首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
IPCC第六次评估报告(AR6)第一工作组报告评估了太阳辐射干预(Solar radiation modification,SRM)对气候系统和碳循环的影响。在大幅度减排基础上,太阳辐射干预有潜力作为应对气候变化的备用措施。目前,对于太阳辐射干预气候影响的评估都是基于模式模拟结果。评估主要结论如下:太阳辐射干预可以在全球和区域尺度上抵消一部分温室气体增加造成的气候变化(高信度);但是太阳辐射干预无法在全球和区域尺度上完全抵消温室气体增加引起的气候变化(几乎确定);有可能通过适当的太阳辐射干预设计,同时实现多个温度变化减缓目标(中等信度);在高强度温室气体排放情景下,如果太阳辐射干预实施后突然终止,并且这种终止长时间持续,将会造成快速的气候变化(高信度);如果在减排和CO2移除的情况下,太阳辐射干预的实施强度逐渐减小至零,将显著降低太阳辐射干预突然终止产生的快速气候变化风险(中等信度);太阳辐射干预会通过降温作用,促进陆地和海洋对大气CO2的吸收(中等信度),但是太阳辐射干预无法缓解海洋酸化(高信度);太阳辐射干预对其他生物化学循环影响的不确定性大。由于对云-气溶胶-辐射过程的相互作用和微物理过程认知有限,目前对平流层气溶胶注入、海洋低云亮化、高层卷云变薄等太阳辐射干预方法的冷却潜力和气候效应的认知还有很大的不确定性。  相似文献   

2.
Abstract

Solar radiation data for Vancouver, B.C. were used to determine the increase in aerosol optical depth and the changes in the total, direct, diffuse and net short‐wave radiation fluxes associated with the presence of aerosol that originated from the eruption of El Chichón (Mexico) in April 1982. The aerosol optical depth increased by 400% resulting in reductions of 33% in the direct and increases of 80% in the diffuse short‐wave radiation. These maximum changes were experienced some 9 months following the eruption. The relative insensitivity of the total short‐wave radiation (maximum reduction was 6%) suggests that the volcanic cloud was a strong forward scatterer rather than an absorber or back scatterer. Moreover, interannual variability in the surface albedo and a negative feedback associated with the dependence of the surface albedo on the directionality of the incident radiation resulted in no consistent change in the amount of short‐wave radiation absorbed by the Earth's surface.  相似文献   

3.
太阳辐射管理地球工程是应对气候变化的备用措施。地球工程模式比较计划(GeoMIP)是第六次国际耦合模式比较计划(CMIP6)的重要组成部分。GeoMIP设计了一系列理想化地球工程试验,包括直接减少太阳辐射强度、向平流层注入硫酸盐气溶胶、向海表上空云层注入气溶胶凝结核、增加海水反照率等。在GeoMIP的统一模拟框架下开展地球工程模拟试验,进一步揭示了不同地球工程措施对全球气候的影响和作用机理,从而帮助我们更好地认知气候系统对地球工程的响应过程。更多的中国气候模式参加GeoMIP将提升我国在地球工程研究和国际气候谈判中的国际影响力和话语权。  相似文献   

4.
Atmospheric aerosols influence the earth's radiative balance directly through scattering and absorbing solar radiation, and indirectly through affecting cloud properties. An understanding of aerosol optical properties is fundamental to studies of aerosol effects on climate. Although many such studies have been undertaken, large uncertainties in describing aerosol optical characteristics remain, especially regarding the absorption properties of different aerosols. Aerosol radiative effects are considered as either positive or negative perturbations to the radiation balance, and they include direct, indirect (albedo effect and cloud lifetime effect), and semi-direct effects. The total direct effect of anthropogenic aerosols is negative (cooling), although some components may contribute a positive effect (warming). Both the albedo effect and cloud lifetime effect cool the atmosphere by increasing cloud optical depth and cloud cover, respectively. Absorbing aerosols, such as carbonaceous aerosols and dust, exert a positive forcing at the top of atmosphere and a negative forcing at the surface, and they can directly warm the atmosphere. Internally mixed black carbon aerosols produce a stronger warming effect than externally mixed black carbon particles do. The semi-direct effect of absorbing aerosols could amplify this warming effect. Based on observational (ground-and satellite-based) and simulation studies, this paper reviews current progress in research regarding the optical properties and radiative effects of aerosols and also discusses several important issues to be addressed in future studies.  相似文献   

