合柱截面屈服点、峰值点、破坏点、加载刚度、卸载刚度等特征参数的计算方法,确定恢复力模型的滞回规则,最终建立基于退化三线型模型的新型型钢-混凝土组合柱恢复力模型。将公式计算得到的滞回曲线与试验得到的滞回曲线进行对比,发现二者吻合较好。  相似文献   

19.
In an attempt to quantify the conductor cable effect on substation electrical equipment, real‐time hybrid simulation (RTHS) is conducted on interconnected equipment using two shaking tables. For this purpose, the existing RTHS system with advanced control capabilities at the Pacific Earthquake Engineering Research Center structural laboratory is enhanced to accommodate the simultaneous use of two shaking tables. An experimental parametric study is conducted to investigate the conductor cable effect using this system with a two‐table RTHS setup. Post insulators of disconnect switches, important components of substations that are usually tested with conventional methods for evaluating their seismic performance, are utilized as experimental substructures for realistic representation of the electrical equipment. Various global and local response parameters, including accelerations, forces, displacements, and strains, are considered to evaluate the effect of the tested conductor cable configuration for a wide range of support structure configurations, which are modeled in the computer as analytical substructures. The experimental parametric study results indicate that the conductor cable has a significant effect on the response of the interconnected equipment over the whole range of investigated support structures and needs to be explicitly considered for seismic testing of electrical equipment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Real‐time hybrid simulation (RTHS) is an effective and versatile tool for the examination of complex structural systems with rate dependent behaviors. To meet the objectives of such a test, appropriate consideration must be given to the partitioning of the system into physical and computational portions (i.e., the configuration of the RTHS). Predictive stability and performance indicators (PSI and PPI) were initially established for use with only single degree‐of‐freedom systems. These indicators allow researchers to plan a RTHS, to quantitatively examine the impact of partitioning choices on stability and performance, and to assess the sensitivity of an RTHS configuration to de‐synchronization at the interface. In this study, PSI is extended to any linear multi‐degree‐of‐freedom (MDOF) system. The PSI is obtained analytically and it is independent of the transfer system and controller dynamics, providing a relatively easy and extremely useful method to examine many partitioning choices. A novel matrix method is adopted to convert a delay differential equation to a generalized eigenvalue problem using a set of vectorization mappings, and then to analytically solve the delay differential equations in a computationally efficient way. Through two illustrative examples, the PSI is demonstrated and validated. Validation of the MDOF PSI also includes comparisons to a MDOF dynamic model that includes realistic models of the hydraulic actuators and the control‐structure interaction effects. Results demonstrate that the proposed PSI can be used as an effective design tool for conducting successful RTHS. Copyright © 2016 John Wiley & Sons, Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号