5.
Summary  We study the three-dimensional transport of Mt. Pinatubo volcanic cloud with the climate model ECHAM4. In order to obtain model results comparable with observations a Newtonian relaxation technique was applied, which forces prognostic model variables towards the observations. A comparison of the simulated aerosol distribution with satellite data reveals good agreement for the first months after the eruption. The model, however, is unable to simulate the tropical aerosol maximum in 1992 and also overestimates the vertical downward and northward transport of aerosols. Substantial improvement was achieved with the introduction of reduced advective vertical transport through the 380 K isentropic layer. Heating rates and top of the atmosphere fluxes, which were calculated online for the first half year after the eruption, are in the observed range. A comparison of Pinatubo simulations between three different vertical ECHAM4 versions (ECHAM4 L19, ECHAM4 L39, MA/ECHAM4) indicates that a vertical resolution of ≈ 700 m in the tropopause region is sufficient to realistically reduce the vertical transport through the tropopause. Consideration of the upper branch of the Brewer Dobson circulation in the MA/ECHAM4 model improves the geographical distribution of the volcanic cloud. The application of a relaxation technique can further reduce major shortcomings of stratospheric simulations with the standard climate model. There remain, however some critical points in the global transport characteristics in all three models which are not fully understood. Received December 19, 1997 Revised July 22, 1998  相似文献   

6.
Modification of cloud microphysics and cloud albedo by cloud-active aerosol is generally identified and accepted, but the nature and magnitude of aerosol-cloud interactions are vaguely understood and thought to include a myriad of processes that vary regionally and confound the application of simple physical models of cloud-aerosol sensitivity. This paper presents observations demonstrating that cloud top stability through its regulation of mixing and vertical development is one of the critical mechanisms that regulate cloud response to cloud-active aerosol in some cloud systems. Strong above-cloud inversions are shown to buffer marine stratocumulus from the effects of mixing with drier, warmer inversion air. This buffering reduces the variability of the cloud liquid water path (LWP) and enables the clouds to remain nearly adiabatic. While weaker above-cloud inversions in continental stratocumulus promote variability in the LWP and sub-adiabatic LWPs, stronger inversions in marine stratocumulus enables a relatively adiabatic existence that increases the relationship of cloud microphysical alteration to cloud-active aerosol. This study has important implications for Geoengineering in that it demonstrates that cloud systems overlain by strong thermal inversions are more likely to respond predictably to intentional manipulation of the in-cloud concentration of cloud-active aerosol.  相似文献   

7.
Kinetic limitations on cloud droplet formation and impact on cloud albedo   总被引:1,自引:0,他引:1  
Under certain conditions mass transfer limitations on the growth of cloud condensation nuclei (CCN) may have a significant impact on the number of droplets that can form in a cloud. The assumption that particles remain in equilibrium until activated may therefore not always be appropriate for aerosol populations existing in the atmosphere. This work identifies three mechanisms that lead to kinetic limitations, the effect of which on activated cloud droplet number and cloud albedo is assessed using a one‐dimensional cloud parcel model with detailed microphysics for a variety of aerosol size distributions and updraft velocities. In assessing the effect of kinetic limitations, we have assumed as cloud droplets not only those that are strictly activated (as dictated by classical Köhler theory), but also unactivated drops large enough to have an impact on cloud optical properties. Aerosol number concentration is found to be the key parameter that controls the significance of kinetic effects. Simulations indicate that the equilibrium assumption leads to an overprediction of droplet number by less than 10% for marine aerosol; this overprediction can exceed 40% for urban type aerosol. Overall, the effect of kinetic limitations on cloud albedo can be considered important when equilibrium activation theory consistently overpredicts droplet number by more than 10%. The maximum change in cloud albedo as a result of kinetic limitations is less than 0.005 for cases such as marine aerosol; however albedo differences can exceed 0.1 under more polluted conditions. Kinetic limitations are thus not expected to be climatically significant on a global scale, but can regionally have a large impact on cloud albedo.  相似文献   

8.
We examine the meteorological responses due to the probable eruption of Mt. Baekdu using an off-line Climate-Chemistry model that is composed of the National Center for Atmospheric Research (NCAR) Climate Atmosphere Model version 3 (CAM3) and a global chemistry transport model (GEOS-Chem). Using the aerosol dataset from the GEOS-Chem driven by GEOS-5 meteorology, experiment and control simulations of the climate model are performed and their meteorological differences between the two simulations are analyzed. The magnitudes of volcanic eruption and column injection height were presumably set to 1/200 of the Mt. Pinatubo eruption and 9 km, respectively. Significant temperature drop in the lower troposphere (850 hPa), which is mainly due to a direct effect of prescribed volcanic aerosols from Mt. Baekdu, has been simulated up to about ?4 K. The upper atmosphere (150 hPa) right above the volcano, however, shows significant warming due to the absorption of the infrared radiation by volcanic aerosols. As a result of the volcanic eruption in the climate model, wave-like patterns are shown in both the geopotential height and horizontal wind. The changes in the lower atmospheric temperature are well associated with the modification of the atmospheric circulation through the hydrostatic balance. In spite of limitations in our current simulations due to several underlying assumptions, our results could give a clue to understanding the meteorological impacts from Mt. Baekdu eruptions that are currently attracting considerable public attention.  相似文献   

9.
The chemical composition of individual particles >0.2 m sampled duringthe MAST-experiment wereanalysed by SEM-EDX, in combination with multivariatetechniques. The objective of this experiment was toidentify the mechanisms responsible for themodification of marine stratocumulus clouds byemissions from ships and in a wider sense to provideinformation on the global processes involved inatmospheric modification of cloud albedo. Aerosolswere examined under different MBL pollution levels(clean, intermediately polluted and moderatelypolluted) in five different reservoirs: backgroundbelow-cloud and above-cloud aerosol; background clouddroplet residual particles; below-cloud ship plumeaerosol and ship track cloud droplet residualparticles.In this study a relation was provided between theaerosol emitted from the ship's stack to an effect incloud. Additionally, a large fraction of the ambientaerosol was found to be composed of organic materialor other compounds, consisting of low Z-elements,associated with chlorine. Their number fraction waslargest in clean marine boundary layers, and decreasedwith increasing pollution levels. The fraction of`transformed sea salt' (Na, Cl, S), on the other hand,increased with the pollution level in the MBL. Only20% of the particles fell within the detectable rangeof the analysis.  相似文献   

10.
气溶胶可以多种途径改变云特征来影响气候。作为凝结核,气溶胶可以增加暖云的云滴数和寿命,间接影响辐射和降水,即为气溶胶的第一间接效应和第二间接效应。观测(包括地面和卫星)和数值模拟是研究间接效应最主要的两种手段,目前这两种方法大多同时采用。本文介绍了气溶胶间接效应的原理及研究方法,并回顾国内一些研究和成果。   相似文献   

11.
Vertical profiles of aerosol were measured in February 1993, and January - March 1995 using balloon-borne particle counters released from Kiruna, Sweden. Condensation nuclei (CN) and aerosol with radii 0.15 - 10.0 µm were measured in 8-12 size classes. The three flights in 1993 were within the polar vortex. Temperatures were below polar stratospheric cloud (PSC) threshold temperatures on one flight and a thin PSC was observed. The volcanic aerosol in the 1993 vortex was similar to that in 1992. In 1993, surface areas were 10 - 20 µm2 cm-3 and volumes 1 - 3 µm3 cm-3. In 1995 three of five flights were within the polar vortex. The volcanic aerosol had decreased to 3 - 7 µm2 cm-3 and 0.1 - 0.4 µm3 cm-3. The top of the volcanic aerosol layer in both years was near 500 K potential temperature (~20 km). A thick nitric acid and water PSC was observed in January 1995. In the thickest region of this PSC nearly all CN were observed to be activated, and surface areas of 5 - 10 µm2 cm-3 were calculated. The volumes observed in this PSC were closer to what would be expected for particles composed of nitric acid trihydrate than for ternary solution droplets. In 1993 the opposite was observed, the volumes in the thin PSC were closer to what would be expected for ternary solution droplets.  相似文献   

12.
The climatic impact of supervolcanic ash blankets   总被引:1,自引:0,他引:1  
Supervolcanoes are large caldera systems that can expel vast quantities of ash, volcanic gases in a single eruption, far larger than any recorded in recent history. These super-eruptions have been suggested as possible catalysts for long-term climate change and may be responsible for bottlenecks in human and animal populations. Here, we consider the previously neglected climatic effects of a continent-sized ash deposit with a high albedo and show that a decadal climate forcing is expected. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, covering much of North America. Reflectivity measurements of dry volcanic ash show albedo values as high as snow, implying that the effects of an ash blanket would be severe. The modeling results indicate major disturbances to the climate, particularly to oscillatory patterns such as the El Niño Southern Oscillation (ENSO). Atmospheric disruptions would continue for decades after the eruption due to extended ash blanket longevity. The climatic response to an ash blanket is not significant enough to instigate a change to stadial periods at present day boundary conditions, though this is one of several impacts associated with a super-eruption which may induce long-term climatic change.  相似文献   

13.
菲律宾皮纳图博火山爆发的卫星探测分析   总被引:1,自引:0,他引:1       下载免费PDF全文
应用气象卫星的探测处理资料,揭示和探讨了1991年6月15日菲律宾皮纳图博火山爆发后火山灰和火山尘云的演变和漂移中的一些重要特征,为研究这次火山爆发对天气和气候的影响提供了卫星观测分析信息。  相似文献   

14.
In an ensemble of general circulation models, the global mean albedo significantly decreases in response to strong CO2 forcing. In some of the models, the magnitude of this positive feedback is as large as the CO2 forcing itself. The models agree well on the surface contribution to the trend, due to retreating snow and ice cover, but display large differences when it comes to the contribution from shortwave radiative effects of clouds. The ??cloud contribution?? defined as the difference between clear-sky and all-sky albedo anomalies and denoted as ??CC is correlated with equilibrium climate sensitivity in the models (correlation coefficient 0.76), indicating that in high sensitivity models the clouds to a greater extent act to enhance the negative clear-sky albedo trend, whereas in low sensitivity models the clouds rather counteract this trend. As a consequence, the total albedo trend is more negative in more sensitive models (correlation coefficient 0.73). This illustrates in a new way the importance of cloud response to global warming in determining climate sensitivity in models. The cloud contribution to the albedo trend can primarily be ascribed to changes in total cloud fraction, but changes in cloud albedo may also be of importance.  相似文献   

15.
Desert targets for solar channel calibration of geostationary satellites in the East Asia — Australian region were selected and their qualities were assessed with aid of Moderate Resolution Imaging Spectroradiometer data (i.e., white-sky surface albedo, aerosol optical thickness, and cloud fraction) from 2002 to 2008. The magnitude, spatial uniformity, and temporal stability of the white-sky surface albedo are examined in order to select bright and stable targets. Subsequently those selected targets over China, India, and Australia are further checked for their qualities in terms of data yielding ratio, aerosol optical thickness, cloud fraction, satellite viewing angle, and solar zenith angle. Results indicate that Chinese targets are found to be not adequate as calibration targets in spite of excellent surface conditions because of high percentage of cloud, possibly heavy aerosol loading, and lower solar elevation angle in particular during winter time. Indian site should be take care about relatively high temporal variation of surface condition and heavy aerosol loading. On the other hand, Australian desert targets are considered to be best when surface brightness, spatial and temporal stability, data yielding ratio, aerosol, and cloud are counted.  相似文献   

16.
Among anthropogenic perturbations of the Earths atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930–1989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea-surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5 min day–1 decade–1 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including the aerosol direct and first indirect effects remains strongly negative.  相似文献   

17.
对气溶胶气候效应开展分类评估并探讨诊断方法的合理性。人为气溶胶辐射效应对计算云辐射强迫的影响为0.38 W·m~(-2)。诊断评估气溶胶对云辐射强迫的影响需要排除这个偏差。两种基于不同试验设计诊断得出的半直接效应分别为0.21和0.09 W·m~(-2),存在显著差异。主要原因可能是人为气溶胶影响云辐射强迫的不同机制之间在模式模拟过程中不断地相互交织,不是简单的线性叠加关系。模式诊断得出的Twomey效应不仅包括Twomey效应本身,还包括Twomey效应引起的部分快速调整。总之,利用模式评估分析人为气溶胶气候效应需要注意审查试验设计和诊断方法的合理性。  相似文献   

18.
In this paper,data of solar direct spectral radiance observation in summer and autumn of 1990 and 1991 were usedto derive the average atmospheric extinction spectra for very clear days each year.The difference of these two extinctionspectra is obvious and considered as the contribution of volcanic cloud resulting from Pinatobu's volcanic eruption inmiddle June of 1991.This average size distribution of volcanic cloud was retrieved from the difference spectra and givenin this paper which will be useful for estimation and modeling of the effects of volcanic eruption.  相似文献   

19.
Partial control of climate by the biosphere may be possible through a chain of processes that ultimately links marine plankton production of dimethylsulfide (DMS) with changes in cloud albedo (Charlson et al., 1987). Changes in cloud optical properties can have profound impacts on atmospheric radiation transfer and, hence, the surface environment. In this study, we have developed a simple model that incorporates empirically based parameterizations to account for the biological control of cloud droplet concentration in a first attempt to estimate the strength of the DMS-cloud albedo feedback mechanism. We find that the feedback reduces the global climatic response to imposed perturbations in solar insolation by less than 7%. Likewise, it modifies the strength of other feedbacks affecting surface insolation over oceans by roughly the same amount. This suggests that the DMS-cloud albedo mechanism will be unable to substantially reduce climate sensitivity, although these results should be confirmed with less idealized models when more is known about the net production of DMS by the marine biosphere and its relation to aerosol/cloud microphysics and climate.  相似文献   

20.
Quantifying the radiative forcing due to aerosol–cloud interactions especially through cirrus clouds remains challenging because of our limited understanding of aerosol and cloud processes. In this study, we investigate the anthropogenic aerosol indirect forcing (AIF) through cirrus clouds using the Community Atmosphere Model version 5 (CAM5) with a state-of-the-art treatment of ice nucleation. We adopt a new approach to isolate anthropogenic AIF through cirrus clouds in which ice nucleation parameterization is driven by prescribed pre-industrial (PI) and presentday (PD) aerosols, respectively. Sensitivities of anthropogenic ice AIF (i.e., anthropogenic AIF through cirrus clouds) to different ice nucleation parameterizations, homogeneous freezing occurrence, and uncertainties in the cloud microphysics scheme are investigated. Results of sensitivity experiments show that the change (PD minus PI) in global annual mean longwave cloud forcing (i.e., longwave anthropogenic ice AIF) ranges from 0.14 to 0.35 W m–2, the change in global annual mean shortwave cloud forcing (i.e., shortwave anthropogenic ice AIF) from–0.47 to–0.20 W m–2, and the change in net cloud forcing from–0.12 to 0.05 W m–2. Our results suggest that different ice nucleation parameterizations are an important factor for the large uncertainty of anthropogenic ice AIF. Furthermore, improved understanding of the spatial and temporal occurrence characteristics of homogeneous freezing events and the mean states of cirrus cloud properties are also important for constraining anthropogenic ice AIF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号